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ABSTRACT

This thesis deals with the task of modeling a web server and designing a
mechanism that can prevent the web server from being overloaded. Four
papers are presented. The first paper gives an M/G/1/K processor sharing
model of a single web server. The model is validated against measurements
and simulations on the commonly used web server Apache. A description
is given on how to calculate the necessary parameters in the model. The
second paper introduces an admission control mechanism for the Apache
web server based on a combination of queuing theory and control theory.
The admission control mechanism is tested in the laboratory, implemented
as a stand-alone application in front of the web server. The third paper
continues the work from the second paper by discussing stability. This
time, the admission control mechanism is implemented as a module within
the Apache source code. Experiments show the stability and settling time of
the controller. Finally, the fourth paper investigates the concept of service
level agreements for a web site. The agreements allow a maximum response
time and a minimal throughput to be set. The requests are sorted into
classes, where each class is assigned a weight (representing the income for
the web site owner). Then an optimization algorithm is applied so that the
total profit for the web site during overload is maximized.
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1. INTRODUCTION

During the last years, the use of Internet has increased tremendously. More
and more users connect to the Internet. In Sweden, more than 70 percent of
the population used the Internet last year (according to Statistics Sweden,
[1]). Not only the number of users has increased, the number of services
offered on the Internet has exploded the last few years. Companies take their
business onto the Internet to a greater extent. 75 percent of the companies in
Sweden use Internet to market themselves. The companies are e-commerce
ventures that sell records, books, clothes and services, companies that want
to present themselves on the Internet, banks, gambling sites, web hotels and
so on. The growth in Internet popularity has lead to increasing demands
in bandwidth and performance over the Internet and both bandwidth and
computer speed have increased steadily. However, this is not always enough.
Many people still experience the WWW as the World Wide Wait. Instead
of being fast and useful, the Internet is at many occasions time-consuming.
The long response times do not necessarily have to depend on too little
bandwidth or too slow clients. Instead, the bottleneck is often the server
systems. Numerous examples can be found when web servers have become
too overloaded, leaving all visitors ignored. Situations when this occur is
for example when a news site reports events like sport tournaments, crises
or political elections. Web shops can be hit with many visitors during sale
events on the web, bank sites during pay days, regular companies when they
release new products etc.

When a web server gets overloaded, the response time for a web page
becomes long which affects the company, as shown in Figure 1.1. If visitors
experience long response times, they tend to choose other alternatives on the
web, they turn to another web shop or go to another news site. This thesis
deals with the task of modeling a web server and designing a mechanism
that can prevent the web server from getting overloaded. The basic idea is
to reject some requests so that the remaining visitors can have a reasonable
response time.

The rest of this chapter is organized as follows; section 1.1 lists the
included papers, section 1.2 gives an overview of the research issues, section
1.3 discusses related work and finally a description of further work is found
in section 1.4.
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Arrival rate

Response time

Fig. 1.1: The response time goes to infinity when the server load increases.

1.1 Summary of papers

This section describes shortly the content of the included papers.

1.1.1 Paper I

Web Server Performance Modeling Using an M/G/1/K*PS Queue
Jianhua Cao, Mikael Andersson, Christian Nyberg and Maria Kihl
(Extended version) In Proceedings of the 10th International Conference on
Telecommunications, Feb. 2003, Papeete, Tahiti

The first paper gives a model of the web server. It uses an M/G/1/K
queuing model with processor sharing as queuing discipline. The paper also
deals with bursty arrival traffic. The model gives closed form expression for
several performance metrics. An algorithm is presented for how to identify
the parameters used in the model. The theory is validated against real-world
measurements and simulations.

1.1.2 Paper II

Modeling and Design of Admission Control Mechanisms for Web
Servers using Non-linear Control Theory
Mikael Andersson, Maria Kihl and Anders Robertsson
In Proceedings of ITCOM 03, Sep. 2003, Orlando, USA

Paper II gives an introduction to an admission control mechanism where
a queuing model is combined with control theoretic methods to achieve dy-
namic and robust control. A PI controller is designed for the Apache web
server. The goal is to control the CPU load in the web server. The control
logic was implemented as a stand-alone Java application where the admis-
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sion control communicates with the web server via sockets. The controller
was tested in the laboratory where transient behaviour was investigated as
well as the long term distribution of the CPU load.

1.1.3 Paper III

Admission Control of the Apache Web Server
Mikael Andersson, Maria Kihl, Anders Robertsson and Björn Wittenmark
A shorter version of this paper appears in Proceedings of the 17th Nordic
Teletraffic Seminar, Aug. 2004, Fornebu, Norway

Paper III is a continuation of paper II. In this paper we discuss stability
regions for the controller. A crucial design consideration is the controller
parameters. If they are chosen unwisely, the result is a controller that be-
haves worse than many simpler admission control mechanisms. This time,
the control logic was implemented as a module in Apache, as described in
section 1.2.1. Experiments show settling time and distribution of CPU load.

1.1.4 Paper IV

Admission Control with Service Level Agreements for aWeb Server
Mikael Andersson, Jianhua Cao, Maria Kihl and Christian Nyberg
To be submitted

The last paper investigates service level agreements for a web server. Con-
tracts are introduced where a maximum response time and a minimal through-
put are contracted. Each request is sorted into a class, where each class is
assigned a weight (representing the income for the web site owner). Then an
optimization algorithm is applied so that the total revenue for the web site
during overload is maximized. This means that less profitable requests are
more likely to be rejected. In this paper, the processing needed for reject-
ing a request is considered and taken into account when the optimization is
performed.

Following papers are not included in this thesis:

Paper V

Performance Modeling of an Apache Web Server with Bursty Ar-
rival Traffic
Mikael Andersson, Jianhua Cao, Maria Kihl and Christian Nyberg
In Proceedings of the International Conference on Internet Computing, June
2003, Las Vegas, USA
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Paper VI

Design and Evaluation of Load Control in Web Server Systems
Anders Robertsson, Björn Wittenmark, Maria Kihl and Mikael Andersson
Invited paper, submitted to the Conference on Decision and Control (CDC),
Dec. 2003, Atlantis, Bahamas

Paper VII

Admission Control Web Server Systems - Design and Experimen-
tal Evaluation
Anders Robertsson, Björn Wittenmark, Maria Kihl and Mikael Andersson
Invited paper, presented at the American Control Conference (ACC), June
2004, Boston, USA

1.2 Research issues

This section gives an overview of the areas of research covered in this the-
sis. Web servers play a central part, so an explanation of web servers is
given, together with a description of the architecture of Apache [2], which
is the server used in the papers. Performance modeling of web servers is
discussed and the general structure for an admission control mechanism in
a communication system is given.

1.2.1 Web servers

The web server software offers access to documents stored on the server.
Clients can browse the documents in a web server. The documents can be
for example static Hypertext Markup Language (HTML) files, image files or
various script files, such as Common Gateway Interface (CGI), Javascript
or Perl files. The communication between clients and server is based on
HTTP [3]. A HTTP transaction consists of three steps: TCP connection
setup, HTTP layer processing and network processing. The TCP connection
setup is performed as a so called three-way handshake, where the client and
the server exchange TCP SYN, TCP SYN/ACK and TCP ACK messages.
Once the connection has been established, a document request can be issued
with a HTTP GET message to the server. The server then replies with a
HTTP GET REPLY message. Finally, the TCP connection is closed by
sending TCP FIN and TCP ACK messages in both directions.

There are many web servers on the market today. Four main types
can be identified; process-driven, threaded, event-driven and in-kernel web
servers. Threaded and process-driven web servers are the most common,
with Apache being the most popular currently. Another popular process-
driven web server is Microsoft’s IIS [4], covering about 21 percent of the
market. Examples of event-driven web servers are Zeus [5] and Flash [6].
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A description of event-driven web servers and overload control strategies
for such servers is found in [7]. In-kernel web servers are servers that are
executed in the operating system kernel, for example Tux [8] and khttpd [9].

Apache

Introduced in 1995 and based on the popular NCSA httpd 1.3, Apache is
now the most used web server in the world (Netcraft [10]). It is used in more
than 67 percent of all web server systems (more than 52 millions in total,
July 2004). One of the reasons to its popularity is that it is free to use. Also,
since the source code is free, it is possible to modify the web server. Being
threaded (threaded or process-driven depending on the operating system, on
Unix, Apache uses processes, while threads are used in Win32 environments)
means that Apache maintains a pool of software threads ready to serve
incoming requests. Should the number of active threads run out, more can
be created. When a request enters the web server, it is assigned one of the
free threads, that serves it throughout the requests’ lifetime. Apache puts
a limit on the number of threads that are allowed to run simultaneously. If
that number has been reached, requests are rejected.

Modules in Apache

What makes Apache so attractive is also its architecture. The software
is arranged in a kernel part and additional packages called modules. The
kernel is responsible for opening up sockets for incoming TCP connections,
handling static files and sending back the result. Whenever something else
than a static file is to be handled, one of the designated modules takes over.
For example, if a CGI page is requested, the mod cgi module launches the
CGI engine, executes the script and then returns the finished page to the
kernel. Modules are convenient when new functionality should be added
to a web site, because nothing has to be changed in the kernel. A new
module can be programmed to respond to a certain type of request. Modules
communicate with the kernel with hooks, that are well-defined points in the
execution of a request. In Apache, every request goes through a life-cycle,
that consists of a number of phases, as shown in Figure 1.2.

The phases are for example Child Initialization, Post Read Re-
quest, Handlers, and Logger. When a module wishes to receive a request
it has to register a hook in the kernel, that is valid for one or more of the
phases. For example, mod cgi is registered to be notified in the Handlers
phase, which means that once the request has reached so far in the kernel,
it is delivered to the mod cgi module. mod cgi then performs its duties
and returns the request back to the kernel. The kernel checks whether other
modules wants to get a hold of the request in the Handlers phase before con-
tinuing to the next phase (Logger). The admission control in paper III was
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Config phasesStartup phases Child Initialization Post Read Req.

Quick HandlerTranslate NameMap to StorageHeader Parser

Check Access Check User ID Check Auth Type Checker

Prerun FixupsHandlersLoggerChild Exit

Fig. 1.2: The phases in the request life-cycle in Apache as of version 2.0. The
shaded phases represent the phases that occur during the startup of the
web server. Child initialization and exit phases are only called once in
Win32 environments. In a process-driven environment (Unix), they are
called for all requests.

implemented this way, by registering a hook in the Handlers phase that was
called before any of the other content producing handlers and then letting
the admission control module decide whether the request should be allowed
to continue in the life-cycle. A more detailed description of the Apache
architecture is found in [11] and [12].

