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Abstract—Payment Channel Networks or PCNs solve the problem of scalability in Blockchain by executing payments off-chain. Due to
a lack of sufficient capacity in the network, high-valued payments are split and routed via multiple paths. Existing multi-path payment
protocols either fail to achieve atomicity or are susceptible to wormhole attack. We propose a secure and privacy-preserving atomic
multi-path payment protocol CryptoMaze. Our protocol avoids the formation of multiple off-chain contracts on edges shared by the
paths routing partial payments. It also guarantees unlinkability between partial payments. We provide a formal definition of the protocol
in the Universal Composability framework and analyze the security. We implement CryptoMaze on several instances of Lightning
Network and simulated networks. Our protocol requires 11s for routing a payment of 0.04 BTC on a network instance comprising
25600 nodes. The communication cost is less than 1MB in the worst-case. On comparing the performance of CryptoMaze with several
state-of-the-art payment protocols, we observed that our protocol outperforms the rest in terms of computational cost and has a
feasible communication overhead.
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1 INTRODUCTION

Cryptocurrencies are gaining prominence as an alterna-
tive method of payment. Blockchain forms the backbone
of such currencies, guaranteeing security and privacy. It
allows transacting parties to remain pseudonymous and
ensures the immutability of records. Records in blockchain
are publicly verifiable. Bitcoin mining relies on Proof-of-
Work (PoW) [1], [2], [3] to ensure a Sybil-resistant network.
Unfortunately, PoW is quite resource-intensive and time-
consuming, reducing transaction throughput [4], [5].

Layer-two protocols provide a solution to the problem of
scalability. It enables users to perform transactions off-chain
and massively cut down data processing on the blockchain.
Solutions like payment channels, channel factories, pay-
ment channel hub, side-chains, and commit-chains have
been stated in the literature survey [6]. Payment Channels
[7], [5] are widely deployed in many applications. It is
modular and does not require any fundamental changes
in the protocol layer. Two parties can mutually agree to
open a payment channel by locking their funds for a certain
period. Nodes not directly connected by a payment channel
route a payment via an existing set of channels. This set of
interconnected payment channels forms a Payment Channel
Network or PCN. Lightning Network for Bitcoin [5] and Raiden
Network for Ethereum [8] are the two most popular net-
works. Designing privacy-preserving routing and payment
protocols for such networks is a big challenge. Most of
the routing algorithms focus on finding a single path for
routing a transaction. However, finding a single route for a
high-valued transaction is a challenging task. After several
payments get executed in the network, channels in a path
may not have sufficient balance to relay the funds. In such
circumstances, it is better to split high-valued payments
across multiple paths to increase the success rate of trans-
actions. However, it is not trivial to design a protocol for
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multi-path payment and we discuss the challenges faced.

Challenges faced in multi-path payments
• Atomicity of payments: Several distributed routing algo-

rithms [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]
have been proposed for relaying transactions across mul-
tiple paths. A payment transferred from payer to payee
must be atomic. Either all the partial payments succeed or
fail in their entirety. Applying existing payment protocols
like Hashed Timelock Contract [5], [19], BOLT [20], Sprites
[21], [22], Anonymous Multi-Hop Lock or AMHL [23],
on individual paths routing partial payment might not
guarantee atomicity. If an instance of the protocol fails in
one of the paths, only the partial amount gets transferred
to the receiver, violating atomicity.

• Susceptible to wormhole attack: Existing multi-path payment
protocols like AMP [24], Boomerang [25] achieve atomicity.
Each path forwarding the partial payment uses the same
commitment, making it susceptible to wormhole attack [23].
Malicious parties in a given path may collude and steal an
honest party’s processing fee.

• Multiple off-chain contracts on shared channels: Multiple
paths routing a single payment may not be edge-disjoint.
In Figure 1, M wants to transfer 5.1 units to N . The
payment is split across two paths p1 = 〈MA → AB →
BD → DN〉 and p2 = 〈MA → AC → CD → DN〉
into 2.6 units and 2.5 units respectively. Each intermediate
parties charge a processing fee of 0.1 units. Channels MA
and DN are shared by the two paths. Thus, two off-
chain contracts need to be established for routing each
partial payment. Also, nodes A and D get paid twice for
forwarding each partial payment, levying an additional
cost overhead on the senderM . To save cost and avoid the
overhead of instantiating off-chain contracts, it is better
to construct one off-chain contract on shared payment
channels for a payment instance.

• Linkability between partial payments: A given node will be
willing to route full payment instead of partial payments
[26]. The success rate is low when payment is split. If a
partial payment fails in one of the paths, then the entire
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Fig. 1: Paths p1 and p2 shares channels MA and DN

payment rolls back. If colluding parties can link partial
payments, they will tend to reject such requests and pre-
serve their channel capacity for routing the full amount.
Unlinkability must be ensured to prevent censoring split
payments.

Our goal is to construct a payment protocol that addresses
all the shortcomings discussed above.

1.1 Contributions

• We propose CryptoMaze, an efficient, privacy-preserving,
atomic multi-path payment protocol. Our protocol opti-
mizes the setup cost by avoiding the formation of multiple
off-chain contracts on a channel shared by partial pay-
ments. To date, no other protocol has been able to achieve
this optimization.

• Our protocol ensures balance security, i.e., honest interme-
diaries do not lose coins while forwarding the payment.

• Our protocol description ensures unlinkability between
partial payments.

• We have modeled CryptoMaze and defined its security
and privacy notions in the Universal Composability or
UC framework.

• Experimental Analysis on several instances of Lightning
Network and simulated networks show that our proposed
payment is as fast as Atomic Multi-path Payment [24]. The
run time is around 11s for routing a payment of 0.04 BTC
in a network instance of 25600 nodes. The communication
overhead is within feasible bounds, being less than 1MB.
The code is available in [27].

1.2 Organization

The rest of the paper has been organized as follows: Section
2 provides the background concept needed for understand-
ing our paper. Section 3 discusses the related works in multi-
path payments. Our proposed protocol has been described
in detail in Section 4. We discuss the security of our protocol
in Universal Composability (UC) framework in Section 6
and provide the security analysis. The experimental obser-
vation has been provided in Section 7. Finally, we conclude
our paper in Section 9.

2 BACKGROUND

In this section, we provide the required background for
understanding our protocol. The terms source/payer means
the sender node. Similarly, sink/payee/destination means
the receiver node. A payment channel has been referred to
as an edge. Table 1 states the notations used in the paper.

Notation Description
G := (V,E) Bidirected Graph representing PCN

V Nodes in G
E Payment channels in G, E ⊂ V × V

C : E × N→ R+ Capacity function
f : V → R+ Function defining processing fee

idi,j Identifier of payment channel (Ui, Uj) ∈ E
B Blockchain
G Elliptic curve of order q

where q = pn, p is a prime number
G Base point of elliptic curve G
λ Security Parameter

H : {0, 1}∗ → {0, 1}λ Standard Cryptographic Hash function
∆ Worst-case confirmation time for a

transaction to get recorded in Blockchain
U0 Payer, a node in set V
Ur Payee, a node in set V

gain : V → R+ Function defining coins gained by a node
PC Set of payment channels, created by U0
Ti Timestamp at which node Ui receives

its first incoming contract request.
δ latency
F Ideal functionality for payment in PCN
FB Ideal functionality for Blockchain B
Fsmt Ideal functionality for secure message

transmission
Sim Ideal world adversary
A Adversary in the real world
Z Environment

TABLE 1: Notations used in the paper

2.1 Payment channels
A payment channel enables several payments between two
users without committing every single transaction to the
blockchain. Any two users can mutually agree to open
a payment channel by locking their coins into a multi-
signature address controlled by both users. These parties
can perform several off-chain payments by locally agree-
ing on the new deposit balance. Correctness of payments
is enforced cryptographically by the use of hash locks,
time locks [5], or scriptless locking [23]. A party can close
the payment channel, with or without the cooperation of
counterparties, broadcasting the latest transaction on the
Blockchain. Broadcasting of older transactions leads to the
slashing of deposits made by the malicious party.

2.2 Payment channel networks (PCNs)
A Payment Channel Network is modeled as a bidirected
graph G = (V,E) where V represents the participants
in the network and E ⊆ V × V denotes the payment
channels existing between parties [5], [7]. Opening a pay-
ment channel (Ui, Uj) is equivalent to the opening of two
unidirectional payment channels (Ui, Uj) and (Uj , Ui). The
channel identifier for (Ui, Uj) is denoted as idi,j . The under-
lying blockchain, denoted as B, acts like a trusted append-
only ledger recording the opening and closing of payment
channels. A capacity function, defined as C : E × N→ R+,
denotes the balance of each party in the channel at a given
time. For example, C((Ui, Uj), t) denotes the balance of
party Ui in the channel idi,j at time t. We define the fee
charged by each node as f : V → R+. The fee calculated
is proportional to the coins a particular node is routing
through its channel. If a party Ui receives a request to
transfer val coins at time tcurrent to a node Uj , it checks
locally whether there exist payment channels connected to
Ui and C((Ui, Uj), tcurrent) ≥ val.

2.3 Off-chain contracts
Off-Chain contracts are smart contracts where the logic en-
coded in the contract is not run by the miners. It is mutually
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executed by the participants involved in instantiating the
contract. The advantage of having off-chain contracts are
that computation-intensive tasks can be executed without
involving blockchain as long as participants behave hon-
estly. An individual player can prove the correct contract
state independently. Cheating is prevented as the state of the
contract is signed by all the players. If a party misbehaves by
broadcasting a wrong state in blockchain, the counterparty
can raise a dispute and publish the valid accepted state.
Hashed Timelock Contract or HTLC [5] is one such example
used in PCN for routing payments in the network. The logic
used is a hash function, where players need to provide the
preimage of the hash to claim coins.

2.4 Wormhole attack in PCNs
HTLC uses the same commitment across the path routing
the payment. Consider an example where U0 wants to
transfer α coins to Ur via nodes U1, U2, . . . , Un−1, n > 3.

The coins transferred by U0 is α +
n−1∑
i=1

f(Ui). Node U3

colludes with Un−2 before the protocol starts. In the release
phase, Ur decommits and claims the coins. However, node
Un−2 directly shares the decommitment withU3. The former
cancels the HTLC with node Un−3 and the cancellation of
HTLC continues till node U3. So nodes from U4 to Un−3

considers the payment to have failed. U3 and Un−2 steals

the fee of all these intermediate nodes, gains
n−3∑
i=4

f(Ui). This

is termed wormhole attack [23].

