1,472 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A Proposal for a Multi-Drive Heterogeneous Modular Pipe- Inspection Micro-Robot

    Full text link
    This paper presents the architecture used to develop a micro-robot for narrow pipes inspection. Both the electromechanical design and the control scheme will be described. In pipe environments it is very useful to have a method to retrieve information of the state of the inside part of the pipes in order to detect damages, breaks and holes. Due to the di_erent types of pipes that exists, a modular approach with di_erent types of modules has been chosen in order to be able to adapt to the shape of the pipe and to chose the most appropriate gait. The micro-robot has been designed for narrow pipes, a _eld in which there are not many prototypes. The robot incorporates a camera module for visual inspection and several drive modules for locomotion and turn (helicoidal, inchworm, two degrees of freedom rotation). The control scheme is based on semi-distributed behavior control and is also described. A simulation environment is also presented for prototypes testing

    Androgynous Fasteners for Robotic Structural Assembly

    Get PDF
    We describe the design and analysis of an androgynous fastener for autonomous robotic assembly of high performance structures. The design of these fasteners aims to prioritize ease of assembly through simple actuation with large driver positioning tolerance requirements, while producing a reversible mechanical connection with high strength and stiffness per mass. This can be applied to high strength to weight ratio structural systems, such as discrete building block based systems that offer reconfigurability, scalability, and system lifecycle efficiency. Such periodic structures are suitable for navigation and manipulation by relatively small mobile robots. The integration of fasteners, which are lightweight and can be robotically installed, into a high performance robotically managed structural system is of interest to reduce launch energy requirements, enable higher mission adaptivity, and decrease system life-cycle costs

    Heterogeneous Self-Reconfiguring Robotics: Ph.D. Thesis Proposal

    Get PDF
    Self-reconfiguring robots are modular systems that can change shape, or reconfigure, to match structure to task. They comprise many small, discrete, often identical modules that connect together and that are minimally actuated. Global shape transformation is achieved by composing local motions. Systems with a single module type, known as homogeneous systems, gain fault tolerance, robustness and low production cost from module interchangeability. However, we are interested in heterogeneous systems, which include multiple types of modules such as those with sensors, batteries or wheels. We believe that heterogeneous systems offer the same benefits as homogeneous systems with the added ability to match not only structure to task, but also capability to task. Although significant results have been achieved in understanding homogeneous systems, research in heterogeneous systems is challenging as key algorithmic issues remain unexplored. We propose in this thesis to investigate questions in four main areas: 1) how to classify heterogeneous systems, 2) how to develop efficient heterogeneous reconfiguration algorithms with desired characteristics, 3) how to characterize the complexity of key algorithmic problems, and 4) how to apply these heterogeneous algorithms to perform useful new tasks in simulation and in the physical world. Our goal is to develop an algorithmic basis for heterogeneous systems. This has theoretical significance in that it addresses a major open problem in the field, and practical significance in providing self-reconfiguring robots with increased capabilities

    Correct-by-Construction Approach for Self-Evolvable Robots

    Full text link
    The paper presents a new formal way of modeling and designing reconfigurable robots, in which case the robots are allowed to reconfigure not only structurally but also functionally. We call such kind of robots "self-evolvable", which have the potential to be more flexible to be used in a wider range of tasks, in a wider range of environments, and with a wider range of users. To accommodate such a concept, i.e., allowing a self-evovable robot to be configured and reconfigured, we present a series of formal constructs, e.g., structural reconfigurable grammar and functional reconfigurable grammar. Furthermore, we present a correct-by-construction strategy, which, given the description of a workspace, the formula specifying a task, and a set of available modules, is capable of constructing during the design phase a robot that is guaranteed to perform the task satisfactorily. We use a planar multi-link manipulator as an example throughout the paper to demonstrate the proposed modeling and designing procedures.Comment: The paper has 17 pages and 4 figure

    Design of a Scalable Modular Production System for a Two-stage Food Service Franchise System

    Get PDF
    The geographically distributed production of fresh food poses unique challenges to the production system design because of their stringent industry and logistics requirements. The purpose of this research is to examine the case of a European fresh food manufacturer’s approach to introduce a scalable modular production concept for an international two‐stage gastronomy franchise system in order to identify best practice guidelines and to derive a framework for the design of distributed production systems that perform in a highly dynamic environment. The design framework was developed by creating a theoretical model through literature review and the thorough analysis of an industrial case. Information was collected through multiple site visits, workshops and semi‐structured interviews with the company’s key staff of the project, as well as examination of relevant company documentations. By means of a scenario for the Central European market, the model was reviewed in terms of its development potential and finally approved for implementation. However, research through case survey requires further empirical investigation to fully establish this approach as a valid and reliable design tool
    • 

    corecore