1.2.2 Performance modeling

To be able to design an efficient overload control it is important to have
a good and reasonable performance model of the web server. It also has
to be simple enough to be able to use in practise. Traditional modeling of
telecommunication systems means modeling the systems as queuing systems
from classical queuing theory. Queuing models are well suited for modeling
web servers. A performance model is meant to answer questions like ”What
is the average response time at this request rate?”, ”What is the through-
put?” and ”What is the rejection probability?”. The M/G/1/K processor
sharing model (shown in Figure 1.3) works good for these questions.

Using the processor sharing queuing discipline models the concept of
using simultaneously executed threads or processes served in round-robin
fashion in the web server well. There are many other models that quite well
captures the inner-most details in web servers, for example in [13]. However,
these are often complicated and explicit expressions for performance metrics
are hard to obtain. Another important issue in performance modeling when
it comes to overload control is that the model must capture the performance
metrics well in the overload region of the web server. The model also has to
be validated for these high arrival rates. Several models have been presented
but they have only been validated in the normal operating region. In this
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Requests

Rejected

Admitted

Served

Processor sharing

Fig. 1.3: The web server model.

thesis, the models have also been validated in the overload region.

1.2.3 Admission control

Admission control mechanisms have since long been designed for telecommu-
nication systems. The admission control mechanism is intended to prevent
the system from becoming overloaded by rejecting visitors. Figure 1.4 shows
a general structure for admission control. The structure contains three mod-
ules; theGate, the Controller and theMonitor. Since continuous control
is not possible in computer systems, time is divided into control intervals. In
the beginning of each control interval, the Controller calculates the desired
admittance rate for the next interval based on the measurements from the
Monitor. The Gate then either admits or rejects visitors depending on the
control signal.

The Monitor

The Monitor monitors the system through measurements on specific perfor-
mance metrics. Measurements are taken each control interval. The perfor-
mance metrics that are monitored differ from system to system:

CPU load
The Monitor measures the load in the server each control interval. The goal
is to keep the load to be lower than a threshold value.

Queue lengths
Queue lengths can be measured, for example TCP buffers, HTTP server
queues, network card buffers etc. Filled buffers indicate a high load on the
server.

Response times
The average response time is also an important metric in overload control.
If the response time is too high, the server is considered overloaded.
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Gate

Controller

System

Monitor

Reference value

Control signal Measurements

Requests

Rejected

Accepted Served

Fig. 1.4: An admission control mechanism.

Call count control
Here, the arrivals are counted. Only a certain amount of visitors are allowed
at one time. This is the case in the original Apache overload control, where
a maximum number of threads are set.

The Controller

The Controller’s task is to decide how many visitors can be admitted into
the system, by trying to keep a certain reference value for the desired perfor-
mance metrics. It compares the actual measurements to the reference value
and then reacts according to the deviation. The Controller can be designed
in a variety of ways:

Static controller
The most simple is when the Controller has a static value that never changes,
for example, ”Admit 25 visitors every second.”

Step controller
The step controller has a lower and an upper bound that it allows in the
measurements. Whenever the monitored data goes above or beneath these
bounds, the output signal to the Gate is increased or decreased with a fixed
value per control interval.
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On-off controller
The on-off controller works in a similar way to the step controller, but in-
stead of increasing/decreasing the admission rate, it admits all or none of
the requests in a control interval.

PI controller
There are several controllers that can be picked from control theory. A clas-
sical one is the PI-controller that has two parts, one proportional to the
error and one that is the integral of the error.

The Gate

The Gate’s task is to admit or reject visitors based on the Controller output.
Many different gates can be found in the literature, where the most common
ones are:

Token bucket
The token bucket algorithm generates tokens (”admission tickets”) at a rate
set by the Controller. If there are any available tokens upon the arrival of a
request, it is admitted. Each admitted request consumes one token. Should
there be no tokens, the incoming requests are buffered in a queue.

Leaky bucket
The leaky bucket is similar to the token bucket. Both are designed to
smoothen out bursty arrival traffic. Arriving requests enter a queue, that
has a limited size. If the buffer is full, the requests are rejected. Admitted
requests are allowed to leave the queue at a rate set by the Controller.

Dynamic window
The dynamic window version works like in TCP, a number of requests are
allowed to be inside of the system at the same time. The basic admission
control offered in an unmodified Apache works like this, a fixed number of
threads is set as an upper bound. In the Apache case, the Controller part
can be seen as an on-off controller that reports to the Gate whenever the
bound has been reached.

Call gapping
A call gapping gate admits a number of requests in the beginning of each
control interval. Additional requests are rejected.

Percent blocking
When percent blocking is used, a percentage of the requests are admitted
each control interval.
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Content adaptation

Admission control is one way of preventing a web server from being over-
loaded. Another technique is content adaption. Content adaption means
that content-heavy pages are reduced during heavy load. For example, CGI
scripts are very time-consuming for a processor, but nevertheless, modern
web sites are often written entirely in some script language. During over-
load, scripted pages can be dynamically changed to static versions instead.
This lowers the load on the server at the cost of lower functionality. Content
adaption is not covered in this thesis. More can be read about it in [14,15].
More on different types of overload control strategies for distributed com-
munication networks can be found in the survey of Kihl, [16].

1.3 Related work

Several attempts have been made to create performance models for web
servers. Van der Mei et al. [13] modeled the web server as a tandem queuing
network. The model was used to predict web server performance metrics.
Wells et al. [17] have made a performance analysis of web servers using col-
ored Petri nets. Their model is divided into three layers, where each layer
models a certain aspect of the system. Dilley et al. [18] use layered queu-
ing models in their performance studies. Cherkasova and Phaal [19] use a
model that is similar to the one presented in paper I in this thesis but with
deterministic service times instead. In their work they use a session-based
workload with different classes of work. Beckers et al. [20] proposed a gener-
alized processor sharing performance model for Internet access lines. They
established simple relations between access line capacity and the utilization
of the access line and download times of Internet objects.

When it comes to admission control, several papers cover different types
of mechanisms. Few papers have investigated admission control mechanisms
for server systems with control theoretic models though. Abdelzaher [21,22]
modeled the web server as a static gain to find optimal controller parameters
for a PI-controller. A scheduling algorithm for an Apache web server was
designed using system identification methods and linear control theory by
Lu et al. [23]. Bhatti [24] developed a queue length control with priorities.
By optimizing a reward function, a static control was found by Carlström
[25]. An on-off load control mechanism regulating the admittance of client
sessions was developed by Cherkasova and Phaal [19]. Voigt [26] proposed
a control mechanism that combines load control for the CPU with a queue
length control for the network interface. Bhoj [27] used a PI-controller in
an admission control mechanism for a web server. However, no analysis
is presented on how to design the controller parameters. Papers analyzing
queueing systems with control theoretic methods usually describe the system
with linear deterministic models. Stidham Jr [28] argues that deterministic
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models cannot be used when analyzing queueing systems.

1.4 Further work

The next step in my research will be to investigate information systems
where high demands are put on availability and stability. The work will be
part of a new project dealing with building robust systems during crises.
Funded by the Swedish Emergency Management Agency, the project will
focus on designing control mechanisms that allow the site to function to some
extent by reducing content, rejecting customers or through a combination
of both.
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Abstract

Performance modelling is an important topic in capacity planning and over-
load control for web servers. We present an M/G/1/K*PS queueing model
of a web server. The arrival process of HTTP requests is assumed to be
Poissonian and the service discipline is processor sharing. The total number
of requests that can be processed at one time is limited to K. We obtain
closed form expressions for web server performance metrics such as average
response time, throughput and blocking probability. Average service time
and maximum number of requests being served are model parameters. The
model parameters are estimated by maximizing the log-likelihood function
of the measured average response time. Compared to other models, our
model is conceptually simple and it is easy to estimate model parameters.
The model has been validated through measurements in our lab. The perfor-
mance metrics predicted by the model fit well to the experimental outcome.
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2.1 Introduction

Performance modelling is an important part of the research area of web
servers. Without a correct model of a web server it is difficult to give an
accurate prediction of performance metrics. This is the basis of web server
capacity planning, where models are used to predict performance in different
settings [1, 2].

Today web sites can receive millions of hits per day and as a result
web servers may become overloaded, i.e. the arrival rate exceeds the server
capacity. To cope with this, overload control can be used, which means
that some requests are allowed to be served by the web server and some are
rejected. In this way the web server can achieve reasonable service times
for the accepted requests. In overload control investigations for web servers,
performance models predict improvements when using a certain overload
control strategy [3, 4]. Overload control is a research area of its own, but it
is still depending on performance models. It is therefore important to have
a model that is valid also in the overloaded work region.

Several attempts have been made to create performance models for web
servers. Van der Mei et al. [5] have modeled the web server as a tandem
queuing network. The model was used to predict web server performance
metrics and was validated through measurements and simulations. Wells et
al. [6] have made a performance analysis of web servers using colored Petri
nets. Their model is divided into three layers, where each layer models a
certain aspect of the system. The model has several parameters, some of
which are known. Unknown parameters are determined by e.g. simulations.
Dilley et al. [7] use layered queuing models in their performance studies.
Cherkasova and Phaal [8] use a model that is similar to the one presented in
this paper, but with deterministic service times instead. In their work they
use a session-based workload with different classes of work. Beckers et al.
[9] proposed generalized processor sharing performance models for Internet
access lines. The models are used to describe the flow-level characteristics of
the traffic carried by Internet access line. They established simple relations
between the access line capacity and the utilization of the access line and
download times of Internet objects.

However, several of the previous models are complicated. It lacks a
simple model that is still valid in the overloaded work region. A simple
model is also able to give accurate predictions of web server performance,
but it renders a smaller parameter space compared to a complicated one,
i.e. fewer parameters to estimate. Also, in a more complicated model some
parameters can be difficult to estimate.

