2,562 research outputs found

    InSANe InSb nanowire quantum devices

    Get PDF

    Fully-Coupled Simulation of Cosmic Reionization. I: Numerical Methods and Tests

    Full text link
    We describe an extension of the Enzo code to enable fully-coupled radiation hydrodynamical simulation of inhomogeneous reionization in large ∌(100Mpc)3\sim (100 Mpc)^3 cosmological volumes with thousands to millions of point sources. We solve all dynamical, radiative transfer, thermal, and ionization processes self-consistently on the same mesh, as opposed to a postprocessing approach which coarse-grains the radiative transfer. We do, however, employ a simple subgrid model for star formation which we calibrate to observations. Radiation transport is done in the grey flux-limited diffusion (FLD) approximation, which is solved by implicit time integration split off from the gas energy and ionization equations, which are solved separately. This results in a faster and more robust scheme for cosmological applications compared to the earlier method. The FLD equation is solved using the hypre optimally scalable geometric multigrid solver from LLNL. By treating the ionizing radiation as a grid field as opposed to rays, our method is scalable with respect to the number of ionizing sources, limited only by the parallel scaling properties of the radiation solver. We test the speed and accuracy of our approach on a number of standard verification and validation tests. We show by direct comparison with Enzo's adaptive ray tracing method Moray that the well-known inability of FLD to cast a shadow behind opaque clouds has a minor effect on the evolution of ionized volume and mass fractions in a reionization simulation validation test. We illustrate an application of our method to the problem of inhomogeneous reionization in a 80 Mpc comoving box resolved with 320033200^3 Eulerian grid cells and dark matter particles.Comment: 32 pages, 23 figures. ApJ Supp accepted. New title and substantial revisions re. v

    Performance Evaluation of AODV, DSR, DYMO & ZRP in Cost 231 Walfisch-Ikegami Path Loss Propagation Model

    Get PDF
    A Mobile Ad hoc NETwork is a kind of wireless ad-hoc network, and is a self configuring network of mobile routers connected by wireless links. Mobile Ad-Hoc Network (MANET) is a wireless network without infrastructure. Self configurability and easy deployment feature of the MANET resulted in numerous applications in this modern era. Efficient routing protocols will make MANETs reliable. Various research communities are working in field of MANET and trying to adopt the protocols and technology in other applications as well. In this work, we present investigations on the behavior of various routing protocol of MANET with a Cost 231 Walfisch-Ikegami Propagation Model. We evaluate the performance of four different ad-hoc routing protocols on four performance metrics such as Average Jitter, Average End-to-End Delay, Throughput, and Packet Delivery Fraction with varying Pause Time. From the simulation results it is concluded that DSR is better in transmission of packets per unit time and maximum number of packets reached their destination successfully with some delays, i.e. PDF & Throughput is more and Average jitter & end-to-end delay is less. Whereas AODV & ZRP having almost same values in all of the performance metrics, they transmit packets with very less delay but transmits less packets to their destination as compare to DSR.

    Interactive editing and modeling of bidirectional texture functions

    Get PDF

    Mobility Management for Cellular Networks:From LTE Towards 5G

    Get PDF
    • 

    corecore