3 RELATED WORKS

AMP [24] [28] [25] NAPS [29] [26] Crypto-
Maze

At 3 7 3 7 3 3
WA 3 3 3 7 7 7
Li 7 7 7 3 3 7

M-OC 3 3 3 3 3 7

TABLE 2: Comparative Analysis of CryptoMaze with ex-
isting Multi-path payment protocols in terms of atomicity
(At), wormhole attack (WA), Linkability (Li) and multiple
off-chain contracts on shared edges (M-OC)

Several single path payment protocols like Hashed Time-
Lock Contract or HTLC [5], Multi-Hop HTLC [22], Anony-
mous Multi-Hop Lock or AMHL [23] have been proposed
that works for single-path payment. However, a direct
extension of such protocols into multi-path payment may
fail to guarantee atomicity. Sprites [21] was proposed for
Ethereum-styled PCN guarantees atomicity of payments
and locks constant collateral. In [30], [31], a similar construc-
tion has been proposed Bitcoin-compatible PCN. However,
such protocols work for single-path and lack any discussion
on multi-path settings.

Multi-path payment was first discussed in SilentWhisper
[11], but at the cost of substantial computation overhead.
The protocol was not atomic. Osuntokun [24] was the first
to propose a protocol that guarantees the atomicity of split
payments. It uses linear secret sharing of the commitments
shared across the multiple paths routing partial payments.
But this protocol is susceptible to wormhole attack and high
latency. In [28], a protocol for splitting payments interdi-
mensionally was proposed where the total amount to be
transferred is split into unit-amounts and routed through
the same or different routes. However, the authors state that

their protocol does not stress achieving atomicity. Partial sat-
isfaction of payment is considered a favorable outcome. The
problem of latency and throughput in AMP is addressed
by another payment protocol, Boomerang [25]. However,
the protocol suffers from the problem of wormhole attack
and requires locking of excess collateral. In [18], a payment
protocol termed D-HTLC was proposed for multiple paths.
However, the protocol relies on the atomicity of payments
using a penalization mechanism. Levying penalty is not a
good method since honest nodes might lose coins without
any fault. A protocol Non-Atomic Payment Splitting (NAPS)
that recursively splits payment is discussed in [29]. How-
ever, the protocol does not aim for atomicity and partial
payment is treated as a valid outcome. Eckey et al. [26] had
proposed an atomic payment protocol that allows interme-
diaries to split payments dynamically by adapting to the
local condition. The protocol is atomic, privacy-preserving,
and not susceptible to wormhole attack. However, each
node forwarding payment uses homomorphic encryption
to encrypt the payment information. Such an operation is
quite computation-intensive. The public key of the receiver
is forwarded to all the nodes routing partial payments.
Though the authors claim that partial payments remain un-
linkable, colluding parties can link payments by observing
the common public key.

We provide a comparative analysis of our protocol with
the state-of-the-art multi-path payment in Table 2. Our pro-
tocol is atomic, wormhole attack resistant, and guarantees
unlinkability between partial payments. None of the shared
edges require multiple off-chain contracts for a single pay-
ment instance. A new protocol, xLumi [32] was proposed
for blockchain systems. This protocol creates unidirectional
channels. Unlike Lightning Network, xLumi drastically re-
duces the number of interactions and complexity of opening
a payment channel. Users are not required to store a new
secret for every off-chain transaction. However, xLumi has
not been expanded to bidirectional channels and payment
channel networks. It would be interesting to see how Cryp-
toMaze can be adapted in xLumi based PCN.

4 PROPOSED CONSTRUCTION

U0 wants to transfer val coins to Ur efficiently via the PCN
G = (V,E), where U0 ∈ V,Ur ∈ V . None of the nodes in
the network must learn the identity of the payer, payee, or
the coins transferred. Any honest party must not lose coins
while routing the payment. We discuss the cryptographic
preliminaries, system requirements, security, and privacy
goals, followed by a formal description of the proposed
protocol for realizing the payment.

4.1 Cryptographic preliminaries

(i) Discrete Logarithm Problem: Given the elliptic curve G of
order q with base pointG, q = pn where p is a prime number
and n ∈ N, the discrete logarithm problem is defined as
follows: Given points P,Q ∈ G, find an integer a such that
Q = aP , if a exists. This computational problem is the Elliptic
Curve Discrete Logarithm Problem or ECDLP that forms the
fundamental building block for elliptic curve cryptography [33].
(ii) Standard Cryptographic Hash Function: A cryptographic
hash function is a one-way function that, given any fixed
length input generates a unique fixed-length output. It is
represented asH : {0, 1}∗ → {0, 1}λ, where λ is the security
parameter used in the model.
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4.2 System model
Given the PCN G = (V,E), a function gain : V → R+ is de-
fined to quantify the coins any node has gained or lost while
running an instance of the protocol. If we assume that the
protocol starts at time t0 and ends at time t′ then, for a node
v, gain(v) =

∑
u∈V,(v,u)∈E

C((v, u), t′) − C((v, u), t0). The

global ideal functionality for blockchain FB [22] maintains
B. An arbitrary condition can be specified in the contract
in order to execute a transaction in B. FB is entrusted to
enforce fulfillment of the contract before the corresponding
transaction is executed. tend is the least timeout period set
for an off-chain contract. ∆ is the worst-case time taken
for a transaction to settle on-chain. Each node Ui ∈ V has
its pair of the private key and public key. Pairs of honest
users sharing a payment channel communicate using ideal
functionality for secure message transmission Fsmt [34].
Ui send (sid, instruction, Ui, Uj ,m), containing the secret
message m, to Uj via Fsmt. (sid, instruction, Ui, Uj , |m|) is
leaked to an adversary, where |m| is the message length.

System Assumption. Any user can get information on the
network topology by sending a read instruction to FB. The
latter sends the whole transcript of B in reply. The current
value on each payment channel is not published but instead
kept locally by the users sharing a payment channel. Every
user is aware of the payment fees charged by other users
in the PCN. All the nodes know each other’s public keys.
We do not discuss other problems occurring in the network
like individual channel congestion, blocking of nodes, etc.
These issues are orthogonal to the problem addressed in this
paper. Problems arising due to concurrent payments can be
addressed with the solutions proposed in [22].

Communication Model. We consider the bounded syn-
chronous communication model [35]. In this model, time
corresponds to the number of entries of B, denoted by
|B|. Time is divided into fixed communication rounds. It
is assumed that all messages sent by a user in a round
are available to the intended recipient within a bounded
number of steps in execution. The absence of a message in a
round indicates an absence of communication from a user.

4.3 Security and privacy goals
We identify the following security and privacy notions:
• Correctness: Given all the nodes routing the payment are

honest, gain(U0) = −(val +
∑

Ui∈V \{U0,Ur}:Ui∈PC
f(Ui)),

gain(Ur) = val and gain(Ui) = f(Ui),∀Ui ∈ V \
{U0, Ur}.

• Consistency: No intermediate node Ui ∈ V \ {U0, Ur} can
provide the decommitment for the preceding off-chain
contracts before the release of the decommitment in at
least one of the succeeding off-chain contracts. If this
holds, then no wormhole attack is possible as intermediate
nodes cannot be bypassed.

• Balance Security: Honest intermediary does not lose coins,
i.e., for any honest Ui ∈ V \ {U0, Ur}, gain(Ui) ≥ 0.

• Value Privacy: Corrupted users outside the payment path
must not have any information regarding the payment
value in a pay operation involving only honest users.

• Unlinkability: Given a node Ui splits the payments val
into k parts val1, val2, . . . , valk among the k neighbors
Ui,1, Ui,2, . . . , Ui,k : (Ui, Ui,j) ∈ E, j ∈ [1, k]. If all the
neighbors collude, they cannot figure out whether they
are part of the same payment or a different payment.

• Relationship Anonymity: Given two simultaneous suc-
cessful pay operations of the form (U0, Ur, val) and

(U ′0, U
′
r, val), using the same set of intermediate nodes

and payment channels for routing payment, with at least
one honest intermediate user Ui, corrupted intermediate
users cannot determine whether the payment is from U0

to Ur or from U ′0 to U ′r with a probability greater than 1
2 .

• Atomicity: If all the nodes preceding Ur have forwarded
their partial payments, then only the receiver can start
claiming payments. Even if one of the nodes fails to
forward the payment, then gain(Ur) = 0 and gain(Ui) =
0,∀Ui ∈ V \ {U0}.

4.4 Mapping a set of paths into a set of edges
In the example shown in Figure 4, M wants to transfer
an amount 5.1 units to N . Each intermediate node charges
0.1 unit as a processing fee. Initially, the set of routes must
be realized by M . Any known routing algorithm like [12],
[14], [16], [18] or [17] can be used. The paths returned
are p1 = 〈idM,A → idA,B → idB,D → idD,N 〉 and
p2 = 〈idM,A → idA,C → idC,D → idD,N 〉. Given that
there are four intermediate nodes, M forwards 5.5 units to
A, the latter will deduct 0.1 units, split the amount, and
forwards 2.7 units each to channels idA,B and idA,C . Node
B and C charge 0.1 units each and forwards 2.6 units to
channels idB,D and idC,D respectively. D deducts 0.1 unit
and forwards 5.1 units to N . In the paths p1 and p2, the
channels idM,A and idD,N are shared. Instead of considering
each path individually, a union of all the edges present in p1

and p2 is taken and set PC is constructed. The channels are
inserted into the set in breadth-first order, starting from M .
The set PC = {idM,A, idA,B , idB,D, idA,C , idC,D, idD,N} is
used as the protocol’s input. Thus, mapping a set of paths
into a set of edges allows a shared edge to appear not more
than once in PC.

Fig. 2: CryptoMaze executed on the network for routing
payment from M to N

4.5 Formal definition of the protocol
The protocol involves three phases: Preprocessing Phase, Con-
tract Forwarding Phase and Release Phase. U0 forms the set PC
and uses it as an input for Preprocessing Phase. We define
each phase in detail.

