2,282 research outputs found

    QoE-Based Low-Delay Live Streaming Using Throughput Predictions

    Full text link
    Recently, HTTP-based adaptive streaming has become the de facto standard for video streaming over the Internet. It allows clients to dynamically adapt media characteristics to network conditions in order to ensure a high quality of experience, that is, minimize playback interruptions, while maximizing video quality at a reasonable level of quality changes. In the case of live streaming, this task becomes particularly challenging due to the latency constraints. The challenge further increases if a client uses a wireless network, where the throughput is subject to considerable fluctuations. Consequently, live streams often exhibit latencies of up to 30 seconds. In the present work, we introduce an adaptation algorithm for HTTP-based live streaming called LOLYPOP (Low-Latency Prediction-Based Adaptation) that is designed to operate with a transport latency of few seconds. To reach this goal, LOLYPOP leverages TCP throughput predictions on multiple time scales, from 1 to 10 seconds, along with an estimate of the prediction error distribution. In addition to satisfying the latency constraint, the algorithm heuristically maximizes the quality of experience by maximizing the average video quality as a function of the number of skipped segments and quality transitions. In order to select an efficient prediction method, we studied the performance of several time series prediction methods in IEEE 802.11 wireless access networks. We evaluated LOLYPOP under a large set of experimental conditions limiting the transport latency to 3 seconds, against a state-of-the-art adaptation algorithm from the literature, called FESTIVE. We observed that the average video quality is by up to a factor of 3 higher than with FESTIVE. We also observed that LOLYPOP is able to reach a broader region in the quality of experience space, and thus it is better adjustable to the user profile or service provider requirements.Comment: Technical Report TKN-16-001, Telecommunication Networks Group, Technische Universitaet Berlin. This TR updated TR TKN-15-00

    Performance modeling and control of web servers

    Get PDF
    This thesis deals with the task of modeling a web server and designing a mechanism that can prevent the web server from being overloaded. Four papers are presented. The first paper gives an M/G/1/K processor sharing model of a single web server. The model is validated against measurements ands imulations on the commonly usedw eb server Apache. A description is given on how to calculate the necessary parameters in the model. The second paper introduces an admission control mechanism for the Apache web server basedon a combination of queuing theory andcon trol theory. The admission control mechanism is tested in the laboratory, implemented as a stand-alone application in front of the web server. The third paper continues the work from the secondp aper by discussing stability. This time, the admission control mechanism is implemented as a module within the Apache source code. Experiments show the stability and settling time of the controller. Finally, the fourth paper investigates the concept of service level agreements for a web site. The agreements allow a maximum response time anda minimal throughput to be set. The requests are sorted into classes, where each class is assigneda weight (representing the income for the web site owner). Then an optimization algorithm is appliedso that the total profit for the web site during overload is maximized

    Signal Strength Based Congestion Control in In MANET

    Get PDF
    All nodes in MANET (Mobile Ad-hoc Network) are mobile and dynamically connected in an arbitrary manner.  Mobility causes frequent link failure which results in packet losses. TCP assumes that these packet losses are due to congestion only. This wrong assumption requires packet retransmissions till packet arrives successfully at the receiver. Goal is to improve TCP performance by using signal strength based cross layer approach which obviously resolves the congestion. We are reviewing a signal strength based measurements to improve such packet losses and no need to retransmit packets. Node based and link based signal strength can be measured. If a link fails due to mobility, then signal strength measurement provides temporary higher transmission power to keep link alive. When a route is likely to fail due to weak signal strength of a node, it will find alternate path. consequently avoids congestion. We will make changes at MAC routing and routing layer to predict link failure. MANET hits the protocol's strength due to its highly dynamic features, thus in testing a protocol suitable for MANET implementation we have selected two routing protocols AODV and DSR. Packet Delivery Ratio, Packet Drop, Throughput and end to end delay are the metrics used for performance analysis of the AODV routing protocols. Keywords: Congestion  control, Signal strength, TCP performance ,Cross layer interaction, Route discover
    corecore