A model like the M/M/1/K or M/D/1/K with a First-Come-First-Served
(FCFS) service discipline can predict web server performance quite well.
But conceptually it is difficult to assume that the service time distribution
is exponential or deterministic and that the service discipline is FCFS.
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In this paper we describe a web server model that consists of a processor
sharing node with a queue attached to it. The total number of jobs in the
system is limited. The arrival process to the server is assumed to be Poisso-
nian, whereas the service time distribution is arbitrary. A system like this
is called an M/G/1/K system with processor sharing. The average service
time and the maximum number of jobs are model parameters that can be
determined by a maximum likelihood estimation. We have derived closed
form expressions for web server performance metrics such as throughput,
average response time and blocking probability. Compared to others, our
model is simple but accurate enough when predicting performance.

We also investigate a slightly modified version of the model, where the
arrival traffic is not assumed to be the Poisson process. Instead we let a two-
state Markov Modulated Poisson Process (MMPP). MMPP’s are commonly
used to represent bursty arrival traffic to communication systems, such as
web servers (Scott et al. [10]). By simulating the system, we were able to
obtain the web server performance metrics mentioned above.

Our validation environment consists of a server and two computers repre-
senting the clients connected through a switch. The measurements validate
the model. Results show that the model can predict both lighter loaded and
overloaded region performance metrics.

The rest of the paper is organized as follows: The next section gives
an overview of how a web server works. It also defines what an M/G/1/K
system with processor sharing is. In section 2.3 we describe our new web
server model and derive expressions for performance metrics of a web server.
We explain maximum likelihood estimations of our model parameters in
Section 2.4. Section 2.5 shows how we have validated the model through
experiments and section 2.6 shows the results and gives a discussion on the
results. The last section gives a conclusion of the work.

2.2 Preliminaries

This section describes how web servers work and gives a background on the
theory of an M/G/1/K queue with processor sharing.

2.2.1 Web servers

A web server contains software that offers access to documents stored on the
server. Clients can browse the documents in a web browser. The documents
can be for example static Hypertext Markup Language (HTML) files, image
files or various script files, such as Common Gateway Interface (CGI), Java-
script or Perl files. The communication between clients and server is based
on HTTP [11].

A HTTP transaction consists of three steps: TCP connection setup,
HTTP layer processing and network processing. The TCP connection setup
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is performed as a so called three-way handshake, where the client and the
server exchange TCP SYN, TCP SYN/ACK and TCP ACK messages. Once
the connection has been established, a document request can be issued with
a HTTP GET message to the server. The server then replies with a HTTP
GET REPLY message. Finally, the TCP connection is closed by sending
TCP FIN and TCP ACK messages in both directions.

Apache [12], which is a well-known web server and widely used, is multi-
threaded. This means that a request is handled by its own thread or process
throughout the life cycle of the request. Other types of web servers e.g.
event-driven ones also exist [13]. However, in this paper we consider only
the Apache web server. Apache also puts a limit on the number of processes
allowed at one time in the server.

2.2.2 M/G/1/K*PS queue

Consider an M/G/1/K queue with processor sharing discipline. The arrival
of jobs is according to a Poisson process with rate λ. The service time
requirements have a general distribution with mean x̄. An arrival will be
blocked if the total number of jobs in the system has reached a predetermined
value K. A job in the queue receives a small quantum of service and is then
suspended until every other job has received an identical quantum of service
in a round-robin fashion. When a job has received the amount of service
required, it leaves the queue. Such a system can also be viewed as a queueing
network with one node [14].

The probability mass function (pmf) of the total number of jobs in the
system has the following expression,

P [N = n] =
(1− ρ)ρn

(1− ρK+1)
, (2.1)

where ρ is the offered traffic and is equal to λx̄. We note that the M/M/1/K
queue has the same pmf [15, 16]. However in M/M/1/K queue, the service
time distribution must be exponential and service discipline must be FCFS.

2.3 Web Server Model

We model the web server using an M/G/1/K queue with processor sharing
as Figure 2.1 shows. The requests arrive according to a Poisson process with
rate λ. The average service requirement of each request is x̄. The service
can handle at most K requests at a time. A request will be blocked if the
number has been reached. The probability of blocking is denoted as Pb.
Therefore the rate of blocked requests is given by λPb.

From (2.1) we can derive the following three performance metrics, aver-
age response time, throughput and blocking probability.
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λPb

λ

x̄

K

Fig. 2.1: An M/G/1/K-PS model of web servers

The blocking probability Pb is equal to the probability that there are K
jobs in the system, i.e. the system is full,

Pb = P [N = K] =
(1− ρ)ρK

(1− ρK+1)
. (2.2)

where ρ = λx̄.
The throughput H is the rate of completed requests. When web server

reaches equilibrium, H is equal to the rate of accepted requests,

H = λ(1− Pb). (2.3)

The average response time T is the expected sojourn time of a job.
Following the Little’s law, we have that

T =
N̄

H
=

ρK+1(Kρ−K − 1) + ρ

λ(1− ρK)(1− ρ)
(2.4)

2.3.1 Bursty Arrival Traffic

When it comes to modeling bursty arrival traffic, we use a different arrival
process. Let the requests arrive according to a two-state Markov Modulated
Poisson Process (MMPP) with parameters λ1, λ2, r1, r2. An MMPP is a
doubly stochastic Poisson process where the rate process is determined by a
continuous-time Markov chain. A two-state MMPP (also known as MMPP-
2) means that the Markov chain consists of two different states, S1 and S2.
The Markov chain changes state from S1 to S2 with rate r1, and transits
back with rate r2. When the MMPP is in state S1, the arrival process is a
Poisson process with rate λ1, and when the MMPP is in state S2, rate λ2

is used, according to Figure 2.2. The mean rate λ̄ and the variance v in a
two-state MMPP are given as follows, see e.g. Heffes [17]:

λ̄ =
λ1r2 + λ2r1

r1 + r2
(2.5)

and

v̄ =
r1r2(λ1 − λ2)2

(r1 + r2)2
(2.6)
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Fig. 2.2: The MMPP state model

2.4 Parameter Estimation

There are two parameters, x̄ and K, in our model. We assume that the
average response time for a certain arrival rate can be estimated from mea-
surements. The estimations, ˆ̄x and K̂, are obtained by maximizing the
likelihood function of the observed average response time.

Let Ti be the average response time predicted from the model and T̂i

be the average response time estimated from the measurements when the
arrival intensity is λi, i = 1 . . . m. Since the estimated response time T̂ is the
mean of samples, it is approximately a normal distributed random variable
with mean T and variance σ2

T /n when the number of samples n is very large.
Hence, the model parameter pair (x̄,K) can be estimated by maximizing the
log-likelihood function

log
m∏

i=1

1√
2πσ2

i /ni

exp




(
T̂i − Ti

)2

2σ2
i /ni


 . (2.7)

Maximizing the log-likelihood function above is equivalent to minimize
the weighted sum of square errors as follows,

m∑
i=1

(
T̂i − Ti

)2

σ2
i /ni

. (2.8)

As an approximation, the estimated variance of response time, σ̂i
2, can be

used instead of σ2
i .

Now, the problem of parameter estimation becomes a question of opti-
mization,

(ˆ̄x, K̂) = arg
(x̄,K)

min
m∑

i=1

(
T̂i − Ti

)2

σ̂i
2/ni

. (2.9)
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The optimization can be solved in various ways, such as steepest decent,
conjugate gradient, truncated Newton and even brute force searching. In
this paper, we used a brute force approach. The optimum parameter is
selected by examining every point of the discretized parameter space.

2.4.1 MMPP Parameters

To be able to use the MMPP in our experiments, its parameters had to be
determined. We chose to set the mean arrival rate for the MMPP process,
and then determine MMPP parameters from that value. r1 and r2 were set
to 0.05 and 0.95 respectively. The low rate, λ1, was set to

λ1 = 0, 75 · λ̄ (2.10)

Equation 2.5 then gives:

λ2 =
((r1 + r2) · λ̄− λ1r2)

r1
(2.11)

This means that λ2 is a high rate and that it can be seen as a sudden burst
rate. λ2 will be used 5 % of the time according to the settings of r1 and r2.
The parameters have been set this way in order to simulate bursty traffic
with random peaks in the arrival rate in both measurements and simulations.

2.5 Experiments

2.5.1 Setup

Our validation experiments used one server computer and two client com-
puters connected through a 100 Mbits/s Ethernet switch. The server was a
PC Pentium III 1700 MHz with 512 MB RAM. The two clients were both
PC Pentium III 700 with 256 MB RAM.

All computers used RedHat Linux 7.3 as operating system. Apache
1.3.9 [12] was installed in the server. We used the default configuration,
except for the maximum number of connections. The client computers were
installed with a HTTP load generator, which was a modified version of S-
Client [18]. The S-Client is able to generate high request rates even with
few client computers by aborting TCP connection attempts that take too
long time. The original version of S-Client uses deterministic waiting time
between requests. We used exponential distributed waiting time instead.
This makes the arrival process Poissonian [19].

The clients were programmed to request dynamically generated HTML
files from the server. The CGI script was written in Perl. It generates a
fix number, Nr, of random numbers, adds them together and returns the
summation. By varying Nr, we can simulate different loads on the web
server.
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Tab. 2.1: The configuration of four experiments
Nr = 1000 Nr = 2000

Nconn,max = 75 A1 B1
Nconn,max = 150 A2 B2

Tab. 2.2: Estimated Parameters of the Model
A1 A2 B1 B2

ˆ̄x 0.00708 0.00708 0.00866 0.00834
K̂ 208 286 215 298

The system was also implemented as a discrete event simulation program
in Java to be able to compare the results from the measurements with bursty
arrival traffic.

2.5.2 Performance metrics

We were interested in the following performance metrics: average response
time, throughput, and blocking probability. The throughput was estimated
by taking the ratio between the total number of successful replies and the
time span of measurement. The response time is the time difference between
when a request is sent and when a successful reply is fully received. The
average response time was calculated as the sample mean of the response
times after removing transients. An HTTP request sent by a client computer
will be blocked either when the maximum number of connections, denoted
as Nconn,max, in the server has been reached or the TCP connection is timed
out at the client computer. A TCP connection will be timed out by a client
computer when it takes too long time for the server to return an ACK of the
TCP-SYN. The blocking probability was then estimated as the ratio between
the number of blocking events and the number of connection attempts in a
measurement period.

For both Poisson and MMPP traffic, we carried out the experiments in
four cases by varying Nr and Nconn,max. Table 2.1 shows the configurations
of four experiments: A1, A2, B1 and B2. In each case, the performance
metrics were collected while the arrival rate (in number of requests/second)
changed from 20 to 300 with step size 20.