4.5.1 Preprocessing phase
U0 extracts out the set of edges from PC. We divide the
phase into sub-phases, explained as follows:

(i) Secret value for claiming Payment. The payeeUr samples
a random number xŕ and sendsXŕ = xŕG to U0 via a secure
communication channel. U0 checks the number of incoming
channels sending partial payments to Ur . If there are k
such channels, U0 samples yi ∈ Zq . The latter constructs
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the condition for each off-chain contract in reverse order,
starting from node Ur . For any channel idb,r ∈ PC, Ub ∈ V ,

Rb,r = eb,r
k∑
i=1

yiG + Xŕ. Rb,r is the condition encoded in

the off-chain contract formed on the channel idb,r. eb,r is

blinding factor for hiding the secret value y =
k∑
i=1

yi. It is

defined as eb,r = H(
k∑
i=1

yi||idb,r). Ur needs to provide the

discrete logarithm of Rb,r for claiming coins from Ub.
(ii) Conditions for off-chain contracts. If any intermediate

node Ui is forwarding payment to a single node, U0 samples
independent strings xi ∈ Zq for the node. If a node Ui
forwards payments to multiple neighbors, then it must
be ensured that Ui does not lose coins when one of the
neighbors fail to release the decommitment of an off-chain
contract. To avoid this problem, our protocol uses a 1-out-of-
m policy where even if one of the outgoing neighbors of Ui
responds, the latter can claim the coins. We first explain the
procedure for computing secrets for a node that splits the
payment value and forwards it to multiple neighbors with
an example.

In Figure 4, the condition used in the contracts estab-
lished on each of the channels are denoted as follows: RM,A

for idM,A, RA,B for idA,B , RA,C for idA,C , RB,D for idB,D,
RC,D for idC,D , and RD,N for idD,N . Node A splits the
payment and sends it to nodes B and C . The condition
RM,A must be constructed so that the secrets provided
by either B or C helps A in claiming the amount from
M . If A establishes the same contract R with nodes B
and C , then RM,A = R + eM,AxAG. If B and C collude,
they can link their payments. The situation is shown in
Figure 5. To avoid the problem, two different conditions
RA,B and RA,C are assigned to off-chain contracts on
channels idA,B and idA,C . A adjusts the value by adding
xA,BG to RA,B and xA,CG to RA,C to ensure equality.
Thus, we have RM,A = RA,B + eM,AxAG + xA,BG where
RA,B + xA,BG = RA,C + xA,CG.

Fig. 3: Problem of linkability between partial payments

Let Z = RA,B + xA,BG = RA,C + xA,CG. If we fix the
discrete logarithm of Z to x : Z = xG = RA,B + xA,BG =
RA,C + xA,CG, we can calculate the values xA,B and xA,C .
Again, xA = xA,B + xA,C . Even if the off-chain contracts
RA,B , RA,C andRM,A are settled on-chain, still a miner can-
not establish linkability between the three. If xA,B and xA,C
is not known to the miner, then it can establish a relationship
between discrete logarithm of RM,A and discrete logarithm
of RA,B or RA,C with negligible probability.

Summarizing the procedure, for a pair of channels idi,j
and idj,k, having conditions Ri,j and Rj,k where Uj 6= Ur ,
ei,j = H(xj ||idi,j):

(a) If Uj forwards payment to only one neighbor Uk, the
condition Ri,j is defined as follows:

Ri,j = ei,jxjG+Rj,k (1)

(b) If Uj splits the payment and forwards it to one of the
neighbour Uk, Ri,j is defined as follows:

Ri,j = ei,jxjG+Rj,k + xj,kG (2)

where Uk ∈ neighbor(Uj), idj,k ∈ PC.
To compute xj,k for Rj,k, U0 generates a random value x̂

such that x̂G+Xŕ = Rj,k+xj,kG,∀Uk ∈ V, idj,k ∈ PC. Fix-
ing discrete logarithm as x̂ helps U0 to calculate xj,k for each
channel idj,k corresponding to node Uk. The expression can
be rewritten as follows:

xj,kG = Xŕ + x̂G−Rj,k (3)

The discrete logarithm of Xŕ+x̂G−Rj,k is known to U0,
i.e. xj,k = x̂ − dlog(Rj,k − Xŕ), where dlog is the discrete
logarithm. Once each xj,k gets computed, U0 computes
xj =

∑
Uk∈V,idj,k∈PC

xj,k. Thus, for any node Ui forwarding

payments to multiple neighbors, the discrete logarithm for
Ri,j can be supplied by any of the outgoing neighbors of
Uj . Substituting the value of xj,kG obtained from (3) in (2),
we have:

Ri,j = ei,jxjG+Xŕ + x̂G (4)

(iii) Setting timeout period. The least timeout period as-
signed to the all incoming contract of Ur is denoted as
tend. Starting from this point, the timeout period of all
the preceding contracts get decided. For time-locked con-
tracts established with any channel idi,j , Uj 6= Ur , assign
ti,j = max

∀Uk∈V,idj,k∈PC
{tj,k} + ∆ as the timeout period of the

contract on payment channel idi,j .

4.5.2 Contract Forwarding Phase
Each node Ui uses shared variable flagi and Ti, both ini-
tialized to 0. The variable flagi is set to 1 if the node Ui has
received all the incoming contracts. Ti is set to the current
time when Ui receives its first incoming contract request. Ui
waits for time Ti + δ to receive all the incoming contract
requests, where δ > 0 is the latency. If the time elapsed is
greater than Ti + δ but flagi is still 0, then Ui sends abort to
its preceding contracts, canceling the payment.

Starting from node U0, any node Ui 6= Ur sends the
request (Ri,j , vali,j , ti,j) for forming contracts to all its
neighbor via Fsmt, once flagi is set to 1. For ease of
analysis, we explain the procedure for one of its neigh-
bors, say Uj . If the latter accepts the request, it gets the
encrypted message Zi,j . Upon decryption, it gets Mj =
{(valj,k, xj,k, Rj,k, tj,k, Zj,k) : ∀k ∈ V, idj,k ∈ PC}, where
Zj,k is the encrypted message to be forwarded to the node
Uk. Uj checks the consistency of incoming contracts with
the terms stated for an outgoing contract by calling the
subroutine TimeLockContractForward, described in Mod-
ule 1. The checks mentioned in this subroutine ensure the
integrity of the phase. If the subroutine returns failure, then
Uj cancels all the off-chain contracts formed with preceding
nodes. Else,Uj waits for all preceding contracts such that the
total value from the incoming contract is the summation of
the fee charged by Uj and the coins it needs to lock in all the
outgoing contracts specified in Mj . After Uj receives all the
contracts within time Tj + δ, then it begins forwarding the
payment to its neighbor. The steps are defined in Procedure
3. The execution time is determined by the degree of the
node and thus the time complexity of the procedure is
O( |E||V | ) where |E| is the number of edges and |V | is the
number of vertices in G.

A node can identify its predecessor if the former obtains
similar messages upon decryption. The node can forward
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one such message and discard the rest. This phase continues
till all partial payments reach Ur. Even if there is one off-
chain contract that did not get instantiated in a payment
channel belonging to PC, Ur cannot compute the secret y
for claiming coins. Satisfying this constraint implies that all
the partial payments have been combined properly, guaran-
teeing atomicity. Once the receiver has received all the partial
payments within a bounded amount of time, it triggers the
Release Phase.

4.5.3 Release Phase
Ur gets the secret share from all the incoming off-chain con-
tracts forwarding the payment. The former can compute the
secret y as described in Procedure 4. Upon computing the
secret, Ur calls the subroutine TimeLockContractRelease
defined in Module 2. The module returns the solution for
the condition encoded in the incoming contracts forwarded
by its neighbor. If the solution is correct, Ur sends a decision
of acceptance to its predecessor along with the secret. Else,
it sends an abort message to the neighbors and the pay-
ment fails. The abort process is mentioned in Procedure 6.
Any intermediate node, involved in forwarding conditional
payment can claim the coins if at least one of the neighbors
responds. The steps followed by an intermediate node for
claiming payment have been defined formally in Procedure
5. Time complexities of Procedure 4 and Procedure 5 are
O( |E||V | ) each.

Module 1: TimeLockContractForward for node
Uj ∈ V
1 Input : (Dj , ti,j , Ri,j)
2 Parse
Dj = {(idj,k, xj,k, Rj,k, tj,k) : ∀k ∈ V, idj,k ∈ E}

3 Compute xj =
∑

k∈V,idj,k∈E
xj,k

4 Compute ei,j = H(xj ||idi,j)
5 if |Dj | > 1 then
6 for k ∈ V : idj,k ∈ E do
7 if Ri,j

?
= ei,jxjG+Rj,k + xj,kG and

ti,j
?
≥ tj,k + ∆ then

8 continue
9 end

10 else
11 return failure
12 end
13 end
14 end
15 else
16 if Ri,j 6= ei,jxjG+Rj,k or ti,j < tj,k + ∆ then
17 return failure
18 end
19 end
20 return success

Module 2: TimeLockContractRelease for node Uj ∈
V
1 Input : (rj,k, xj , idi,j)
2 Compute ei,j = H(xj ||idi,j)
3 Compute ri,j = ei,jxj + rj,k
4 return ri,j

5 AN EXAMPLE OF CRYPTOMAZE

We present a complete flow of our protocol with an example.
M wants to transfer an amount of 5.1 units to N , shown
in Fig. 4. Each intermediate node charges 0.1 units as a
processing fee. It is assumed that each node has a public
key and a private key generated at the time of joining the
network. First, we mention how the set of paths returned by
any standard routing algorithm must be mapped into a set
of edges. The set PC is constructed using the information.
Next, we provide a detailed construction of CryptoMaze
where PC is used as an input.

5.1 Mapping a set of paths into a set of edges
The paths returned are p1 = 〈idM,A → idA,B → idB,D →
idD,N 〉 and p2 = 〈idM,A → idA,C → idC,D → idD,N 〉.
Given that there are 4 intermediate nodes, M forwards 5.5
units to A, the latter will deduct 0.1 units, split the amount
and forwards 2.7 units each to channels idA,B and idA,C .
They will charge 0.1 unit and forward it to channels idB,D
and idC,D. D deducts 0.1 unit and forwards the rest to
N . We see that in paths p1 and p2, the channels idM,A

and idD,N are shared. Instead of considering each path
individually, a union of all the edges present in p1 and p2 is
taken and set PC is constructed. The channels are inserted
into the set in a breadth-first order, starting from M . The
set PC = {idM,A, idA,B , idB,D, idA,C , idC,D, idD,N} serves
as an input for the protocol execution.

