2,556 research outputs found

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Keyword Search on RDF Graphs - A Query Graph Assembly Approach

    Full text link
    Keyword search provides ordinary users an easy-to-use interface for querying RDF data. Given the input keywords, in this paper, we study how to assemble a query graph that is to represent user's query intention accurately and efficiently. Based on the input keywords, we first obtain the elementary query graph building blocks, such as entity/class vertices and predicate edges. Then, we formally define the query graph assembly (QGA) problem. Unfortunately, we prove theoretically that QGA is a NP-complete problem. In order to solve that, we design some heuristic lower bounds and propose a bipartite graph matching-based best-first search algorithm. The algorithm's time complexity is O(k2lâ‹…l3l)O(k^{2l} \cdot l^{3l}), where ll is the number of the keywords and kk is a tunable parameter, i.e., the maximum number of candidate entity/class vertices and predicate edges allowed to match each keyword. Although QGA is intractable, both ll and kk are small in practice. Furthermore, the algorithm's time complexity does not depend on the RDF graph size, which guarantees the good scalability of our system in large RDF graphs. Experiments on DBpedia and Freebase confirm the superiority of our system on both effectiveness and efficiency

    CONTEXT-BASED AUTOSUGGEST ON GRAPH DATA

    Get PDF
    Autosuggest is an important feature in any search applications. Currently, most applications only suggest a single term based on how frequent that term appears in the indexed documents or how often it is searched upon. These approaches might not provide the most relevant suggestions because users often enter a series of related query terms to answer a question they have in mind. In this project, we implemented the Smart Solr Suggester plugin using a context-based approach that takes into account the relationships among search keywords. In particular, we used the keywords that the user has chosen so far in the search text box as the context to autosuggest their next incomplete keyword. This context-based approach uses the relationships between entities in the graph data that the user is searching on and therefore would provide more meaningful suggestions
    • …
    corecore