The performance metrics can be seen in figures 2.3, 2.4, 2.5 and 2.6.
The results from the different measurements are compared in the figures to
mathematical expressions and simulations respectively.
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Fig. 2.3: Poissonian traffic: (a) Average response time of A1. (b) Average response
time of A2. (c) Throughput of A1. (d) Throughput of A2. (e) Blocking
probability of A1. (f) Blocking probability of A2.
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Fig. 2.4: Poissonian traffic: (a) Average response time of B1. (b) Average response
time of B2. (c) Throughput of B1. (d) Throughput of B2. (e) Blocking
probability of B1. (f) Blocking probability of B2.
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Fig. 2.5: MMPP traffic: (a) Average response time of A1. (b) Average response
time of A2. (c) Throughput of A1. (d) Throughput of A2. (e) Blocking
probability of A1. (f) Blocking probability of A2.
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Fig. 2.6: MMPP traffic: (a) Average response time of B1. (b) Average response
time of B2. (c) Throughput of B1. (d) Throughput of B2. (e) Blocking
probability of B1. (f) Blocking probability of B2.



2.6. Results and Discussion 31

2.6 Results and Discussion

The method developed in section 2.4 was used to estimate the parameters
from the measurements. The results are presented in Table 2.2.

Using the estimated parameters we can compare measured and predicted
web server performance. Figure 2.3 and 2.4 shows average response time,
throughput and blocking probability curves. To facilitate the discussion, we
divide four experiments into two groups. The first group called α contains
experiments A1 and A2 and the second group β contains B1 and B2.

We notice the following relations in Table 2.2

ˆ̄xA1 = ˆ̄xA2 < ˆ̄xB1 ≈ ˆ̄xB2.

Recall that the same CGI script is used for experiments in the same group.
The script for group β is more computational intensive than the one for
group α. The script for group α adds 1000 numbers but the script for group
β adds 2000 numbers. However x̄B1(or x̄B2) is not twice as large as x̄A1(or
x̄A2). This can be understood as that the time spent on the summations is
only a fraction of the sojourn time of a job in the system. Other parts of x̄
include the connection setup time, the file transferring time, etc., which can
be considered as constants in all experiments.

We find that the estimated K in all experiments is much greater than
Nconn,max which is a parameter in the configuration of the Apache. One
may expect that K ≈ Nconn,max. However, recognize that in our model K
is the limit of the total number of jobs in the system. The jobs can be in
the HTTP processing phase as well as in the TCP connection setup phase
in which the Apache has no control. On the other hand, Nconn,max is the
maximum number of jobs handled by the Apache which runs on top of the
TCP layer. Therefore K should be greater than Nconn,max.

One can reasonably predict that within the same experiment group, α
or β, the difference of K̂ should be approximately equal to the difference of
Nconn,max which is 75. In our experiments, K̂A2−K̂A1 = 78, K̂B2−K̂B1 = 83.
There is a reason why the differences are close but greater than 75. When
Nconn,max is increased, the average load of CPU will increase besides the
increase of the total number of jobs in the system. As a result, the TCP
listening queue will be visited less frequently by the operating system. This
implies that the TCP listening queue size will increase. So the increase of
K will be close but greater than the increase of Nconn,max. This explanation
is also supported by the fact that the increase of K in the experiment group
β is larger than in group α. As we mentioned early, the CGI script of group
β is more CPU demanding than that of group α.

Now we turn our attention from the estimated parameters to the pre-
dicted performance metrics. The measured and the predicted average re-
sponse time in all four experiments fit well. This should be of a little sur-
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prise because the measured average response times at various arrival rates
are used to estimate the parameters of the model.

The predicted blocking probability is slightly less than the measurements
in all four experiments. According to (2.3), the error in the prediction of Pb

will also affect the prediction of throughput. Such divergence is expected
since we only use the measured average response time in our parameter
estimation.

2.7 Conclusions

We have presented an M/G/1/K*PS queueing model of a web server. We
obtained closed form expressions for web server performance metrics such as
average response time, throughput and blocking probability. Model param-
eters were estimated from the measured average response time. A modified
arrival traffic model was also investigated. We validated the two versions
of the model through four sets of experiments. The performance metrics
predicted by the model fitted well to the experimental outcome.

Future work will include more validation under different types of loads
such as network intensive and hard-disk intensive cases. It would also be
interesting to see how well the model fits web servers that use an event-driven
approach instead of multi-threading.
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Abstract

Web sites are exposed to high rates of incoming requests. Since web
sites are sensitive to overload, admission control mechanisms are often im-
plemented. The purpose of such a mechanism is to prevent requests from en-
tering the web server during high loads. This paper presents how admission
control mechanisms can be designed and implemented with a combination of
queueing theory and control theory. Since web servers behave non-linear and
stochastic, queueing theory can be used for web server modeling. However,
there are no mathematical tools in queueing theory to use when designing
admission control mechanisms. Instead, control theory contains the needed
mathematical tools. By analyzing queueing systems with control theoretic
methods, good admission control mechanisms can be designed for web server
systems. In this paper we model an Apache web server as a GI/G/1-system.
Then, we use control theory to design a PI-controller, commonly used in au-
tomatic control, for the web server. In the paper we describe the design of
the controller and also how it can be implemented in a real system. The
controller has been implemented and tested together with the Apache web
server. The server was placed in a laboratory network together with a traffic
generator which was used to represent client requests. Measurements in the
laboratory setup show how robust the implemented controller is, and how
it correspond to the results from the theoretical analysis.
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3.1 Introduction

Web sites on the Internet can be seen as server systems with one or more web
servers processing incoming requests at a certain rate. The web servers have
a waiting-queue where requests are queued while waiting for service. There-
fore, a web server can be modeled as a queueing system including a server
with finite or infinite queues. One problem with web servers is that they
are sensitive to overload. The servers may become overloaded during tem-
porary traffic peaks when more requests arrive than the server is designed
for. Because overload usually occur rather seldom, it is not economical
to overprovision the servers for these traffic peaks, instead admission con-
trol mechanisms can be implemented in the servers. The admission control
mechanism rejects some requests whenever the arriving traffic is too high
and thereby maintains an acceptable load in the system. The mechanism
can either be static or dynamic. A static mechanism admits a predefined
rate of requests whereas a dynamic mechanism contains a controller that,
with periodic time intervals, calculates a new admission rate depending on
some control objective. The controller bases its decision from measurements
of some control variable, for example the queue length, processor occupancy,
or processing delays. The control objective is usually that the value of the
control variable should be kept at a reference value. The choice of con-
trol variable is an important issue when developing an admission control
scheme. First, the control variables must be easy to measure. Second, the
control variable must in some way relate to the QoS demands that the users
may have on the system. Traditionally, server utilization or queue lengths
have been the variables mostly used in admission control schemes. For web
servers, the main objective of the control scheme is to protect it from over-
load. As long as the average server utilization or queue length is below a
certain level, the response times are low.

One well-known controller in automatic control is the PID-controller,
which enables a stable control for many types of systems (see, for example
Åström [1]). The PID-controller uses three actions: one proportional, one
integrating, and one derivative. In order to get the system to behave well it
is necessary to decide proper control parameters. Therefore, before design-
ing the PID-controller, the system must be analysed so that its dynamics
during overload are known. This means that the system must be described
with a control theoretic method. If the model is linear, it is easily anal-
ysed with linear control theoretic methods. However, a queueing system is
both non-linear and stochastic. The main problem is that nonlinear models
are much harder to analyse with control theoretic methods. Very few papers
have investigated admission control mechanisms for server systems with con-
trol theoretic methods. Abdelzaher [2,3] modelled the web server as a static
gain to find optimal controller parameters for a PI-controller. A scheduling
algorithm for an Apache web server was designed using system identifica-
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tion methods and linear control theory by Lu et al [4]. Bhatti [5] developed
a queue length control with priorities. By optimizing a reward function, a
static control was found by Carlström [6]. An on-off load control mechanism
regulating the admittance of client sessions was developed by Cherkasova [7].
Voigt [8] proposed a control mechanism that combines a load control for the
CPU with a queue length control for the network interface. Bhoj [9] used a
PI-controller in an admission control mechanism for a web server. However,
no analysis is presented on how to design the controller parameters. Papers
analyzing queueing systems with control theoretic methods usually describe
the system with linear deterministic models. Stidham Jr [10]. argues that
deterministic models cannot be used when analyzing queueing systems. Un-
til now, no papers have designed admission control mechanisms for server
systems using non-linear control theory. In this paper we implement an ad-
mission control mechanism for the Apache [11] web server. Measurements
in the laboratory setup show how robust the implemented controller is, and
that it corresponds to the results from the theoretical analysis. Section 3.2
describes a general admission control mechanism. Section 3.3 shows how
this can be applied on a web server. In section 3.4, we describe a non-linear
control theoretic model of an admission control mechanism for a web server.
We describe the controller design in section 3.5, where examples of good and
bad parameters are given. The control theoretic model is used to design and
implement an admission control mechanism for the Apache web server. The
measurements are shown in section 3.6, and section 3.7 concludes the work.

3.2 Admission Control Mechanism

A good admission control mechanism improves the performance of a server
system during overload by only admitting a certain amount of requests at
a time into the system. Admission control mechanisms for server systems
usually have the same structure and are based on the same type of rejection
mechanisms.

Figure 3.1 shows a general admission control mechanism that consists
of three parts: a gate, a controller, and a monitor. The monitor measures
a so called control variable, x. Using the control variable, the controller
decides the rate, u, at which requests can be admitted to the system. The
objective is to keep the value of the control variable as close as possible
to a reference value, xref . The gate rejects those requests that cannot be
admitted. The requests that are admitted proceed to the rest of the system.
Since the admittance rate may never be larger than the arrival rate, λ, the
actual admittance rate is ū=min[u, λ] requests per second. A survey of
different admission control mechanisms for communication systems is given
by Kihl [12].
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Fig. 3.1: An admission control mechanism

3.2.1 Gate

Several gates have been proposed in the literature. One example is Percent
blocking. In this mechanism, a certain fraction of the requests is admitted.
Another example is Token bucket. Here, tokens are generated at a certain
rate. An arriving request is admitted if there is a token available. The
gate can also use a Dynamic window mechanism, that sets an upper limit
to the number of requests that may be processed or waiting in the system
the same time. The window size may be increased or decreased if the traffic
conditions change.