Fig. 4: An instance of the protocol is executed

5.2 Phases of the protocol
M extracts the edges from the set PC. We define each phase
of the algorithm in layman terms:
• Preprocessing Phase: M samples random values
xB , xC , xD for nodes B,C and D. Since, A splits the
payment and forwards it to two channels (A,B) and
(A,C). xA,B is assigned to channel idA,B and xA,C is
assigned to channel idA,C . From these values, we get
xA = xA,B + xA,C . N samples a secret xN but this is not
shared with M .

(i) Secret Value for claiming payment. If receiver N receives
k such partial payments, then M samples y1, y2, . . . , yk.

The secret value y =
k∑
i=1

yi will be used for claiming

payments, which will be discussed later. The motivation
behind this operation is to prevent the receiver from
claiming payments until and unless it has accepted the
off-chain contracts corresponding to all partial payments.
Since N has one in-degree, a single secret y is sampled by
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M .

(ii) Condition for off-chain contract. For a given channel
idi,j ,a blinding factor ei,j is constructed for hiding the
secret xi. The condition used in the off-chain contract
of channel idM,A is RM,A, for channel idA,B is RA,B ,
for channel idA,C is RA,C , for channel idB,D is RB,D,
for channel idC,D is RC,D , and for channel idD,N is
RD,N . This is represented in Fig. 4. The computation of
conditions needed for each off-chain contracts formed in
the channels in PC, is discussed below:

RD,N = eD,NyG+ xNG, eD,N = H(y||idD,N )
RB,D = RD,N + eB,DxDG, eB,D = H(xD||idB,D)
RC,D = RD,N + eC,DxDG, eC,D = H(xD||idC,D)
RA,B = RB,D + eA,BxBG, eA,B = H(xB |idA,B)
RA,C = RC,D + eA,CxCG, eA,C = H(xC ||idA,C)

(5)

Till this point, all the nodes were forwarding payment
to a single neighbor. However, a node might not be able
to route the entire payment value through one single
channel. In that case, it is better to split the payment
across several outgoing payment channels. Node A has
to split the payment across channels (A,B) and (A,C). It
is quite possible that one of the neighbors fails to resolve
the contract and doesn’t release the secret. In that case,
A is at a loss if the protocol requires both B and C to
respond to resolve the condition RM,A. Balance security
gets violated. To avoid this problem, our protocol uses
a 1-out-of-m policy where even if one of the outgoing
neighbors of A respond, the latter can claim payment.
The income of A is either equal to or greater than the
expenditure. We briefly discuss the underlying concept of
computing the contract RM,A so that the secrets provided
by either node B or C helps A in claiming money from
M . Let us discuss a naive approach. If A forms the same
contract R with nodes B and C , then:

RM,A = R+ eM,AxAG (6)

Fig. 5: Contract forwarded by the node where the split
occurs

If B and C collude, then can figure out that they are
part of the same payment, violating the property of un-
linkability. The problem is shown in Fig. 5. Hence, the
contracts assigned to channels idA,B and idA,C must be
different. Thus, we have different conditions RA,B for
channel idA,B and RA,C for channel idA,C respectively.
A adds xA,BG to RA,B and xA,CG to RA,C so that the
following condition holds:

RA,B + xA,BG = RA,C + xA,CG (7)

From Equation 7, we can write RM,A = RA,B +
eM,AxAG+ xA,BG
= RA,C + eM,AxAG + xA,CG, where eM,A =
H(xA||idM,A).

If M fixes the discrete logarithm of RA,B +xA,BG−xNG
to an x:

xG = RA,B−xNG+xA,BG = RA,C−xNG+xA,CG (8)

The expression can be rewritten as:

xA,BG = xG+ xNG−RA,B
xA,CG = xG+ xNG−RA,C (9)

From Equation 5, we have,

RA,B = RB,D + eA,BxBG
= RD,N + eB,DxDG+ eA,BxBG

= eD,NyG+ xNG+ eB,DxDG+ eA,BxBG
(10)

RA,C = RC,D + eA,CxCG
= RD,N + eC,DxDG+ eA,CxCG

= eD,NyG+ xNG+ eC,DxDG+ eA,CxCG
(11)

From Equation 10 and Equation 11, we get RA,B−xNG =
eD,NyG + eB,DxDG + eA,BxBG and RA,C − xNG =
eD,NyG+ eC,DxDG+ eA,CxCG. Thus, we have

dlog(RA,B − xNG) = eD,Ny + eB,DxD + eA,BxB
dlog(RA,C − xNG) = eD,Ny + eC,DxD + eA,CxC

(12)

where dlog is the discrete logarithm. Since M knows x1 =
dlog(RA,C−xNG) and x2 = dlog(RA,B−xNG), the value
of xA,B and xA,C can be calculated.

xA,B = x− x1

xA,C = x− x2
(13)

M can compute xA = xA,B + xA,C . The condition RM,A

for channel idM,A can be computed in the following way:

RM,A = RA,B + xA,BG+ eM,AxAG
= RA,C + xA,CG+ eM,AxAG

(14)

where eM,A = H(xA||idM,A).
(iii) Setting Timeout Period. The timeout period of each
contract doesn’t follow a linear relation, since the amount
split and merges at certain points. Since the worst-case
time taken for a transaction to settle on-chain is ∆, the dif-
ference in timeout period between incoming and outgoing
off-chain contracts must be at least ∆. Since the contracts
accepted by the receiver must have the least timeout,
the assignment is done in reverse order. Hence, RD,N is
assigned a timeout of tend. Next timeout period for RB,D
and RC,D is tend+∆, for RA,B and RA,C is tend+2∆. The
timeout period for RM,A = ∆ + max(timeout(RA,B) +
timeout(RA,C)) = tend + 3∆.

• Contract Forwarding Phase: M uses onion routing for
forwarding the off-chain contract, with each message en-
crypted by the public key of the intermediate nodes. We
describe each step as follows:
– M sends a request to form contract RM,A with timeout

period tM,A to A. The amount forwarded is valM,A=5.5
units. If A accepts the contract, then it forwards the
encrypted date to A.

– A decrypts the message and finds secret values xA,B
and xA,C for the channels idA,B and idA,C . It com-
putes xA = xA,B + xA,C . Along with this, it finds
instruction to forward the contracts RA,B and RA,C
to B and C . The amount to be forwarded valA,B ,
valA,C , and timelock of each contract tA,B , tA,C , is
mentioned as well. A computes the blinding factor
eM,A = H(xA||idM,A), checks the conditions RM,A

?
=

RA,B + xA,BG + eM,AxAG and RM,A
?
= RA,C +

xA,CG + eM,AxAG, as stated in Eq.5. It also checks
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whether tM,A

?
≥ max (tA,B , tA,C) + ∆ and valM,A =

f(A) + valA,B + valA,C , f(A)=0.1 units is processing
the fee charged byA, valA,B=2.7 units is the conditional
payment forwarded to B and valA,B=2.7 units is the
conditional payment forwarded to C .

– If the checks mentioned in the previous step holds, A
sends contract formation request to B and C . If both of
them agree to form the contract, then contracts RA,B
is formed on channel idA,B and RA,C is formed on
channel idA,C . A forwards the encrypted data to each
of the nodes.

– B decrypts and gets RB,D, secret value
xB , tB,D, valB,D and C gets RC,D , secret value
xC , tC,D, valC,D. Each of them computes blinding
factors eA,B and eA,C . B checks the condition

RA,B
?
= RB,D + eA,BxBG, tA,B

?
≥ tB,D + ∆ and

valA,B = f(B) + valB,D, valB,D=2.6 units is the
conditional payment forwarded to D. C checks the

condition RA,C
?
= RC,D + eA,CxCG, tA,C

?
≥ tC,D + ∆

and valA,C = f(C) + valC,D , valC,D=2.6 units is the
conditional payment forwarded to D.

– Both B and C find that the next destination is D. They
send request to form the contract RB,D and RC,D .
If D accepts the contract, then it receives encrypted
messages from both parties.

– D decrypts both the messages and finds messageRD,N ,
secret value xD, tD,N and valD,N . It computes blinding
factor eB,D and eC,D, checks the condition for RB,D
and RC,D as stated in Eq. 5. Next, D checks valC,D +
valB,D = f(D) + valD,N , valD,N=5.1 units, and the

consistency of timeout period tB,D
?
≥ tD,N + ∆, tC,D

?
≥

tD,N + ∆.
– Since D gets the same message from B and C , it dis-

cards one and forwards the contract formation request
to N . Once N accepts the off-chain contract RD,N
with timeout period tD,N , D forwards the encrypted
packet. The receiver decrypts the packet to find the
message y and tend. If N had k such incoming off-
chain contracts, then each would have forwarded the
value y1, y2, . . . , yk. In that case,N adds all these partial
secrets to get the value y.

• Release Phase: The receiver, upon accepting the off-
chain contracts for all partial payments, gets the secret
value y forwarded by sender. It checks tD,N = tend
and valD,N=5.1 units. Next, the payer computes eD,N =
H(y||idD,N ), rD,N = eD,Ny + xN and sends it to D. The
latter uses rD,N to compute rB,D = eB,DxD + xD and
rC,D = eC,DxD+xD to claim 2.6 units each fromB andC ,
where eB,D = H(xD||idB,D) and eC,D = H(xD||idC,D).
B uses rB,D to compute rA,B = eA,BxB + rB,D, where
eA,B = H(xB ||idB,D). It claims 2.7 units fromA by releas-
ing rA,B . C uses rC,D to compute rA,C = eA,CxC+rC,D,
where eA,C = H(xC ||idC,D). However, if C decides not to
respond, then A can still claim the payment by using the
secret released by B. It computes rM,A = rA,B + xA,B +
eM,AxA and claims 5.5 units from M .

6 SECURITY DEFINITION OF CRYPTOMAZE

For modeling security and privacy definition of payment
across several payment channels under concurrent execu-
tion of an instance of CryptoMaze, we take the help of Uni-
versal Composability framework, first proposed by Canetti
et al. [34]. Notations used here are similar to [22].

6.1 Attacker model & assumptions
The real-world execution of the protocol is attacked by an
adversary A, a PPT, or probabilistic polynomial-time algo-
rithm. We assume that only static corruption is allowed, i.e.,
the adversary must specify the nodes it wants to corrupt
before the start of the protocol [36], [23]. Once a node is
corrupted, A gets access to its internal state and controls
any transmission of information to and from the corrupted
node. The attacker is provided with the internal state of the
corrupted node. Also, the incoming and outgoing commu-
nication of such a node gets routed through A.

