3 research outputs found

    QoS-RRC: Integrated QoS routing and resource provisioning mechanism for future internet

    Get PDF
    Generic Path (GP) is a new connectivity paradigm proposed to facilitate the inclusion of new applications and services abstracting communications between entities, regardless of their location or architectural layer. This paper enhances the GP architecture with a new mechanism integrating QoS-Routing and Resource Control (QoS-RRC) strategies to dynamically control GP session requirements regarding QoS and connectivity. This solution uses over-provisioning and admission control, and is aimed at multi-party time-sensitive sessions. Initial performance evaluation was carried out in Network Simulator v.2 (NS-2), showing capabilities in reducing overall signaling load in comparison with a value-added per-flow approach

    Over provisioning-centric QoS-routing mechanism for the communication paradigm of future internet 4WARD proposal

    Get PDF
    The FP7 4WARD clean-slate Project envisions overcoming the limitations of current Internet by redefining it to efficiently support complex value-added sessions and services, such as location-based, health-care, critical-mission, and geo processing. The list of networking innovations from 4WARD’s Future Internet (FI) proposal includes a new connectivity paradigm called Generic Path (GP), a common representation for all communications. From the networking point of view, a GP is mapped to a communication path for data propagation. For that, GP architecture relies on routing mechanism for selecting best communication paths. In order to assure reliable communications, the routing mechanism must efficiently provision QoS-aware multi-party capable paths, with robustness functions, while keeping network performance. Therefore, this paper proposes the QoS-Routing and Resource Control (QoS-RRC) mechanism to deal with the hereinabove requirements by means of an over provisioning-centric (bandwidth and paths) approach. QoS-RRC achieves scalability by avoiding per-flow operations (e.g., signaling, state storage, etc.). Initial QoS-RRC performance evaluation was carried out in Network Simulator v.2 (NS-2), enabling drastic reduction of overall signaling exchanges compared to per-flow solutions

    Cloud resource provisioning and bandwidth management in media-centric networks

    Get PDF
    corecore