3.2.2 Controllers

There are a variety of controllers to choose from when designing an admis-
sion control mechanism. Some of the most common controllers are the Static
controller, the Step controller, and the PID-controller.

Static controller. A static controller uses a fixed acceptance rate, ufix,
that is set so that the average value of the control variable should be equal
to the reference value. In this case, ufix is given by

ufix =
ρref

x̄

Step controller. The objective of the control law is to keep the control
variable between an upper and a lower level. If the value of the variable is
higher than the upper level, the admittance rate is decreased linearly. If the
value is below the lower level, the admittance rate is increased. This means
that the control law is as follows:
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u(t+ 1) =
{

u(t)− s y(t) > yref + ε
u(t) + s y(t) > yref − ε

where the value of s decides how much the rate is increased/decreased and
the value of ε decides how much the control variable may deviate from the
reference value.

PID-controller. The PID-controller uses three actions: one proportional,
one integrating, and one derivative. The control law in continuous time is
as follows:

u(t) = K · e(t) + K

Ti
·
∫ t

0
e(v)dv +K · Td · d

dt
· e(t)

where e(t) is the error between the control variable and the reference value,
that is e(t) = yref − y(t). The gain K, the integral time Ti, and the
derivative time Td are the controller parameters that are set so that the
controlled system behaves as desired. A large value of K makes the con-
troller faster, but weakens the stability. The integrating action eliminates
stationary errors, but may also make the system less stable. The derivative
action improves the stability, however, in a system with a bursty arrival
process the derivative action may cause problems. Therefore, the derivative
action is usually either deleted (i.e. Td = 0) or low pass filtered to remove
the high frequencies.

3.3 Investigated System

The system we have investigated in this work, is a web server with an admis-
sion control mechanism. The web server is Apache, described below. The
web server is connected to the admission control according to Figure 3.2,
where the admission control runs as a stand-alone application, independent
of Apache. Not all admission control mechanisms in the literature are imple-
mented like this. It is for example possible to have admission control within
the kernel or within the Apache code. This architecture however, makes the
system independent of web server.

3.3.1 Web servers

A web server like Apache, contains software that offers access to docu-
ments stored on the server. Clients can browse the documents in a web
browser. The documents can be for example static Hypertext Markup Lan-
guage (HTML) files, image files or various script files, such as Common
Gateway Interface (CGI), Java script or Perl files. The communication
between clients and server is based on HTTP [13]. A HTTP transaction
consists of three steps: TCP connection setup, HTTP layer processing and
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Fig. 3.2: The Apache web server with admission control

network processing. The TCP connection setup is performed through a
threeway handshake, where the client and the server exchange TCP SYN,
TCP SYN/ACK and TCP ACK messages. Once the connection has been
established, a document request can be issued with a HTTP GET message
to the server. The server then replies with a HTTP GET REPLY message.
Finally, the TCP connection is closed by sending TCP FIN and TCP ACK
messages in both directions. Apache, which is a well-known web server and
widely used, is multi-threaded. This means that a request is handled by its
own thread or process throughout the life cycle of the request. Other types
of web servers e.g. event-driven ones also exist (Voigt [14]).

3.3.2 Admission control

Since continuous control is not possible in computer systems, time is divided
into control intervals of length h seconds. At the end of interval k, that is
when the time is kh, the controller calculates the desired admittance rate
for interval [kh, kh + h], denoted u(kh), from the measured average server
utilization during the interval, ρ(kh), and the reference value ρref . There
are three main parts in our admission control architecture:

Gate. The Gate thread runs a loop that accepts or rejects incoming re-
quests on its own TCP port. It copies the requests to Apache’s TCP socket,
and then sends back the responses to the clients as the web server replies.
In this paper we use the token bucket algorithm to reject those requests that
cannot be admitted. New tokens are generated at a rate of u(kh) tokens
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H

yu

Fig. 3.3: A system with transfer function H

per second during time interval [kh, kh + h]. If there is an available token
upon the arrival of a request, the request consumes the token and enters the
web server. If there are no available tokens, the request is rejected. When a
request is rejected, the TCP socket to the client is closed. Rejected requests
are assumed to leave the system without retrials.

Monitor. The Monitor thread constantly samples the server utilization
every control interval. The server utilization is calculated as one minus the
fraction of time an idle process has been able to run during the last control
interval. The idle process’ priority level is set to the lowest possible, which
means that it only runs whenever there is no request requiring CPU work.
This way of measuring the load on the CPU results in a quantization effect
in server utilization. The reason to this is that the operating system where
the admission control mechanism runs has a certain time resolution in func-
tion calls regarding process uptimes. This means that the control interval
cannot be chosen arbitrary. It has to be long enough not to be affected by
the time resolution effects, and short enough so that the controller responds
quickly.

Controller. The Controller is a PI-controller. The Controller is possible to
turn on/off in order to be able to measure on an un-controlled system. The
Controller’s output is forwarded to the Gate thread. The Controller design
is discussed more extensively in section 3.4.

3.4 Control Theoretic Model

Control theory is a powerful tool for performance analysis of computer con-
trolled systems. The system must be described in terms of transfer functions
or differential (or difference) equations. A transfer function describes the re-
lationship between the z-transforms (or Laplace transforms) of the input and
the output of a system, see Figure 3.3. In this case, the input to the system
is the actual admittance rate, ū, whereas the output is either the server
utilization, denoted ρ, or the number of jobs in the server, here denoted x.

We use discrete-time control theoretic model of web server developed by
Kihl et al. [15]. We assume that the be modeled as a GI/G/1-system with an
admission control mechanism. Kihl et al. showed that the queueing model
is a good model for admission control purposes. The input to the system is
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Fig. 3.4: A control theoretic model of a GI/G/1-system with admission control.

the actual admittance rate, ū, whereas the output is the server utilization,
ρ. The model is a flow or liquid model in discrete-time. The model is an
averaging model in the sense that we are not considering the specific timing
of different events, arrivals, or departures from the queue. We assume that
the sampling period, h, is sufficiently long to guarantee that the quantization
effects around the sampling times are small. The model is shown in Figure
3.4. The system consists of an arrival generator, a departure generator, a
controller, a queue and a monitor.

There are two stochastic traffic generators in the model. The arrival gen-
erator feeds the system with new requests. The number of new requests dur-
ing interval kh is denoted α(kh). α(kh) is an integrated stochastic process
over one sampling period with a distribution obtained from the underlying
interarrival time distribution. If, for example, the arrival process is Poisson
with mean λ, then α(kh) is Poisson distributed with mean λh. The depar-
ture generator decides the maximum number of departures during interval
kh, denoted σmax(kh). σmax(kh) is also a stochastic process with a distribu-
tion given by the underlying service time distribution. If, for example, the
service times are exponentially distributed with mean 1/µ, then σmax(kh) is
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Poisson distributed with mean µh. It is assumed that α(kh) and σmax(kh)
are independent from between sampling instants and uncorrelated to each
other. The gate is constructed as a saturation block that limits u(kh) to be

ū(kh) =




0 u(kh) < 0
u(kh) 0 ≤ u(kh) ≤ α(kh)
α(kh) u(kh) > α(kh)

The queue is represented by its state x(kh), which corresponds to the number
of requests in the system at the end of interval kh. The difference equation
for the queue is given by

x(kh+ h) = f(x(kh) + ū(kh)− σmax(kh))

where the limit function, f(w), equals zero if w < 0 and w otherwise. The
limit function assures that x(kh + h) ≥ 0. When the limit function is
disregarded then the queue is a discrete-time integrator.

Themonitor must estimate the server utilization since this is not directly
measurable in the model. The server utilization during interval kh, ρ(kh),
is estimated as

ρ(kh) = min(
ū(kh) + x(kh)

σmax(kh)
, 1)

The objective of the controller is to minimize the difference between the
server utilization during interval kh, ρ(kh), and the reference value, ρref .
The control law is given by the transfer function, Gc(z).

3.5 Controller Design

The PI-controller is commonly used in automatic control. The controller
uses two actions: one proportional, and one integrating by using the follow-
ing discrete-time control law (see Åström1 for more details):

u(kh) = Ke(kh) +
k−1∑
i=0

K

Ti
e(ih)

where e(kh) = ρref − ρ(kh). The gain, K, and the integral time, Ti, are
the controller parameters that are set so that the controlled system behaves
as desired. Since the controller is discrete, the controller parameter for the
integration action, Ti, is given by Ti = Tsi/h where Tsi would be the integral
time in continuous-time. Note that the control signal, u(kh), is allowed to
become negative. A negative control signal will be treated as a zero signal
in the gate.

Design and analysis. The control law for the PI-controller expressed
in z-transform is given by

Gc(z) = K(1 +
1
Ti

· h

z − 1
)
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In this paper we use a linear design method, which means that we during
the design analysis consider a deterministic system with no active satura-
tions. However, it is important to note that we can take into account the
saturations in the system during the design, since the underlying model is
non-linear. This is performed by choosing the controller parameters care-
fully, since some controller parameters may cause oscillations in a system
with saturations. This is the main difference between our work and the pre-
vious published work about control theoretic analysis of queueing systems.
In those papers, the underlying system models are linear and deterministic,
which means that the non-linearitities and stochastic processes in the real
systems are ignored.

The linear transfer function from the desired utilization, ρref , to the
(delayed) output, ρ(kh), will be

Gcl =
Gc(1 +Gq)Gm

1 +Gc(1 +Gq)Gm
=

(z + 1)K(TiZ − Ti + h)
z3σTi + (KTi − σTiz2 +Kzh+ (−KTi +Kh))

where 


Gc = K(1 + 1
Ti

h
z−1)

Gq = 1
z−1

Gm = 1
σ

1
z

are the transfer functions for the controller, for the queue, and for the mon-
itor, respectively. σ is the average value of σmax. The characteristic poly-
nomial for the linear closed loop system will be

z · (z2 +
K − 2σ

σ
+

−KTi +Kh+ σTi

σTi
) (3.1)

where the pole at z=0 is cancelled in the transfer function from the input
(the load reference) to the desired output (the load). Assume that the
desired characteristic equation is

z(z2 + a1z + a2) = 0

The values of the controller parameters that gives this are

K = 2σ + a1σTi = h · 2 + a1

1 + a1 + a2

The controller parametersK and Ti influence the closed loop response for the
system and need to be determined with respect to stability and robustness.

