2,006 research outputs found

    Metaheuristics for the Order Batching Problem in Manual Order Picking Systems

    Get PDF
    In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations effciently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem; the rst one is based on Iterated Local Search, the second one on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods, but provide solutions which may allow for operating distribution warehouses signicantly more effcient.Warehouse Management, Order Picking, Order Batching, Iterated Local Search, Ant Colony Optimization

    Planning and Scheduling Transportation Vehicle Fleet in a Congested Traffic Environment

    Get PDF
    Transportation is a main component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routing is a crucial management problem. Despite numerous publications dealing with efficient scheduling methods for vehicle routing, very few addressed the inherent stochastic nature of travel times in this problem. In this paper, a vehicle routing problem with time windows and stochastic travel times due to potential traffic congestion is considered. The approach developed introduces mainly the traffic congestion component based on queueing theory. This is an innovative modeling scheme to capture the stochastic behavior of travel times. A case study is used both to illustrate the appropriateness of the approach as well as to show that time-independent solutions are often unrealistic within a congested traffic environment which is often the case on the european road networkstransportation; vehicle fleet; planning; scheduling; congested traffic

    Routing design for less-than-truckload motor carriers using ant colony techniques

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results

    ROUTING DESIGN FOR LESS-THAN-TRUCKLOAD MOTOR CARRIERS USING ANT COLONY TECHNIQUES

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results.

    Vehicle Routing Problem with Time Window Constrain using KMeans Clustering to Obtain the Closest Customer

    Get PDF
    In this paper, the problem statement is solving the Vehicle Routing Problem (VRP) with Time Window constraint using the Ant Colony Algorithm with K-Means Clustering. In this problem, the vehicles must start at a common depot, pickup from various ware houses, deliver to the respective nodes within the time window provided by the customer and returns to depot. The objectives defined are to reduction in usage of number of vehicles, the total logistics cost and to reduce carbon emissions. The mathematical model described in this paper has considered multiple pickup and multiple delivery points. The proposed solution of this paper aims to provide better and more efficient solution while minimizing areas of conflict so as to provide the best output on a large scale in Vehicle Routing Problem, K-Means Clustering, Time Window constraint, Ant Colony Algorithm

    CBPRS: A City Based Parking and Routing System

    Get PDF
    Navigational systems assist drivers in finding a route between two locations that is time optimal in theory but seldom in practice due to delaying circumstances the system is unaware of, such as traffic jams. Upon arrival at the destination the service of the system ends and the driver is forced to locate a parking place without further assistance. We propose a City Based Parking Routing System (CBPRS) that monitors and reserves parking places for CBPRS participants within a city. The CBPRS guides vehicles using an ant based distributed hierarchical routing algorithm to their reserved parking place. Through means of experiments in a simulation environment we found that reductions of travel times for participants were significant in comparison to a situation where vehicles relied on static routing information generated by the well known Dijkstra’s algorithm. Furthermore, we found that the CBPRS was able to increase city wide traffic flows and decrease the number and duration of traffic jams throughout the city once the number of participants increased.information systems;computer simulation;dynamic routing
    corecore