19,774 research outputs found

    Scalable Bayesian Non-Negative Tensor Factorization for Massive Count Data

    Full text link
    We present a Bayesian non-negative tensor factorization model for count-valued tensor data, and develop scalable inference algorithms (both batch and online) for dealing with massive tensors. Our generative model can handle overdispersed counts as well as infer the rank of the decomposition. Moreover, leveraging a reparameterization of the Poisson distribution as a multinomial facilitates conjugacy in the model and enables simple and efficient Gibbs sampling and variational Bayes (VB) inference updates, with a computational cost that only depends on the number of nonzeros in the tensor. The model also provides a nice interpretability for the factors; in our model, each factor corresponds to a "topic". We develop a set of online inference algorithms that allow further scaling up the model to massive tensors, for which batch inference methods may be infeasible. We apply our framework on diverse real-world applications, such as \emph{multiway} topic modeling on a scientific publications database, analyzing a political science data set, and analyzing a massive household transactions data set.Comment: ECML PKDD 201

    Stochastic Variational Inference

    Full text link
    We develop stochastic variational inference, a scalable algorithm for approximating posterior distributions. We develop this technique for a large class of probabilistic models and we demonstrate it with two probabilistic topic models, latent Dirichlet allocation and the hierarchical Dirichlet process topic model. Using stochastic variational inference, we analyze several large collections of documents: 300K articles from Nature, 1.8M articles from The New York Times, and 3.8M articles from Wikipedia. Stochastic inference can easily handle data sets of this size and outperforms traditional variational inference, which can only handle a smaller subset. (We also show that the Bayesian nonparametric topic model outperforms its parametric counterpart.) Stochastic variational inference lets us apply complex Bayesian models to massive data sets

    A multi-resolution approximation for massive spatial datasets

    Full text link
    Automated sensing instruments on satellites and aircraft have enabled the collection of massive amounts of high-resolution observations of spatial fields over large spatial regions. If these datasets can be efficiently exploited, they can provide new insights on a wide variety of issues. However, traditional spatial-statistical techniques such as kriging are not computationally feasible for big datasets. We propose a multi-resolution approximation (M-RA) of Gaussian processes observed at irregular locations in space. The M-RA process is specified as a linear combination of basis functions at multiple levels of spatial resolution, which can capture spatial structure from very fine to very large scales. The basis functions are automatically chosen to approximate a given covariance function, which can be nonstationary. All computations involving the M-RA, including parameter inference and prediction, are highly scalable for massive datasets. Crucially, the inference algorithms can also be parallelized to take full advantage of large distributed-memory computing environments. In comparisons using simulated data and a large satellite dataset, the M-RA outperforms a related state-of-the-art method.Comment: 23 pages; to be published in Journal of the American Statistical Associatio

    Scalable Recommendation with Poisson Factorization

    Full text link
    We develop a Bayesian Poisson matrix factorization model for forming recommendations from sparse user behavior data. These data are large user/item matrices where each user has provided feedback on only a small subset of items, either explicitly (e.g., through star ratings) or implicitly (e.g., through views or purchases). In contrast to traditional matrix factorization approaches, Poisson factorization implicitly models each user's limited attention to consume items. Moreover, because of the mathematical form of the Poisson likelihood, the model needs only to explicitly consider the observed entries in the matrix, leading to both scalable computation and good predictive performance. We develop a variational inference algorithm for approximate posterior inference that scales up to massive data sets. This is an efficient algorithm that iterates over the observed entries and adjusts an approximate posterior over the user/item representations. We apply our method to large real-world user data containing users rating movies, users listening to songs, and users reading scientific papers. In all these settings, Bayesian Poisson factorization outperforms state-of-the-art matrix factorization methods

    Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors

    Full text link
    We present a scalable Bayesian model for low-rank factorization of massive tensors with binary observations. The proposed model has the following key properties: (1) in contrast to the models based on the logistic or probit likelihood, using a zero-truncated Poisson likelihood for binary data allows our model to scale up in the number of \emph{ones} in the tensor, which is especially appealing for massive but sparse binary tensors; (2) side-information in form of binary pairwise relationships (e.g., an adjacency network) between objects in any tensor mode can also be leveraged, which can be especially useful in "cold-start" settings; and (3) the model admits simple Bayesian inference via batch, as well as \emph{online} MCMC; the latter allows scaling up even for \emph{dense} binary data (i.e., when the number of ones in the tensor/network is also massive). In addition, non-negative factor matrices in our model provide easy interpretability, and the tensor rank can be inferred from the data. We evaluate our model on several large-scale real-world binary tensors, achieving excellent computational scalability, and also demonstrate its usefulness in leveraging side-information provided in form of mode-network(s).Comment: UAI (Uncertainty in Artificial Intelligence) 201
    corecore