3.6 Experiments

The admission control mechanism was implemented on a real web server.
We tested the system by running tests on it and collecting performance
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metrics such as the server utilization distribution and step responses. The
admission control mechanism was written in Java and tested on the Win-
dows platform. We also compared the measurements with simulations. The
queueing model was represented by a discrete-event simulation program im-
plemented in C, and the control theoretic models were implemented with
the Matlab Simulink package. The traffic generators in the discrete-time
model were built as Matlab programs. They generate arrivals and depar-
tures according to the given statistical distributions.

3.6.1 Setup

Our measurements used one server computer and one computer represent-
ing the clients connected through a 100 Mbits/ s Ethernet switch. The
server was a PC Pentium III 1700 MHz with 512 MB RAM running Win-
dows 2000 as operating system. The computer representing the clients was
a PC Pentium II 400 MHz with 256 MB RAM running RedHat Linux 7.3.
Apache 2.0.45 was installed in the server. We used the default configuration
of Apache. The client computer was installed with an HTTP load gener-
ator, which was a modified version of S-Client [16]. The S-Client is able
to generate high request rates even with few client computers by aborting
TCP connection attempts that take too long time. The original version
of S-Client uses deterministic waiting times between requests. We modi-
fied the code to use Poissonian arrivals instead. The client program was
programmed to request dynamically generated HTML files from the server.
The CGI script was written in Perl. It generates a random number of ran-
dom numbers, adds them together and returns the summation. The average
request rate was set to 100 requests per second in all experiments except
for the measurements in Figure 3.5. Apache was installed on the server and
set to listen to port 8080. The Gate thread listened to port 80, the normal
web server port, and then copied the admitted requests to port 8080. The
admission control mechanism and the web server ran on the same computer.
In all experiments, the control interval was set to one second.

3.6.2 Validation of the Model

We have validated that the open system, that is without control feedback, is
accurate in terms of average server utilization. The average server utilisation
for varying arrival rates are shown in Figure 3.5. For a single-server queue,
the server utilization is proportional to the arrival rate, and the slope of the
server utilization curve is given by the average service time. The measure-
ments in Figure 3.5 gives an estimation of the average service time in the
web server, 1/µ=0.0255.
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Fig. 3.5: Average server utilization for the open system.

3.6.3 Controller parameters

Root locus arguments show that reasonable parameters give a stable closed
loop system. Figure 3.6 shows the root locus diagram when Ti =2.8 and the
gain K varies between [0,40].

”Good” controller parameters. By choosing {K,Ti}={20, 2.8} the
roots of the characteristic polynomial in Equation 3.1 will be rather well
damped and the transients from the pole on the real axis will decay fast.
This controller design can, therefore, be seen as a good design.

”Bad” controller parameters. If the controller parameters are chosen
badly, the system will not behave well. One example is {K,T i}={20, 0.1},
which for the linear systems gives unstable poles placed outside the unit
circle.

3.6.4 Performance metrics

An admission control mechanism have two control objectives. First, it
should keep the control variable at a reference value, i.e. the error, e =
yref − y, should be as small as possible. Second, it should react rapidly to
changes in the system, i.e. the so-called settling time should be short. There-
fore, we test the mechanism in two ways. First, we show the steady-state
distribution of the control variable, by plottting the estimated distribution
function. The distribution function is estimated from measurements during
1000 seconds with the specific parameter setting. The distribution func-
tion shows how well the control mechanism meets the first control objective.
Second, we plot the step response during 60 seconds when starting with an
empty system. The step response shows the settling time for the control
mechanism.
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3.6.5 Distribution function

Figure 3.7 shows the estimated distribution function for the PI-controller.
Both good and bad parameter settings were used. An ideal admission control
mechanism would show a distribution function that is zero until the wanted
load, and is one thereafter. In this case, the load was kept at 0.8, and the
parameter setting, {K, Ti}={20, 2.8}, results in a controller that behaves
very well in this sense. The parameter setting, {K,Ti}={20, 0.1}, as can be
seen, perform worse. Also, as comparison, results from simulations of the
M/D/1-system and the M/M/1-system are given in Figure 3.7, when using
{K,T i}={20, 2.8}. They show that the system behaves as expected.

3.6.6 Step response

Figure 3.8 shows the behaviour of the web server during the transient period.
The measurements were made on an empty system that was exposed to
100 requests per second. The good parameter setting, {K,T i}={20, 2.8},
exhibits a short settling time with a relatively steady server utilization. The
bad parameter setting, {K,T i}={20, 0.1} has its poles outside the unit circle
and behaves badly, the load oscillates and is never stable. Comparisons to
M/D/1 and M/M/1 simulations, also in Figure 3.8, show that the model is
accurate.
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3.6.7 Limitations with linear design

All papers published earlier about control theoretic analysis of queueing
systems have only used linear deterministic models that can be analyzed
with linear design methods. However, it is important to know that a linear
model of a non-linear system is not accurate. The strength with our work is
that we can try the controllers in the non-linear model, and thereby see how
the real system behaves. For example, the controller parameters {5, 0.185}
gives unstable poles outside the unit circle. Therefore, they should not be
used. However, the non-linear system behaves very well, as shown in Figure
3.7. We have found that this is due to the non-linearity in the queue, since
the queue length can never be negative.

3.7 Conclusions

Admission control mechanisms have since long been developed for various
server systems. Traditionally, queueing theory has been used when inves-
tigating server systems, since they usually can be modelled as queueing
systems. However, there are no mathematical tools in queueing theory that
can be used when designing admission control mechanisms. Therefore, these
mechanisms have mostly been developed with empirical methods. Control
theory contains many mathematical tools that can be used when designing
admission control mechanisms. The main problem here is that queueing sys-
tems are non-linear and stochastic, which means that they are difficult to
model and analyse with control theoretic methods. The main objective with
our work has been to find models and methods from control theory that can
be used when designing admission control mechanisms for server systems. In
this paper, we have designed admission control mechanisms for this system
with control theoretic methods. We have shown that the model is accurate
enough for this purpose, and have also shown an example of how to perform
the controller design. We have used the PI-controller, commonly used in au-
tomatic control. The admission control mechanism has been implemented
on a real web server, running the well-known Apache web server software.
Measurements were made to examine the performance of the system. The
experiments show that the control mechanism behaves as expected. The
main conclusion of this paper is that it is possible to use control theoretic
methods when designing admission control mechanisms for server systems.
However, linear deterministic models, as have been used in previous papers,
are not enough for this purpose. A server system is both non-linear and
stochastic, and if this fact is ignored during modeling and analysis, the be-
haviour of the real system may not be as expected. It is obvious that more
research is needed in this field. We will, therefore, continue investigating
non-linear, stochastic control theoretic models of queueing systems.
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Fig. 3.8: (a) Example of a realisation with good parameters. (b) Example of a
realisation with bad parameters. (c) Simulation of M/D/1-system with
good parameters. (d) Simulation of M/M/1-system with good parameters.
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Abstract

Web sites are exposed to high rates of incoming requests. The servers
may become overloaded during temporary traffic peaks when more requests
arrive than the server is designed for. An admission control mechanism re-
jects some requests whenever the arriving traffic is too high and thereby
maintains an acceptable load in the system. This paper presents how ad-
mission control mechanisms can be designed with a combination of queueing
theory and control theory. By analyzing queueing systems with control the-
oretic methods, good admission control mechanisms can be designed for
web server systems. In this paper we model an Apache web server as a
G/G/1-system. Then we design a PI-controller, commonly used in auto-
matic control, for the server. We describe how it can be implemented in a
real system. The controller has been implemented as a module inside the
Apache source code. Measurements from the laboratory setup show how
robust the implemented controller is, and how it correspond to the results
from the theoretical analysis.
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4.1 Introduction

Web sites on the Internet can be seen as server systems with one or more
web servers processing incoming requests at a certain rate. The web servers
have a queue where requests wait for service. Therefore, a web server can
be modeled as a queueing system including a server with finite or infinite
queues. One problem with web servers is that they are sensitive to over-
load. The servers may become overloaded during temporary traffic peaks
when more requests arrive than the server is designed for. Because over-
load usually occurs rather seldom, it is not economical to overprovision the
servers for these traffic peaks, instead admission control mechanisms can be
implemented in the servers. The admission control mechanism rejects some
requests whenever the arriving traffic is too high and thereby maintains an
acceptable load in the system. Traditionally, server utilization or queue
lengths have been the variables mostly used in admission control schemes.
For web servers, the main objective of the control scheme is to protect it
from overload. As long as the average server utilization or queue length is
below a certain level, the response times are low.

One well-known controller in automatic control is the PID-controller,
which enables a stable control for many types of systems (see, for example
Åström, [1]). The PID-controller uses three actions: one proportional, one
integrating, and one derivative. In order to get the system to behave well it is
necessary to decide proper control parameters. Therefore, before designing
the PID-controller, the system must be analyzed so that its dynamics during
overload are known. This means that the system must be described with a
control theoretic method. If the model is linear, it is easily analyzed with
linear control theoretic methods. However, a queueing system is both non-
linear and stochastic. The main problem is that nonlinear models are much
harder to analyze with control theoretic methods. Very few papers have
investigated admission control mechanisms for server systems with control
theoretic methods. Abdelzaher ( [2, 3]) modeled the web server as a static
gain to find optimal controller parameters for a PI-controller. A scheduling
algorithm for an Apache [4] web server was designed using system identifica-
tion methods and linear control theory by Lu et al [5]. Bhatti [6] developed
a queue length control with priorities. By optimizing a reward function, a
static control was found by Carlström [7]. An on-off load control mechanism
regulating the admittance of client sessions was developed by Cherkasova [8].
Voigt [9] proposed a control mechanism that combines a load control for the
CPU with a queue length control for the network interface. Bhoj [10] used a
PI-controller in an admission control mechanism for a web server. However,
no analysis is presented on how to design the controller parameters. Papers
analyzing queueing systems with control theoretic methods usually describe
the system with linear deterministic models. Stidham Jr [11] argues that
deterministic models cannot be used when analyzing queueing systems. Un-
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Fig. 4.1: An admission control mechanism

til now, no papers have designed admission control mechanisms for server
systems using nonlinear control theory. In this paper we implement an ad-
mission control mechanism for the Apache web server. Measurements in
the laboratory setup show how robust the implemented controller is, and
that it corresponds to the results from the theoretical analysis. Section 4.2
describes a general admission control mechanism. Section 4.3 shows how
this can be applied on a web server. In section 4.4, we describe a nonlinear
control theoretic model of an admission control mechanism for a web server.
We give an analysis of the closed loop system in section 4.5. The control
theoretic model is used to design and implement an admission control mech-
anism for the Apache web server. The measurements are shown in section
4.6, section 4.7 discusses the results and section 4.8 concludes the work.

