54,142 research outputs found

    GUMSMP: a scalable parallel Haskell implementation

    Get PDF
    The most widely available high performance platforms today are hierarchical, with shared memory leaves, e.g. clusters of multi-cores, or NUMA with multiple regions. The Glasgow Haskell Compiler (GHC) provides a number of parallel Haskell implementations targeting different parallel architectures. In particular, GHC-SMP supports shared memory architectures, and GHC-GUM supports distributed memory machines. Both implementations use different, but related, runtime system (RTS) mechanisms and achieve good performance. A specialised RTS for the ubiquitous hierarchical architectures is lacking. This thesis presents the design, implementation, and evaluation of a new parallel Haskell RTS, GUMSMP, that combines shared and distributed memory mechanisms to exploit hierarchical architectures more effectively. The design evaluates a variety of design choices and aims to efficiently combine scalable distributed memory parallelism, using a virtual shared heap over a hierarchical architecture, with low-overhead shared memory parallelism on shared memory nodes. Key design objectives in realising this system are to prefer local work, and to exploit mostly passive load distribution with pre-fetching. Systematic performance evaluation shows that the automatic hierarchical load distribution policies must be carefully tuned to obtain good performance. We investigate the impact of several policies including work pre-fetching, favouring inter-node work distribution, and spark segregation with different export and select policies. We present the performance results for GUMSMP, demonstrating good scalability for a set of benchmarks on up to 300 cores. Moreover, our policies provide performance improvements of up to a factor of 1.5 compared to GHC- GUM. The thesis provides a performance evaluation of distributed and shared heap implementations of parallel Haskell on a state-of-the-art physical shared memory NUMA machine. The evaluation exposes bottlenecks in memory management, which limit scalability beyond 25 cores. We demonstrate that GUMSMP, that combines both distributed and shared heap abstractions, consistently outper- forms the shared memory GHC-SMP on seven benchmarks by a factor of 3.3 on average. Specifically, we show that the best results are obtained when shar- ing memory only within a single NUMA region, and using distributed memory system abstractions across the regions

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page

    Scalable data abstractions for distributed parallel computations

    Get PDF
    The ability to express a program as a hierarchical composition of parts is an essential tool in managing the complexity of software and a key abstraction this provides is to separate the representation of data from the computation. Many current parallel programming models use a shared memory model to provide data abstraction but this doesn't scale well with large numbers of cores due to non-determinism and access latency. This paper proposes a simple programming model that allows scalable parallel programs to be expressed with distributed representations of data and it provides the programmer with the flexibility to employ shared or distributed styles of data-parallelism where applicable. It is capable of an efficient implementation, and with the provision of a small set of primitive capabilities in the hardware, it can be compiled to operate directly on the hardware, in the same way stack-based allocation operates for subroutines in sequential machines
    corecore