249 research outputs found

    ROBUST BACKGROUND SUBTRACTION FOR MOVING CAMERAS AND THEIR APPLICATIONS IN EGO-VISION SYSTEMS

    Get PDF
    Background subtraction is the algorithmic process that segments out the region of interest often known as foreground from the background. Extensive literature and numerous algorithms exist in this domain, but most research have focused on videos captured by static cameras. The proliferation of portable platforms equipped with cameras has resulted in a large amount of video data being generated from moving cameras. This motivates the need for foundational algorithms for foreground/background segmentation in videos from moving cameras. In this dissertation, I propose three new types of background subtraction algorithms for moving cameras based on appearance, motion, and a combination of them. Comprehensive evaluation of the proposed approaches on publicly available test sequences show superiority of our system over state-of-the-art algorithms. The first method is an appearance-based global modeling of foreground and background. Features are extracted by sliding a fixed size window over the entire image without any spatial constraint to accommodate arbitrary camera movements. Supervised learning method is then used to build foreground and background models. This method is suitable for limited scene scenarios such as Pan-Tilt-Zoom surveillance cameras. The second method relies on motion. It comprises of an innovative background motion approximation mechanism followed by spatial regulation through a Mega-Pixel denoising process. This work does not need to maintain any costly appearance models and is therefore appropriate for resource constraint ego-vision systems. The proposed segmentation combined with skin cues is validated by a novel application on authenticating hand-gestured signature captured by wearable cameras. The third method combines both motion and appearance. Foreground probabilities are jointly estimated by motion and appearance. After the mega-pixel denoising process, the probability estimates and gradient image are combined by Graph-Cut to produce the segmentation mask. This method is universal as it can handle all types of moving cameras

    UAV PHOTOGRAMMETRIC SOLUTION USING A RASPBERRY PI CAMERA MODULE AND SMART DEVICES: TEST AND RESULTS

    Get PDF
    Nowadays, smart technologies are an important part of our action and life, both in indoor and outdoor environment. There are several smart devices very friendly to be setting, where they can be integrated and embedded with other sensors, having a very low cost. Raspberry allows to install an internal camera called Raspberry Pi Camera Module, both in RGB band and NIR band. The advantage of this system is the limited cost (< 60 euro), their light weight and their simplicity to be used and embedded. This paper will describe a research where a Raspberry Pi with the Camera Module was installed onto a UAV hexacopter based on arducopter system, with purpose to collect pictures for photogrammetry issue. Firstly, the system was tested with aim to verify the performance of RPi camera in terms of frame per second / resolution and the power requirement. Moreover, a GNSS receiver Ublox M8T was installed and connected to the Raspberry platform in order to collect real time position and the raw data, for data processing and to define the time reference. IMU was also tested to see the impact of UAV rotors noise on different sensors like accelerometer, Gyroscope and Magnetometer. A comparison of the achieved results (accuracy) on some control points of the point clouds obtained by the camera will be reported as well in order to analyse in deeper the main discrepancy on the generated point cloud and the potentiality of these proposed approach. In this contribute, the assembling of the system is described, in particular the dataset acquired and the results carried out will be analysed

    Big Data Scalability Issues in WAAS

    Full text link

    DF-3DFace: One-to-Many Speech Synchronized 3D Face Animation with Diffusion

    Full text link
    Speech-driven 3D facial animation has gained significant attention for its ability to create realistic and expressive facial animations in 3D space based on speech. Learning-based methods have shown promising progress in achieving accurate facial motion synchronized with speech. However, one-to-many nature of speech-to-3D facial synthesis has not been fully explored: while the lip accurately synchronizes with the speech content, other facial attributes beyond speech-related motions are variable with respect to the speech. To account for the potential variance in the facial attributes within a single speech, we propose DF-3DFace, a diffusion-driven speech-to-3D face mesh synthesis. DF-3DFace captures the complex one-to-many relationships between speech and 3D face based on diffusion. It concurrently achieves aligned lip motion by exploiting audio-mesh synchronization and masked conditioning. Furthermore, the proposed method jointly models identity and pose in addition to facial motions so that it can generate 3D face animation without requiring a reference identity mesh and produce natural head poses. We contribute a new large-scale 3D facial mesh dataset, 3D-HDTF to enable the synthesis of variations in identities, poses, and facial motions of 3D face mesh. Extensive experiments demonstrate that our method successfully generates highly variable facial shapes and motions from speech and simultaneously achieves more realistic facial animation than the state-of-the-art methods
    • …
    corecore