4.2 Admission Control Mechanism

Figure 4.1 shows a general admission control mechanism that consists of
three parts: a gate, a controller, and a monitor. The monitor measures
a so called control variable, x. Using the control variable, the controller
decides the rate, u, at which requests can be admitted into the system. The
objective is to keep the value of the control variable as close as possible
to a reference value, xref . The gate rejects those requests that cannot be
admitted. The requests that are admitted proceed to the rest of the system.
Since the admittance rate may never be larger than the arrival rate, λ, the
actual admittance rate is ū=min[u, λ] requests per second. A survey of
different admission control mechanisms for communication systems is given
by Kihl [12].
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4.2.1 Gate

Several gates have been proposed in the literature, for example Percent
blocking, Token bucket and the Dynamic window mechanism. In this work,
we use the Token bucket, where tokens are generated at a certain rate. An
arriving request is admitted if there is a token available.

4.2.2 Controllers

There are a variety of controllers to choose from when designing an admission
control mechanism. Some of the most common controllers are the Static
controller, the Step controller, and the PID-controller. The PID-controller
uses three actions: one proportional, one integrating, and one derivative.
The control law in continuous time is as follows:

u(t) = K · e(t) + K

Ti
·
∫ t

0
e(v)dv +K · Td · d

dt
· e(t)

where e(t) is the error between the control variable and the reference value,
that is e(t) = yref−y(t). The gain K, the integral time Ti, and the derivative
time Td are the controller parameters that are set so that the controlled sys-
tem behaves as desired. A large value of K makes the controller faster, but
weakens the stability. The integrating action eliminates stationary errors,
but may also make the system less stable. The derivative action improves the
stability, however, in a system with a bursty arrival process the derivative
action may cause problems. Therefore, the derivative action is usually either
deleted (i.e. Td = 0) or low pass filtered to remove the high frequencies.

4.3 Investigated System

The system we have investigated in this work, is a web server with an ad-
mission control mechanism. The web server is Apache, described below.

4.3.1 Web servers

A web server like Apache, contains software that offers access to docu-
ments stored on the server. Clients can browse the documents in a web
browser. The documents can be for example static Hypertext Markup Lan-
guage (HTML) files, image files or various script files, such as Common
Gateway Interface (CGI), Java scripts or Perl files. The communication
between clients and server is based on HTTP [13]. An HTTP transaction
consists of three steps: TCP connection setup, HTTP layer processing and
network processing. The TCP connection setup is performed through a
threeway handshake, where the client and the server exchange TCP SYN,
TCP SYN/ACK and TCP ACK messages. Once the connection has been
established, a document request can be issued with an HTTP GET message
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to the server. The server then replies with an HTTP GET REPLY message.
Finally, the TCP connection is closed by TCP FIN and TCP ACK messages
in both directions. Apache, which is a well-known web server and widely
used, is multi-threaded. This means that a request is handled by its own
thread or process throughout the life cycle of the request. Other types of
web servers e.g. event-driven ones and admission control for such also exist
(Voigt [14]).

4.3.2 Admission control

Since continuous control is not possible in computer systems, time is divided
into control intervals of length h seconds. At the end of interval k, that is
when the time is kh, the controller calculates the desired admittance rate
for interval [kh, kh + h], denoted u(kh), from the measured average server
utilization during the interval, ρ(kh), and the reference value ρref . There
are three main parts in our admission control architecture:

Gate. The Gate module gets notified whenever the web server gets an
incoming request. It takes a decision whether to admit the request and
then notifies the web server of the result. In this paper we use the token
bucket algorithm to reject those requests that cannot be admitted. New to-
kens are generated at a rate of u(kh) tokens per second during time interval
[kh, kh + h]. If there is an available token upon the arrival of a request,
the request consumes the token and enters the web server. If there are no
available tokens, the request is rejected. When a request is rejected, the
TCP socket to the client is closed. Rejected requests are assumed to leave
the system without retrials.

Monitor. The Monitor thread constantly samples the server utilization
every control interval. The server utilization is calculated as one minus the
fraction of time an idle process has been able to run during the last control
interval. The idle process’ priority level is set to the lowest possible, which
means that it only runs whenever there is no request requiring CPU work.
This way of measuring the load on the CPU results in a quantization effect
in server utilization. The reason to this is that the operating system where
the admission control mechanism runs has a certain time resolution in func-
tion calls regarding process uptimes. This means that the control interval
cannot be chosen arbitrary. It has to be long enough not to be affected by
the time resolution effects, and short enough so that the controller responds
quickly.

Controller. The Controller is a PI-controller. The Controller’s output
is forwarded to the Gate module. The Controller design is discussed more
extensively in section 4.4.
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4.4 Control Theoretic Model

Control theory is a powerful tool for performance analysis of computer con-
trolled systems. The system must be described in terms of transfer functions
or differential (or difference) equations. A transfer function describes the re-
lationship between the z-transforms (or Laplace transforms) of the input and
the output of a system. In this case, the input to the system is the actual ad-
mittance rate, ū, whereas the output is either the server utilization, denoted
ρ, or the number of jobs in the server, here denoted x.

We use the discrete-time control theoretic model of web server developed
by Kihl et al. [15]. We assume that the system can be modeled as a GI/G/1-
system with an admission control mechanism. Kihl et al. showed that the
queueing model is a good model for admission control purposes. The input
to the system is the actual admittance rate, ū, whereas the output is the
server utilization, ρ. The model is a flow or liquid model in discrete-time.
The model is an averaging model in the sense that we are not considering
the specific timing of different events, arrivals, or departures from the queue.
We assume that the sampling period, h, is sufficiently long to guarantee that
the quantization effects around the sampling times are small. The model is
shown in Figure 4.2. The system consists of an arrival generator, a departure
generator, a controller, a queue and a monitor.

There are two stochastic traffic generators in the model. The arrival gen-
erator feeds the system with new requests. The number of new requests dur-
ing interval kh is denoted α(kh). α(kh) is an integrated stochastic process
over one sampling period with a distribution obtained from the underlying
interarrival time distribution. If, for example, the arrival process is Poisson
with mean λ, then α(kh) is Poisson distributed with mean λh. The depar-
ture generator decides the maximum number of departures during interval
kh, denoted σmax(kh). σmax(kh) is also a stochastic process with a distribu-
tion given by the underlying service time distribution. If, for example, the
service times are exponentially distributed with mean 1/µ, then σmax(kh) is
Poisson distributed with mean µh. It is assumed that α(kh) and σmax(kh)
are independent from between sampling instants and uncorrelated to each
other. The gate is constructed as a saturation block that limits u(kh) to be

ū(kh) =




0 u(kh) < 0
u(kh) 0 ≤ u(kh) ≤ α(kh)
α(kh) u(kh) > α(kh)

The queue is represented by its state x(kh), which corresponds to the number
of requests in the system at the end of interval kh. The difference equation
for the queue is given by

x(kh+ h) = f(x(kh) + ū(kh) − σmax(kh))
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Fig. 4.2: Discrete-time model with controller saturation and saturation ϕ for posi-
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where the limit function, f(w), equals zero if w < 0 and w otherwise. The
limit function assures that x(kh + h) ≥ 0. When the limit function is
disregarded then the queue is a discrete-time integrator.

The monitor must estimate the server utilization since this is not directly
measurable in the model. The server utilization during interval kh, ρ(kh),
is estimated as

ρ(kh) = min(
ū(kh) + x(kh)

σmax(kh)
, 1)

The objective of the controller is to minimize the difference between the
server utilization during interval kh, ρ(kh), and the reference value, ρref .
The control law is given by the transfer function, Gc(z).

4.5 Stability analysis of closed loop system

In this section we will consider the stability properties of the controlled server
node, when using a PI-controller for admission control. First we will consider
an approach based on a linear queue model and compare with the admission
control parameters derived from nonlinear analysis. The analysis is based on
the Tsypkin/Jury-Lee stability criterion (discrete-time versions of the Popov
criterion) [16]. In the analysis only the dominating ’queue-limitation’ ϕ will
be considered. See Section 4.7 for comments on the saturation.

4.5.1 Linear design (neglecting saturations)

Neglecting the nonlinearities in Figure 4.2 (assuming ϕ(z) = z, i.e., linear
and no saturation) and using a standard PI-controller Gc(z) = K(1+ 1

Ti
· h
z−1)

will result in the closed loop dynamics

Gc =
Gc(1 +Gq)Gm

1 +Gc(1 +Gq)Gm

=
z ·K/σ (z − 1 + h/Ti)

z · (z2 + (K/σ − 2)z + (1−K/σ +Kh/(σTi))

(4.1)

where Gq and Gm represent the queue and monitor dynamics, respectively.
To match the characteristic polynomial

z · (z2 + (K/σ − 2)z + (1−K/σ +Kh/(σTi)) (4.2)

with a desired characteristic polynomial

z · (z2 + a1z + a2) (4.3)

we get the control parameters

K = (2 + a1)σ, Ti = h (2 + a1)/(1 + a1 + a2)
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Fig. 4.3: Decomposition into a linear block (Gz) and a nonlinear block (φ) under
negative feedback.

Using the parameters of the PI-controller it is thus possible to make an
arbitrary pole-placement, except for the pole z = 0, which corresponds to
a time delay. A simplified linear analysis will thus predict stability for the
closed loop for all coefficients {a1, a2} belonging to the stability triangle

{ a2 < 1, a2 > −1 + a1, a2 > −1− a1 }, (4.4)

see [1].

4.5.2 Model with queue limitation

Consider the admission control scheme in Figure 4.3 where we have intro-
duced the states {x1, x2, x3} corresponding to the queue length, the (de-
layed) utilization ρ and the integrator state in the PI-controller, respectively.