6.2 Ideal world functionality

Fig. 6: Execution of F with dummy parties U0, Ur repre-
senting payer and payee, Ui,Uj representing intermediaries
routing payment

Notations. We define an ideal functionality F for pay-
ment in PCN. Honest nodes in the network are modeled
as interactive Turing machines. Such nodes are termed as
dummy parties and they can communicate with each other
via F . U0 denotes the initiator of the protocol and Ur
denotes the receiver. The latter internally access the global
ideal functionality FB, defined in Section 4.2. Any payment
channel existing in B is denoted by (idi,j , vi,j , t

′
i,j , fi,j),

where idi,j is the channel identifier of the payment channel
existing between dummy parties Ui and Uj , vi,j is the
capacity of the channel, t′i,j is the expiration time of the
channel and fi,j is the associated fee charged for the channel
idi,j . F maintains two lists internally - one for keeping track
of the list of closed channels, denoted by C, and one for
keeping track of the list of off-chain payments, denoted by
L [22]. Upon executing an off-chain payment in the channel
idi,j , (idi,j , v

′
i,j , ti,j , h

′
i,j) is entered into L where v′i,j is the

residual capacity of the channel and ti,j is the expiration
time of the payment, h′i,j is the event identifier. When a
channel idi,j is closed on-chain, it is entered into the list C.
Payment channels forwarding the payment from U0 to Ur
are put in set PC, added serially upon breadth-first traversal
of the network, starting from U0. The flow in each channel
idi,j present in PC is denoted by vali,j .

6.2.1 Operations
We describe the operation PAY in the ideal world. F initial-
izes a pair of local empty lists (L, C). Each session is denoted
by a session identifier sid. The phase is initiated by U0, send-
ing the payment value val to be paid to Ur, the least timeout
period of off-chain contract tend. The other inputs are the
set of payment channels PC along with the flow in each
channel vali,j and the timeout period of off-chain contracts
established on each channel, denoted as ti,j , ∀idi,j ∈ PC. F
initializes the variable contract(sid, idi,j) = 0, ∀idi,j ∈ PC
to indicate that till now no off-chain contract got established
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Procedure 3: Contract Forwarding Phase for node
Uj ∈ V
1 Upon input (forward,m) from Ui, parse m to get
Ri,j , vali,j , ti,j .

2 Initialize proceed=0
3 valj = valj + vali,j
4 Form contract with Ui using condition Ri,j , receive
Zi,j from Ui.

5 if Uj 6= Ur then
6 Decrypt Zi,j to get

Mj = {(idj,k, valj,k, xj,k, Rj,k, tj,k, Zj,k) : ∀k ∈
V, idj,k ∈ E}

7 Form set Dj = {(idj,k, xj,k, Rj,k, tj,k) : ∀k ∈
V, idj,k ∈ E}

8 Call TimeLockContractForward with
(Dj , ti,j , Ri,j) as the input

9 if (receives success) then
10 Set proceed=1
11 if Tj = 0 then
12 Set Tj = Tcurrent
13 end
14 end
15 if proceed=1 then
16 if valj <

∑
Uk∈V,idj,k∈E

valj,k + f(Uj) then

17 Wait for timeperiod of Tj + δ
18 if timeperiod has elapsed and flagj = 0 then
19 Set proceed=0
20 end
21 end
22 else
23 Set flagj = 1
24 for Uk ∈ V : idj,k ∈ Dj do
25 Send (forward, Rj,k, valj,k, tj,k) to Uk,

receive response from Uk
26 C(Uj , Uk) = C(Uj , Uk)− valj,k
27 Set Contract(idj,k)=1, send Zj,k to Uk
28 end
29 end
30 end
31 if proceed=0 then
32 for Um ∈ V : idm,j ∈ E do
33 if isContract(idm,j) = 1 then
34 Send (abort) to Um.
35 end
36 end
37 end
38 end

in this session. PAY is divided into two phases: (i) Contract
Forwarding Phase and (ii) Release Phase, defined in Figure 7.

(i) The Contract Forwarding Phase is triggered after U0

sends the pay instruction along with the set PC and the value
of the payment. The inputs provided from the environment
Z are marked in red, as shown in Figure 6(i). Each node
Ui 6= Ur, Ui ∈ PC is visited in breadth-first fashion and the
nodes are inserted in the queue Qpay . Before sending the
request to Uj , F checks whether an open channel idi,j exists
in B. Next, it checks whether the channel idi,j has enough
capacity for forwarding the payment. The consistency of
the timeout period for incoming and outgoing contracts is
checked as well. If any of the conditions fail, F removes
any entry for off-chain payments in L and aborts. If all the
criteria hold, F forwards the partial payment to node Uj ,

39 else
40 if Tr = 0 then
41 Set Tr = Tcurrent
42 end
43 if valr < val then
44 Wait for timeperiod of Tr + δ.
45 if timeperiod has elapsed and flagr = 0 then
46 for Ub ∈ V : idb,r ∈ E do
47 if isContract(idb,r) = 1 then
48 Send (abort) to Ub
49 end
50 end
51 end
52 end
53 else
54 Set flagr = 1.
55 Call Release Phase defined in Procedure 4
56 end
57 end

output arrow marked in blue, shown in Figure 6(i). If all
preceding contracts of Uj got established, then it becomes a
candidate for forwarding the payment. Uj is thus inserted
into Qpay . If Uj sends abort, then all the entries in L are
removed and F aborts.

(ii) Once the payment reaches Ur , it triggers the Release
Phase by sending a response to F , input arrows marked
in red, shown in Figure 6(ii). If Ur sends abort, then the
payment is considered to have failed. All the entries are
removed from L and F aborts. If Ur responds with success,
then F sends a success message to predecessors of Ur ,
updates the entry in L. The output of the intermediate
parties sent to environment Z is marked as blue arrows in
Figure 6(ii). If the predecessor sends an abort message, then
such a node is marked as visited and the entry is pushed
in Qfailure. Else, that node is considered as the candidate
for forwarding the success message to its predecessors and
marked as visited, if it has not been visited before. Nodes in
Qfailure are dealt with later after all the successful payments
get settled. Each of these nodes sends an abort message to
its predecessor. If a predecessor has not visited before, then
it is pushed in Qfailure and the process continues.

6.2.2 Discussion
The operation PAY defined in ideal functionality F satisfies
privacy properties of CryptoMaze in the following ways:
• Correctness: In Contract Forwarding phase, each in-

termediate node Ui gets instructions for forwarding
payment from F on behalf of node Uj , provided∑
Uk∈V,idk,j∈PC

valk,j =
∑

Um∈V,idj,m∈PC
valj,m + f(Um). Ur

triggers the release phase and responds with success,
provided it has received the amount val. If all the parties
have behaved honestly and Ur responds with success
in the release phase, then F updates in L the channels
present in PC. Thus, U0 can complete the payment by
forwarding val +

∑
Ui∈V \{U0,Ur}

f(Ui), where each node

Ui ∈ V \ {U0, Ur} gains f(Ui) and Ur gets the amount
val.

• Consistency: Release Phase defined in Figure 7 shows that
Ui is pushed into the queue T only if there is a successor
Uj that had resolved the off-chain contract forwarded by
Ui. Once Ui enters into T , then it will be popped out
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Procedure 4: Release Phase for receiver Ur
1 Set stop = 0
2 for Ub ∈ V : idb,r ∈ E do
3 Decrypt Zb,r to get {yb,r, tend}
4 if tb,r = tend then
5 y = y + yb,r
6 end
7 else
8 stop=1
9 break from the loop

10 end
11 end
12 if stop=0 then
13 for Ub ∈ V : idb,r ∈ E do
14 Call TimeLockContractRelease with

(y, xŕ, idb,r) as input, gets rb,r.
15 if Rb,r 6= rb,rG then
16 stop=1
17 break from the loop
18 end
19 else
20 Store rb,r .
21 end
22 end
23 end
24 if stop = 1 then
25 for Ub ∈ V : idb,r ∈ E do
26 if isContract(idb,r) = 1 then
27 Send (abort) to Ub
28 end
29 end
30 end
31 else
32 for Ub ∈ V : idb,r ∈ E do
33 Send (accept, rb,r) to Ub
34 end
35 end

of the queue for resolving its preceding contracts. If all
the neighbors of Ui have sent abort, then none of the
preceding contracts forwarded to Ui will get resolved.

• Balance Security: Any intermediate node Ui can claim
payment from its preceding neighbors if at least one of
the outgoing neighbors of Ui accepted the payment. If Ui
receives abort from all the successors, it will abort as well.
The total balance of Ui either remains unchanged or it
gains a processing fee f(Ui).

• Value Privacy: The ideal functionality F does not contact
any user that does not belong to the set PC, hence they
learn nothing about the transacted value.

• Unlinkability: For all the neighbors Uj of node Ui, F
samples a random identifier h′i,j . Even if the neighbors
collude, they cannot find any correlation amongst the
payment identifiers.

• Relationship Anonymity: Follows from unlinkability. If
there exist at least one honest intermediate node Ui, then
it receives a unique event identifier from F for each
payment over any of its outgoing payment channels. Since
all the event identifiers are independently generated, if
at least one honest user Ui lies in a payment path, any
two simultaneous payments getting routed over the same
set of payment channels for the same value val is indis-
tinguishable to the outgoing neighbors of Ui receiving
the request for forwarding the payments. This implies

Procedure 5: Release Phase for node Uj ∈ V \ {Ur}
1 Upon receiving input (Ui, accept,m), parse m to get
rj,i

2 C(Ui, Uj) = C(Ui, Uj) + valj,i
3 if releasej=0 then
4 Set releasej=1
5 if Uj had forwarded payment to more than one node

then
6 rj,i = rj,i + xj,i
7 xj =

∑
Ui∈V :idj,i∈E

xj,i

8 end
9 for Um ∈ V : idm,j ∈ E do

10 Call TimeLockContractRelease with
(rj,i, xj , idm,j) as input, gets rm,j .

11 Send (accept, rm,j) to Um.
12 end
13 end

Procedure 6: Abort for node Uj ∈ V
1 Upon receiving input (Ui, abort)
2 Set flag = 0
3 C(Uj , Ui) = C(Uj , Ui) + valj,i
4 for idj,k ∈Mj do
5 if isContract(idj,k) = 1 then
6 flag = 1
7 break from the loop
8 end
9 end

10 if flag = 0 then
11 for Um ∈ V : idm,j ∈ E do
12 Send (abort) to Um.
13 end
14 end

that any corrupted node cannot distinguish between the
payments (U0, Ur, val) and (U ′0, U

′
r, val) with probability

greater than 1
2 .

