17,101 research outputs found

    Leveraging Wireless Broadband to Improve Police Land Mobile Radio Programming: Estimating the Resource Impact

    Get PDF
    Despite rapid growth in criminological studies of police technology, examinations of police land mobile radios are absent in the literature. This is troubling given the central role mobile radios serve in police operations and their significant management costs. The present study seeks to fill this gap by introducing the functionality of wireless broadband radio programming. Current practice requires a police officer to physically drive to a radio programming location to manage their mobile radio. Wireless programming remedies this burdensome reality, thereby saving officer time and cost. Geospatial analyses are used to estimate distance saved associated with wireless programming. We then conduct a number of calculations to determine time and cost savings related to the observed differences between existing and wireless radio programming within the context of the North Carolina State Highway Patrol. Results suggest wireless radio programming can save significant personnel and financial resources. Implications are discussed

    Using Tuangou to reduce IP transit costs

    Get PDF
    A majority of ISPs (Internet Service Providers) support connectivity to the entire Internet by transiting their traffic via other providers. Although the transit prices per Mbps decline steadily, the overall transit costs of these ISPs remain high or even increase, due to the traffic growth. The discontent of the ISPs with the high transit costs has yielded notable innovations such as peering, content distribution networks, multicast, and peer-to-peer localization. While the above solutions tackle the problem by reducing the transit traffic, this paper explores a novel approach that reduces the transit costs without altering the traffic. In the proposed CIPT (Cooperative IP Transit), multiple ISPs cooperate to jointly purchase IP (Internet Protocol) transit in bulk. The aggregate transit costs decrease due to the economies-of-scale effect of typical subadditive pricing as well as burstable billing: not all ISPs transit their peak traffic during the same period. To distribute the aggregate savings among the CIPT partners, we propose Shapley-value sharing of the CIPT transit costs. Using public data about IP traffic of 264 ISPs and transit prices, we quantitatively evaluate CIPT and show that significant savings can be achieved, both in relative and absolute terms. We also discuss the organizational embodiment, relationship with transit providers, traffic confidentiality, and other aspects of CIPT

    Perceived value of using BIM for energy simulation, The

    Get PDF
    2014 Summer.Includes bibliographical references.Building Information Modeling (BIM) is becoming an increasingly important tool in the Architectural, Engineering & Construction (AEC) industries. Some of the benefits associated with BIM include but are not limited to cost and time savings through greater trade and design coordination, and more accurate estimating take-offs. BIM is a virtual 3D, parametric design software that allows users to store information of a model within and can be used as a communication platform between project stakeholders. Likewise, energy simulation is an integral tool for predicting and optimizing a building's performance during design. Creating energy models and running energy simulations can be a time consuming activity due to the large number of parameters and assumptions that must be addressed to achieve reasonably accurate results. However, leveraging information imbedded within Building Information Models (BIMs) has the potential to increase accuracy and reduce the amount of time required to run energy simulations and can facilitate continuous energy simulations throughout the design process, thus optimizing building performance. Although some literature exists on how design stakeholders perceive the benefits associated with leveraging BIM for energy simulation, little is known about how perceptions associated with leveraging BIM for energy simulation differ between various green design stakeholder user groups. Through an e-survey instrument, this study seeks to determine how perceptions of using BIMs to inform energy simulation differ among distinct design stakeholder groups, which include BIM-only users, energy simulation-only users and BIM and energy simulation users. Additionally, this study seeks to determine what design stakeholders perceive as the main barriers and benefits of implementing BIM-based energy simulation. Results from this study suggest that little to no correlation exists between green design stakeholders' perceptions of the value associated with using information from BIMs to inform energy simulation and their engagement level with BIM and/or energy simulation. However, green design stakeholder perceptions of the value associated with using information from BIMs to inform energy simulation and their engagement with BIM and/or energy simulation may differ between different user groups (i.e. BIM users only, energy simulation users only, and BIM and energy simulation users). For example, the BIM-only user groups appeared to have a strong positive correlation between the perceptions of the value associated with using information from BIMs to inform energy simulation and their engagement with BIM. Additionally, this study suggests that the top perceived benefits of using BIMs to inform energy simulations among green design stakeholders are: facilitation of communication, reducing of process related costs, and giving users the ability examine more design options. The main perceived barrier of using BIMs to inform energy simulations among green design stakeholders was a lack of BIM standards for model integration with multidisciplinary teams. Results from this study will help readers understand how to better implement BIM-based energy simulation while mitigating barriers and optimizing benefits. Additionally, examining discrepancies between user groups can lead the identification and improvement of shortfalls in current BIM-based energy simulation processes. Understanding how perceptions and engagement levels differ among different software user groups will help in developing a strategies for implementing BIM-based energy simulation that are tailored to each specific user group

    Leveraging intelligence from network CDR data for interference aware energy consumption minimization

    Get PDF
    Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo

    TRIPBAM: Leveraging Digital Data Streams to Unleash Savings

    Get PDF
    TRIPBAM pioneered automated clustered rate monitoring in the hotel industry. After capturing a traveler’s reservation, TRIPBAM software scrutinized the digital data stream of changing room rates and notified users of any potential savings. While TRIPBAM could successfully discover savings for its many customers, its executives focused on the challenge of turning TRIPBAM into a resilient, viable business going forward. Many questions awaited a clear answer. Was the consumer space the one that had the greatest potential or should the firm focus exclusively on the corporate market? How could TRIPBAM protect its early advantage from its inevitable imitators? Both the consumer and business opportunities looked wide open even though each side presented distinct challenges to growth. To achieve profitability, TRIPBAM needed to not just grow the user base but also seek a unique position in the market to defend against the increasing number of startups entering their space. The case provides substantial data and information for students to step in the shoes of TRIPBAM’s executives and provide some answers to the above questions

    Gauging the Impact of E-Coupons on B2C Retail Markets

    Get PDF
    • …
    corecore