• Atomicity: If Ur triggers the release by responding with
success, it means that it has received all the partial pay-
ments. If Ur fails to receive even one partial payment,
then it will send abort signaling a failed payment.

6.3 Universal composability (UC) security
The ideal functionality F can be attacked by an ideal world
adversary called a simulator or Sim, a PPT algorithm. An
additional special party called environment Z which ob-
serves both the real world and the ideal world, provides the
inputs for all parties and receives their outputs. Z can use
the information leaked by adversary A or actively influence
the execution. Adversary A can corrupt any party before
the protocol starts. However, the former doesn’t get any
information from communication occurring between honest
parties. Let REALΠ,A,Z be the ensemble of the outputs of
the environment Z when interacting with the attacker Z
and users running protocol Π,
Definition 1. UC Security. Given that λ is the security

parameter, a protocol Π UC-realizes an ideal function-
ality F if for all computationally bounded adversary A
attacking Π there exist a probabilistic polynomial time
(PPT ) simulator Sim such that for all PPT environ-
ment Z , IDEALF,Sim,Z , and REALΠ,A,Z are compu-
tationally indistinguishable.
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isChannel(idi,j) :

• F sends idi,j to FB. The latter checks for an entry in B of
the form (idi,j , vi,j , t

′
i,j , fi,j).

• If the entry does not exist, then return 0.
• If the entry exists, then check if there is an entry idi,j in
C. If it is true, then return 0, else return 1.

isPred(sid, Ui,PC, VPC) :

• For each Uk ∈ VPC : idk,i ∈ PC:
– If contract(sid, idk,i) = 0, then return failure.

• Return success
PAY
(ii) Contract Forwarding Phase: U0 invokes F with mes-
sage (sid, pay, Ur, val, tend, {(idi,j , vali,j , ti,j) : idi,j ∈
PC},PC).
• For each idi,j ∈ PC, set contract(sid, idi,j) = 0.
• F forms a set VPC = {Ui} such that Ui ∈ V and has a

channel in PC.
• Initialize an empty queueQpay . Push U0 into queueQpay .
• While Qpay is not empty:

– Pop Ui from Qpay .
– For each Uj ∈ VPC : idi,j ∈ PC:
∗ If Uj sends (sid, abort) to F then it removes all

entries such entries from L added in this phase,
cancel their contracts by resetting the variable to 0,
and abort.
∗ F checks isChannel(idi,j) = 1. If the check fails,

then remove all entries di from L added in this phase
and abort.
∗ Create zi,j = {(idj,k, valj,k, tj,k) : ∀Uk ∈
VPC, idj,k ∈ PC}, if Uj 6= Ur. Else zi,r = {val, tend}.
∗ F checks ti,j

?
≥ max

Uk∈VPC,idj,k∈zi,j
{tj,k} + ∆ and

vali,j ≤
∑

Uk∈VPC,idj,k∈zi,j
valj,k + f(Uj). If any of the

checks fail, then remove all entries from L added
in this phase, cancel their contracts by resetting the
variable to 0, and abort.
∗ F checks whether for (idi,j , v

′
i,j , ., .) ∈ L, if v′i,j ≥

vali,j . If that is the case, then add di,j = (idi,j , v
′
i,j −

vali,j , ti,j ,⊥) to L, where (idi,j , v
′
i,j , ., .) ∈ L is the

entry with the lowest v′i,j . If the conditions are not
met, F removes all entries from L added in this
phase and abort.
∗ If the conditions are met, set contract(sid, idi,j) =

1. Sample an identifier h′i,j and send request
(sid, forward, Ui, idi,j , vali,j , ti,j , h′i,j , zi,j) to Uj .
∗ If isPred(sid, Uj ,PC, VPC) returns success, push Uj

to Qpay .

Fig. 7: Ideal World Functionality for payment in PCN

6.4 Security analysis
From Definition 1, a protocol Π is said to be UC-secure if
Z cannot distinguish whether it is interacting with the ideal
world or real-world even in presence of a computationally
bounded adversary A. Since our protocol execution in real-
world relies on ideal functionalities Fsmt and FB, we define
our protocol in the hybrid world [36] instead of real world.
Theorem 1. Given λ is the security parameter, elliptic curve

group of order q is generated by the base point G, the
protocol CryptoMaze UC-realizes the ideal functionality
F in the (FB,Fsmt)-hybrid world.

(ii) Release Phase: Ur invokes F with message
(sid, response).
• For each Uj ∈ VPC:

– Set visited(Uj) = 0.
• Initialize flagabort = 0 and initialize empty queues T

and Qfailure.
• If response = ⊥, then set flagabort = 1.
• If flagabort = 0, push Ur in T .
• While T is not empty:

– Pop node Uj from T .
– For each Ui ∈ VPC : idi,j ∈ PC and
contract(sid, idi,j) = 1:
∗ Update di,j ∈ L to (−,−,−, h′i,j), send

(sid, success, h′i,j) to Ui and Uj , set
contract(sid, idi,j) = 0.
∗ If Ui sends (sid, abort) then visited(Ui) = 1, push
Ui in Qfailure.
∗ Else if visited(Ui) = 0 and Ui 6= U0, set
visited(Ui) = 1 and push Ui in T .

• If flagabort = 1, then :
– Push Ur to T .
– While T not null:
∗ Pop node Uj from T .
∗ If Uj 6= U0, go to the next step, else go back to

previous step and continue.
∗ For each Ui ∈ VPC : idi,j ∈ PC and
contract(sid, idi,j) = 1:
· set contract(sid, idi,j) = 0. Remove di,j from L,

send (sid,⊥, h′i,j) to Ui and Uj .
∗ If Ui /∈ T , push Ui in T .

• Else:
– While Qfailure is not empty:
∗ Pop node Uj from Qsuccess
∗ For each Ui ∈ VPC : idi,j ∈ PC and
contract(sid, idi,j) = 1:
· set contract(sid, idi,j) = 0. Remove di,j from L,

send (sid,⊥, h′i,j) to Ui and Uj .
· If visited(Ui) = 0, set visited(Ui) = 1, push Ui in
Qfailure.

Fig. 7: Ideal World Functionality for payment in PCN (Con-
tinued)

Proof 1. We design Sim for the ideal world execution for
the following cases: either the sender is corrupt or the
receiver is corrupt, or one of the intermediate node
is corrupt. The only event which distinguishes hybrid
world from ideal world is when the Sim aborts in ideal
world.

• U0 is corrupted: A acts like the sender U0, and forms
packet (Ri,j , vali,j , ti,j , Zi,j), for each idi,j ∈ PC, Ui 6=
Ur . The encrypted message Zi,j upon decryption gives
Mj = {(idj,k, valj,k, xj,k, Rj,k, tj,k, Zj,k) : ∀k ∈ V, idj,k ∈
PC}, when Uj 6= Ur and Mj = {(yi,j , tend)}, when
Uj = Ur. A forwards the packet to Sim.
For each node Ui ∈ V,Ui 6= {U0, Ur}, Sim does the
following:
– Form set Di = {(idi,k, xi,k, Ri,k, ti,k) : ∀k ∈ V, idi,k ∈
PC}.

– For each Uj ∈ V : idj,i ∈ PC:
∗ Get (Rj,i, tj,i), call TimeLockContractForward with
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input (Di, tj,i, Rj,i) as input. If it returns failure, then
abort.

Sim checks
∑

Uj∈V :idj,i∈PC
valj,i =

∑
Uk∈V :idi,k∈PC

vali,k +

f(Ui). If the check fails, abort.
If the process didn’t abort, Sim sends
(sid, pay, Ur, val, tend, {(idi,j , vali,j , ti,j) : idi,j ∈
PC},PC) to F . Sim has already checked the flow
consistency for the intermediate honest nodes, as well as
consistency of terms of incoming and outgoing contracts
before it forwards the conditional payment.
In the release phase, if Ur aborts, then the process aborts
as well. If Ur has released the secret, then Sim checks
that any node Ui claiming payment from Uj has released
the discrete logarithm for Rj,i. We consider that an hon-
est intermediate node Um splits the transaction value
across multiple payment channels, and a partial value gets
routed via channel idm,i. We identify a bad event E1: if
adversary A has released rm,i for Rm,i : rm,iG = Rm,i
but ∃Uk where idk,m ∈ PC, r = rm,i+ ek,mxm+xm,i and
Rk,m 6= rG then Sim aborts the simulation.
Claim 1. The probability of E1 is 0.

Proof. Sim checks the relation Rk,m
?
= Rm,i + ek,mxmG+

xm,iG,∀Ui ∈ V, idm,i ∈ PC at the start. If Rm,i = rm,iG
but Rk,m 6= rG, then r 6= rm,i + ek,mxm + xm,i, which
contradicts event E1. Hence, the probability is 0.

• An intermediate party Um is corrupted: If A can release
the discrete logarithm of the statement used in the in-
coming channel’s contract of node Um before the secret
is revealed, Sim aborts.
When Sim gets (sid, forward, Uj , idj,m, valj,m, tj,m, h′j,m,
zj,m) from F on behalf of all incoming nodes
Uj of node Um, it samples xm,k for each Uk ∈
zj,m, computes xm =

∑
Uk∈V,idm,k∈PC

xm,k. Sim sends

(forward,Rj,m, valj,m, tj,m), Zj,m to A on behalf of all
Ujs. A sends (Rm,k, valm,k, tm,k) to Sim for all such
Uks, on behalf of Um. Sim checks whether ∀Uj ∈
V , Rj,m

?
= xmG + Rm,k + ej,mxm,kG and tj,m

?
=

∆ + max
Uk∈V,idm,k∈PC

{tm,k} and
∑

Uj∈V,idj,m∈PC
valj,m

?
=∑

Uk∈V,idm,k∈PC
valm,k + f(Um),∀Uk ∈ V, idm,k ∈ PC. If

any of the checks fail, then it sends abort to F .
Consider Ut as the incoming node forwarding payment to
Um and Uh as the outgoing neighbor of Um. Sim samples
r∗ such thatRm,h = r∗G andRt,m = xm,hG+et,mxmG+
Rm,h. We identify another bad event E2: if A releases r′
such that Rt,m = r′G without querying Sim on the event
identifier h′m,h, Sim aborts.

Claim 2. The probability of E2 is 1
q , where G is an elliptic

curve group with large order q i.e. |G| = q.

Proof. Follows from the discrete logarithm hardness as-
sumption, given a random point h ∈ G, it is possible to
guess the value logGh with probability 1

q .
• Ur is corrupted: Sim receives (sid, forward, Uj , idj,r,
valj,r, tj,r, h

′
j,r, zj,r) on behalf of all incoming nodes Uj

of node Ur from F . Sim gets Xŕ from A and samples yj ,
creates Rj,r = Xŕ + ej,ryG, where y =

∑
Uj∈V :idj,r∈PC

yj ,

for all the incoming neighbors Uj of node Ur . It sends
(forward,Rj,r, valj,r, tj,r), Zj,r to A on behalf of all Ujs.
We identify another bad event E3: if there exists a node
Uk : idk,r ∈ PC such that A releases x′ such that Rk,r =

x′Gwithout querying Sim on the event identifier h′k,r , Sim
aborts the simulation.
Claim 3. The probability of E3 is 1

|q| , where G is an elliptic
curve group with large order q i.e. |G| = q.

Proof. A knows dlog(Xŕ), but it doesn’t know y. Hence,
A can guess dlog(Rk,r) with probability 1

q .

Indistinguishability from the ideal world. The simulator Sim
designed is efficient since it runs a polynomially-bounded
algorithm. To argue that Z’s view in simulation is indistin-
guishable from the execution protocol in the hybrid-world
protocol, we consider the occurrence of a bad event in PAY:
(i) When U0 is corrupted, the random values sampled by
Sim and the values are chosen by an honest U0 follow the
same distribution. Similarly, when Ur is corrupted or an
intermediate node is corrupted, the random values sampled
by Sim remain indistinguishable from the data used in
honest execution.
(ii) Indistinguishability breaks when Sim aborts in the ideal
world. We infer from Claim 1, Claim 2, and Claim 3, that
bad events occur with negligible probability and hence Sim
aborts with negligible probability.

Thus, we have proved that our protocol CryptoMaze
UC-realizes the ideal functionality F in the (FB,Fsmt)-
hybrid world. If the security and privacy goals stated in
Section 4.3 are realized by F , then as per UC Definition
of Security stated in Definition 1 these security notions are
satisfied by our protocol as well.

7 EXPERIMENTAL ANALYSIS

We choose to compare our protocol with Multi-Hop HTLC
[22], Atomic Multi-path Payment [24] and Eckey et al. [26].
Multi-Hop HTLC is a single-path payment protocol, and we
show how extending it to a multiple-path payment would
work. In this protocol, a node forwarding payment in a
given path gets a tuple (y, h1, h2) along with the non-
interactive zero-knowledge proof Π for the statement “∃x′ :
h1 = H(x′) and h2 = H(y⊕x′)′′. Atomic Multi-path Payment
or AMP is the most efficient protocol in the existing state-of-
the-art in terms of run time (considering best-case run time)
as well as communication cost. If there are n paths in AMP,
then the payer generates secret shares x1, x2, . . . , xn for each
path from the master secret x : x = x1 ⊕ x2 ⊕ . . . ⊕ xn.
We find the objective of the protocol proposed in Eckey et
al. similar to ours. However, the payment split is decided
on the fly and sharing of the public key leads to linkability
between partial payments. We explain briefly the state-of-
the-art with which we have compared our protocol.

7.0.1 Multi-Hop Hashed Timelock Contract
We discuss a protocol Multi-Hop HTLC with an example.
The protocol preserves privacy of payment and hides the
identity of payer and payee [22].

Construction. In the Fig. 8, Alice samples 4 random num-
bers x1, x2, x3 and x4. It constructs y4 = H(x4) where H
is any standard one-way hash function. Next, it constructs
y3 = H(x3 ⊕ x4) and a zero-knowledge proof π3 for the
statement “given y3 and y4, there exists an x : y4 = H(x) and
y3 = H(x3⊕x)”. Similarly, it constructs y3 = H(x2⊕x3⊕x4)
and a zero-knowledge proof π2 for the statement “given y2

and y3, there exists an x : y3 = H(x) and y2 = H(x2 ⊕ x)”.
It constructs y1 = H(x1 ⊕ x2 ⊕ x3 ⊕ x4) and a zero-
knowledge proof π1 for the statement “given y1 and y2, there
exists an x : y2 = H(x) and y1 = H(x1 ⊕ x)”. It sends
the value (x1, y1, y2, π1) to Bob, (x2, y2, y3, π2) to Charlie,
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Fig. 8: Multi-Hop HTLC construction for payment from
Alice to Dave

(x3, y3, y4, π3) to Eve and (x4, y4) to Dave via a secure
anonymous channel.

Contract Creation Phase. Bob, Charlie, and Eve check
whether the zero-knowledge proof received is correct or
not. Alice forms the contract with Bob using condition y1.
If proof π1 is correct, Bob accepts the payment, else he
will abort. Bob forwards the payment to Charlie using the
condition y2. Charlie forwards the payment to Eve using
the condition y3 and Eve does the same to Dave using the
condition y4.

Contract Release Phase. Upon receiving the conditional
payment, Dave checks if y4

?
= H(x4). If this holds true,

Dave sends x4 to Eve and claims payment. Eve calculates
x3 ⊕ x4, sends it to Charlie and claims payment. Charlie
computes x2 ⊕ x3 ⊕ x4, claims payment from Bob upon
releasing this key. Bob computes x1⊕x2⊕x3⊕x4 and claims
payment from Alice. None of the intermediate participants
can correlate the payments as every channel uses a different
condition. However, Multi-Hop HTLC requires exchanging
non-trivial amount of data and computation of complex
zero-knowledge proof during setup phase.

7.0.2 Atomic Multi-path Payment
Atomic MultiPath Payment [24] splits payment across mul-
tiple path, guaranteeing atomicity. Once the receiver re-
ceives all the conditional payments from different routes,
only then it can claim the payment. The payment hash
used across different routes is different, preventing any
correlation. The setup is non-interactive, where the payer
need not coordinate with the payee. We explain the protocol
with an example.

Construction. Alice needs to send an amount v to Bob. It
figures n paths P1, P2, . . . , Pn, with each path transferring

v1, v2, . . . , vn : v =
n∑
i=1

vi as shown in Fig. 9. Alice samples

secret s1, s2, . . . , sn. The master secret s = s1⊕ s2⊕ . . .⊕ sn
can be generated. Using s, she generates the condition of
payment for each path Pi as follows:Hi = H(s||i), i ∈ [1, n].
For each path Pi, the conditions of paymentHi is forwarded
using onion routing, where the tuple (si, i) is sent as an
encrypted onion blob or EOB which can only be decrypted
by Bob. Upon receiving all the conditions from n paths, Bob
computes s and constructs the preimage s||i for each path
Pi to claim payment. If any of the paths fails, then Bob will
not be able to claim payment.

7.0.3 Splitting Payments Locally While Routing Interdimen-
sionally
Eckey et al. [26] had proposed an atomic payment protocol
that allows intermediaries to split payments dynamically
by adapting to the local condition. Instead of the payer
specifying the path, each intermediate party independently
decides on the split of the payment value. Initially, the
receiver sends the hash of a secret preimage xR, denoted as
HR = Hah(xR), to the sender, the hash function used here
is an additive homomorphic one-way function. The latter,

Fig. 9: Atomic MultiPath Payment from Alice to Bob

upon checking its neighbor and their residual capacity, de-
cides on the conditional payment by sampling different ran-
dom values for each split. If the sender splits the payment
amount into k parts, then it samples x1, x2, . . . , xk. The hash
of the receiver’s preimage and the hash of the sender’s
preimage for each split is added, H + H(xi), i ∈ [1, k]
and forwarded to the neighbor along with the address of
the receiver and encrypted value of each random value,
denoted as EncHE(xi). The encryption used here is ho-
momorphic in nature, using the public key of the receiver.
If two encrypted values are added, then upon decryption,
we get the summation of these two values. The neighbor
upon receiving the packet decides upon the next neighbor
which can forward the packet to the receiver. It performs the
same step as done by the sender and combines its encrypted
random value with that received from the sender. In the
end, when the receiver receives the conditional payments
for all the splits, it decrypts the encrypted value and adds
the preimage it had sampled initially. It now claims the
payment by releasing this preimage. Sender can generate
a valid receipt of the payment, provided the sender receives
the secret preimage sampled by the receiver. For routing, it
uses a new algorithm, Interdimensional SpeedyMurmur.

7.1 Evaluation methodology
In this section, we define the experimental setup. The code is
available in [27]. System configuration used is Intel Core
i5-8250U CPU, Operating System: Kubuntu-20.04.1, and
Memory: 7.7 GiB of RAM. The programming language used
is C, compiler - gcc version 5.4.0 20160609. For implement-
ing the cryptographic primitives in CryptoMaze, Atomic
Multi-path Payment or AMP and Multi-Hop HTLC, we use
the library OpenSSL, version-1.0.2 [37]. For constructing the
zero-knowledge proof for Multi-Hop HTLC, we have used C-
based implementation of ZKBoo [38] and libgcrypt version-
1.8.4 1. The number of rounds for ZKBoo is set to 136. This
guarantees a soundness error of 2−80 for the proof and
witness length is set to 32 bytes. For elliptic curve operations
in CryptoMaze and Eckey et al., we have considered the
elliptic curve secp224r1. For homomorphic encryption using
Paillier Cryptosystem in Eckey et al., libhcs is used [39]. It is
a C library implementing several partially homomorphic
encryption schemes [40].

7.1.1 Metric used
The following metrics are used to compare the performance
of CryptoMaze with other state-of-the-art protocols.
• TTP (Time taken for payment): It is the time taken for search-

ing of eligible paths for routing a payment, formation of

1. https://gnupg.org/software/libgcrypt/index.html

https://gnupg.org/software/libgcrypt/index.html
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off-chain payment contracts, and completion of payment
upon successfully fulfilling the criteria set in the contract.
It is measured in seconds or s.

• Communication Overhead: For the given payment pro-
tocol, the number of messages exchanged between the
nodes while searching for a set of paths and execution
of the payment protocol, measured in kilobytes or KB.

7.2 Observations
We use the distributed routing algorithm HushRelay [17]
for our protocol, Atomic Multi-path Payment and Multi-Hop
HTLC, that returns the set of paths. Based on this set of paths
as input, we run each instance of the payment protocol.
Since the time taken for routing is taken into account while
estimating TTP, it can be further optimized by using a more
efficient distributed routing algorithm.

7.2.1 Evaluation on real instances
We select two snapshots of Lightning Network taken on
March 2020 [41] and May 20212. The first instance has 6329
nodes and the second instance has 11072 nodes. The payment
amount is varied between 0.0025 BTC - 0.04 BTC.

(a) Optimization in terms of off-chain contracts. Before
stating the observation in terms of execution time and
communication cost, we analyze the saving in terms of off-
chain contracts established in shared edges. Since state-of-
the-art protocols instantiate multiple contracts on shared
edges, we choose anyone as a representative and compare
it with our protocol. We run 20000 payment instances for
a given transaction value and state our results for the two
Lightning Network instances.
• LN instance, March 2020: When the transaction value was

increased from 0.0025 BTC to 0.04 BTC, the payment
instances that had multiple routes sharing payment chan-
nels increased from 1% to 38%. The number of payment
channels shared in a single payment instance increased
from 33% to 55%. The number of times a particular
payment channel got shared increased from 2 to 5. The
total number of off-chain contracts per payment instance
increased from 24% to 68.75% for state-of-the-art.

• LN instance, May 2021: Payment instances sharing chan-
nels for a single payment increased from 0.04% to 38.6%.
Channels shared for a given instance increased from 33%
to 42.8%. A channel gets shared not more than 4 times.
The total number of off-chain contracts per payment in-
stance increased up to 54.5% for state-of-the-art.

(b) Computation and Communication Cost. We analyze
the efficiency of CryptoMaze compared to state-of-the-art
in terms of the metric stated, when executed on a single
payment instance.
• TTP for CryptoMaze is equivalent to Atomic Multi-path

Payment, not exceeding 0.39s on average as shown in
Figure 10 (a) and it is around 1.85s in Figure 10 (b) for the
second snapshot. Our protocol is approximately 3 times
faster than Eckey et al. and 17.5 times faster than Multi-
Hop HTLC for both instances.

• The communication overhead in Figure 10 (a) is 53.18KB
and in Figure 10 (b) is 93.203KB, on average. The overhead
is 14.5 times greater than that of Atomic Multi-path Payment
and 2 times more than that of Eckey et al. for both in-
stances. The communication overhead of Multi-Hop HTLC
is 297 times more than CryptoMaze.

2. https://www.dropbox.com/s/fkq7kh5xyu3l33t/LN_25_05_2021.
json?dl=0

7.2.2 Evaluation on simulated instances
Payment channel networks follow a small-world, scale-
free structure [42]. For generating synthetic graphs of size
ranging from 200 to 25600 based on Barábasi-Albert model
[43], [44], library igraph was used. Optimization in terms of
off-chain contracts is not analyzed since these are synthetic
graphs. The topology of the synthetic graph may not be able
to mimic the execution of multiple payment instances in the
Lightning Network. We make the following observations
based on executing a single payment instance:
• TTP for CryptoMaze increases gradually with the increase

in the size of the network. The execution time does not
exceed 11s upon execution on an instance of size 25600.
Run time of AMP is 1.7 times of CryptoMaze, that of
Eckey et al. and Multi-Hop HTLC is 3.5 times and 18 times
that of our protocol on an average. The plot is given in
Figure 10(c).

• The communication overhead in Figure 10 (c) increases
with an increase in the size of the network, with the
communication overhead not exceeding 1000KB or 1MB
on an instance of size 25600. On average, the communi-
cation overhead of CryptoMaze is 5 times of Eckey et al.
and 33 times of Atomic Multi-path Payment. However, the
overhead is 105 times less compared to Multi-Hop HTLC.

7.3 Discussion
(i) Optimization in terms of off-chain contracts: When the trans-
action amount per payment was increased, the liquidity
of channels decreased. Payments were split into smaller
amounts and routed via multiple paths. Thus, we observed
that the number of instances where the routes were not
edge-disjoint increased. With the increase in transaction
amount, the number of paths routing a payment increased
due to the increase in the split. The number of off-chain
contracts established per payment increased for the state-of-
the-art protocols. When the size of the network increases,
the higher the chance of finding routes with higher capacity,
the more options of edge-disjoint routes. Hence, a decrease
in the number of off-chain contracts is observed.

CryptoMaze combines the conditions for each of the
partial payments routed via shared edges and form a single
off-chain contract, our protocol saves around 50% − 60%
compared to state-of-the-art in terms of setup cost. Also, it
does not have to pay a node more than once for routing
payment, thus saving on the processing fee.

(ii) Efficiency in terms of computation and communication
cost: We discuss our observation in terms of the metric used.
• Time taken to execute CryptoMaze is comparable to AMP,

sometimes even lower than the latter. The reason is the
mapping set of routes into a set of edges before estab-
lishing the off-chain contracts. All the previous protocols
considered each route individually, increasing the setup
time. Eckey et al. have a higher run time due to the use of
homomorphic encryption. In Multi-Hop HTLC, generating
zero-knowledge proofs for the preimage of a given hash
value is an expensive process in terms of computation
cost.
Overall, the time taken to execute the payment proto-
col increases slightly with an increase in the transaction
amount and an increase in the network size. The higher
is the transaction amount, the higher the chance of the
payment being split into multiple partial payments. When
the network size increases, the time taken to process
the network for searching paths for routing the payment
increases as well.

https://www.dropbox.com/s/fkq7kh5xyu3l33t/LN_25_05_2021.json?dl=0
https://www.dropbox.com/s/fkq7kh5xyu3l33t/LN_25_05_2021.json?dl=0
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(a) LN snapshot March 2020 (b) LN snapshot May 2021 (c) Simulated Network

Fig. 10: Experimental Analysis: Time taken for payment and Communication overhead

• It is observed that AMP has the lowest communication
overhead because each node forwards just a single com-
mitment to its neighbor in the path routing payment.
However, each path is susceptible to wormhole attack.
Eckey et al. have a higher communication overhead. Here,
each node forwards the public key and an encrypted
message to its neighbor. In CryptoMaze, each node for-
wards a set of conditions and a set of secret values
to its neighbor. The communication overhead is slightly
greater than Eckey et al.. However, the surge in commu-
nication overhead is to some extent compensated in the
shared channels, where a single off-chain contract instead
of multiple off-chain contracts. Multi-Hop HTLC has the
highest communication cost. The zero-knowledge proof
Π forwarded to each node has a significant size, plus
multiple off-chain contracts are formed on shared edges,
increasing the communication overhead.

The result demonstrates that our proposed protocol is
efficient and scalable in terms of computation cost and
resource utilization.

8 USE OF SCRIPTLESS LOCK IN CRYPTOMAZE

We leverage the use of scriptless scripts, where a signature
scheme can be used simultaneously for authorization and
locking. The crux of a scriptless locking mechanism is that
the lock can consist only of a message m and a public key
pk of a given signature scheme, and can be released only
with a valid signature σ of m under pk. We next define
how scriptless ECDSA signature can be used as a locking
mechanism, the construction is similar to the one defined in
[23]. The main idea used here is that the locking algorithm
is initiated by two users Ui and Uj who agree on a message
m, for our purpose we consider m = idi,j , and on the
value Ri,j = ri,jG of the unknown discrete logarithm. The
two parties then generate a random number k and agree
on a randomness R = kRi,j . The shared ECDSA signature
is computed by “ignoring" the Ri,j , since the parties are
unaware of its discrete logarithm. The signature computed
is (rx, s) where it can be written as (rx, s

′ri,j). The signature
(rx, s

′) is a valid ECDSA signature onm. Once ri,j is released
by node Uj , it is used for completing the signature.

We define this as an ideal functionality FECDSA−Lock in
Fig. 11, which has access to a Random Oracle. The interfaces
are KeyGen, Lock and Verify. KeyGen generates a common
public key for a payment channel idi,j between parties
Ui and Uj . The Lock Phase and Verify Phase have been
discussed previously. CryptoMaze accesses this ideal func-
tionality FECDSA−Lock for forming the lock and releasing
it as well.

9 CONCLUSION

In this paper, we propose a novel privacy-preserving, atomic
multi-path payment protocol CryptoMaze. Multiple paths
routing partial payments are mapped into a set of edges.
Off-chain contracts are instantiated on these edges in a
breadth-first fashion, starting from the sender. The use of
this technique avoids the formation of multiple off-chain
contracts on channels shared across multiple paths, routing
partial payments. Partial payments remain unlinkable that
prevents colluding parties from censoring split payments.
We analyze the performance of the protocol on some in-
stances of Lightning Network and simulated networks.
From the results, we infer that our protocol has less execu-
tion time and feasible communication overhead compared
to existing payment protocols.

As part of our future work, we intend to improve the
protocol by incorporating a dynamic split of payments,
similar to the work in [26]. This will reduce the computation
overhead of the sender by eliminating the preprocessing
step of constructing conditions for each off-chain contract.
However, the main challenge is to realize such a protocol
without violating unlinkability.
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KeyGen
Upon receiving (sid, keygen, Uj) from Ui and (sid, keygen, Ui) from Uj :
• Sample a secret key sk ← Zq
• Compute a public key pk = sk.G
• Output the message (keygen, sid, pk) to Ui and Uj
• Store (sid, keygen, sk)

Lock
Upon receiving (sid, lock,m,Ri,j , pk) from both Ui and Uj :
• If (sid, lock) is already stored, abort.
• Check if (sid, keygen, sk) for the given pk : pk = skG has been stored.
• Sample k ← Zq and compute (rx, ry) = R = kRi,j
• Query the Random Oracle at point (sid,m), which returns H(m).
• Compute s = k−1(H(m) + rxsk)
• Send a output (lock, sid, (rx, s)) to Ui and Uj
• Store (sid, lock)

Verify
Upon receiving (sid, verify,m, r′, z′, pk) from both Ui and Uj , where Ri,j = ri,jG:
• If (sid, lock) is not stored then abort.
• Parse z′ and retrieve (rx, s)
• Query the Random Oracle at point (sid,m), which returns H(m).
• Compute s′ = s

ri,j
and (sx, sy) = S′ = H(m)G+rx.pk

s′

• Check sx
?
= rx, if true return (sid, verified) to Uj

Fig. 11: Interface of ideal world functionality FECDSA−Lock
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