The state space model will be

x1(kh+ h) = ϕ (u+ x1(kh)− σ)

x2(kh+ h) =
1
σ
(u+ x1(kh))

x3(kh+ h) = Kh/Ti(ρref − x2(kh)) + x3(kh)

(4.5)
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where u = K(ρref − x2) + x3 and ϕ(·) is the saturation function in Figure
4.3. By introducing the forward shift operator and leaving out the time
arguments, we get

q x1 = ϕ (K(ρref − x2) + x3 + x1 − σ) (4.6)

q x2 =
1
σ
(K(ρref − x2) + x3 + x1) (4.7)

q x3 = Kh/Ti (ρref − x2) + x3 (4.8)

The equilibrium for the system (4.6–4.8) satisfies qx = x. From (4.8) we get

x3 = Kh/Ti (ρref − x2) + x3 ⇒ xo
2 = ρref

Inserting this in (4.6) and (4.7) we get

xo
1 = ϕ(xo

3 + xo
1 − σ)

xo
2 = ρref =

1
σ
(xo

3 + xo
1)

⇒
xo

1 = ϕ (σ(ρref − 1))

(4.9)

As ρref ∈ [0, 1] and using the fact that ϕ(z) = 0, ∀z ≤ 0 we get




xo
1 = 0

xo
2 = ρref

xo
3 = σxo

2 = σρref

(4.10)

By introducing the change of variables




z1 = x1 − 0 x1 = z1

z2 = x2 − ρref or x2 = z2 + ρref

z3 = x3 − σρref x3 = z3 + σρref

we get

q z1 = q x1 − 0 =ϕ (−Kz2 + z3 + σρref + z1 − σ)

q z2 = q x2 − ρref =
1
σ
(−Kz2 + z3 + σρref + z1)− ρref

q z3 = q x3 − σρref =−Kh/Ti z2 + z3 + σρref − σρref

Rewriting this as a linear system in negative feedback with the nonlinear



4.5. Stability analysis of closed loop system 65

y y

ϕ
φ

σ(1− ρref )

Fig. 4.4: φ(y) = ϕ(y − σ(1 − ρref )) where σ > 0 and ρref ∈ [0, 1].

function φ : y → ϕ(y − σ(1− ρref )), we get

qz = Azz +Bzuz = Azz +Bzφ(−y)
y = Czz

q


z1

z2

z3


 =


 0 0 0
1/σ −K/σ 1/σ
0 −Kh/Ti 1





z1

z2

z3


 +


10
0


φ(−y)

y =
[−1 K −1]


z1

z2

z3




Note that for ρref ∈ [0, 1] the function φ(·) will belong to the same cone as
ϕ(·), namely [α, β] = [0, 1], see Figure 4.4. The incremental variation will
also have the same maximal value (=1).

The transfer function Gz = Guz→yz(z) from cut B to cut A in Figure
4.3 will be

Gz = Cz(zI −Az)−1Bz

=
−z · (z − 1)

z · (z2 + (−1 +K/σ) z +K (h− Ti) /(σTi))
(4.11)

For the forthcoming stability analysis we determine for which control pa-
rameters the linear subsystem Gz is stable.

The poles of (4.11) are stable for the area depicted in Figure 4.5 for the
normalized parameters K/σ and h/Ti.

4.5.3 Stability analysis for discrete-time nonlinear system

To determine the stability for the nonlinear system in (4.11) we can use
the Tsypkin criterion or the Jury-Lee criterion which are the discrete-time
counterparts of the Popov criterion for continuous time systems [17].
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sponding stabilizing control parameters {K/σ, h/Ti}.

Sufficient conditions for stability are that Gz has all its poles within the
unit circle |z| < 1 and that there exists a (positive) constant η such that

Re[(1 + η(1 − z−1))Gz(z)] +
1
k
≥ 0 for z = eiω, ω ≥ 0 (4.12)

where the nonlinearity φ belongs to the cone [0, k = 1].
In the upper plot of Figure 4.6 we have the stability triangle for the char-

acteristic polynomial of Eq.(4.2). By choosing coefficients for the character-
istic polynomial (4.2) in the upper left triangle (A1) we will get controller
parameters {K, Ti} which also will give a stable transfer function Gz. The
corresponding poles are plotted in the lower diagram of Figure 4.6. Figure
4.7 shows a graphical representation of the Tsypkin condition (4.12) for this
set of control parameters. The dashed non-intersecting line in Figure 4.7
corresponds to the existence of a positive parameter η satisfying Eq.(4.12).
Thus, absolute stability for the nonlinear system also is guaranteed for this
choice of parameters.

Remark: The Tsypkin criterion guarantees stability for any cone bounded
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nonlinearity in [0, 1] and we can thus expect to have some robustness in ad-
dition to stability in our case.

4.6 Experiments

The admission control mechanism was implemented in the Apache web
server. Apache is made up of a core package and several modules that handle
different operations, such as Common Gateway Interface (CGI) execution,
logging, caching etc. A new module was created that contains the admis-
sion control mechanisms. The new module was then hooked into the core
of Apache, so that it was called every time a request was made to the web
server. The module could then either reject or admit the request according
to the control mechanism. The admission control mechanism was written
in C and tested on a Windows platform. We tested the system by running
tests on it and collecting performance metrics such as the server utilization
distribution and step responses. We also compared the measurements with
simulations. The queueing model was represented by a discrete-event sim-
ulation program implemented in C, and the control theoretic models were
implemented with the Matlab Simulink package. The traffic generators in
the discrete-time model were built as Matlab programs. They generate ar-
rivals and departures according to the given statistical distributions.
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4.6.1 Setup

Our measurements used one server computer and one computer representing
the clients connected through a 100 Mbits/s Ethernet switch. The server was
a PC Pentium III 1700 MHz with 512 MB RAM running Windows 2000 as
operating system. The computer representing the clients was a PC Pentium
II 400 MHz with 256 MB RAM running RedHat Linux 7.3. Apache 2.0.45
was installed in the server. We used the default configuration of Apache.
The client computer was installed with an HTTP load generator, which
was a modified version of S-Client [18]. S-Client is able to generate high
request rates even with few client computers by aborting TCP connection
attempts that take too long time. The original version of S-Client uses
deterministic waiting times between requests. We modified the code to use
Poissonian arrivals instead. The client program was programmed to request
dynamically generated HTML files from the server. The CGI script was
written in Perl. It generates a number of random numbers, adds them
together and returns the summation. The average request rate was set to
100 requests per second in all experiments except for the measurements in
Figure 4.8. In all experiments, the control interval was set to one second.

4.6.2 Validation of the Model

We have validated that the open system, that is without control feedback,
is accurate in terms of average server utilization. The average server uti-
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Fig. 4.8: Average server utilization for the open system.

lization for varying arrival rates are shown in Figure 4.8. For a single-server
queue, the server utilization is proportional to the arrival rate, and the slope
of the server utilization curve is given by the average service time. The mea-
surements in Figure 4.8 gives an estimation of the average service time in
the web server, 1/µ=0.0225.

4.6.3 Controller parameters

Control parameters for the PI-controller are chosen from the stability area
A1 in Figure 4.6. In the simulations and experiments below we use {K,Ti}={20,
2.8}. The parameter setting is also compared to {K,Ti}={20, 0.1}, found
outside the stability area.

4.6.4 Performance metrics

An admission control mechanism has two control objectives. First, it should
keep the control variable at a reference value, i.e. the error, e = yref − y,
should be as small as possible. Second, it should react rapidly to changes in
the system, i.e. the so-called settling time should be short. Therefore, we
test the mechanism in two ways. First, we show the steady-state distribution
of the control variable, by plottting the estimated distribution function. The
distribution function is estimated from measurements during 1000 seconds
with the specific parameter setting. The distribution function shows how
well the control mechanism meets the first control objective. Second, we plot
the step response during 60 seconds when starting with an empty system.
The step response shows the settling time for the control mechanism.
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4.6.5 Distribution function

Figure 4.9 shows the estimated distribution function for the PI-controller.
Both good and bad parameter settings were used. An ideal admission control
mechanism would show a distribution function that is zero until the wanted
load, and is one thereafter. In this case, the load was kept at 0.8, and the
parameter setting, {K, Ti}={20, 2.8}, chosen from results in a controller
that behaves very well in this sense. The parameter setting, {K,Ti}={20,
0.1}, as can be seen, perform worse. Also, as comparison, results from
simulations of the M/D/1 system and the M/M/1 system are given in Figure
4.9, when using {K,T i}={20, 2.8}. They show that the system behaves as
expected.

4.6.6 Step response

Figure 4.10 shows the behaviour of the web server during the transient
period. The measurements were made on an empty system that was exposed
to 100 requests per second. The good parameter setting, {K,T i}={20, 2.8},
exhibits a short settling time with a relatively steady server utilization. The
bad parameter setting, {K,T i}={20, 0.1} has its poles outside the unit circle
and behaves badly, the load oscillates and is never stable. Comparisons to
M/D/1 and M/M/1 simulations, also in Figure 4.10, show that the model
is accurate.

4.7 Discussion

The analysis in Section 4.5.3 gives sufficient conditions and a region for
control parameters which guarantee stability of the nonlinear closed loop as
well as for the simplified linear model. We are of course not restricted to
choose parameters from only this region as the main objective is that the
nonlinear system should be stable. However, we can conclude that

• Pole-placement based on a linear model is OK in a restricted area
(region A1 in Figure 4.6).

• There are choices of parameters that gives stable closed loop poles,
but where the linear analysis would indicate an unstable closed loop
systems.

During simulation studies the dominant nonlinear effect has come from
the queue nonlinearity ϕ. The saturation due to limited arrival rate can be
handled with a standard implementation of an anti-reset windup scheme,
see [19].
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Fig. 4.10: (a) Example of a realisation with good parameters. (b) Example of a
realisation with bad parameters. (c) Simulation of M/D/1-system with
good parameters. (d) Simulation of M/M/1-system with good parame-
ters.

4.8 Conclusion

Traditionally, queuing theory has been used when investigating server sys-
tems. However, within queuing theory there are few mathematical tools for
design and stability analysis of, for instance, admission control mechanisms.
Therefore, these mechanisms have mostly been developed with empirical
methods. In this paper, we have designed load control mechanisms for a
web server system with control theoretic methods and analyzed its stabil-
ity properties. The controller structure considered is a PI-controller and a
region for stabilizing control parameters is presented.

The designs have been experimentally verified with simulations and ex-
periments on an Apache web server system.

4.9 Acknowledgments

This work has partially been supported by the Swedish Research Council
through the Multi Project Grant 621-2001-3020 and contract 621-2001-3053.



BIBLIOGRAPHY
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Abstract

One problem with web servers is that they are sensitive to overload. The
servers may become overloaded during temporary traffic peaks when more
requests arrive than the server is designed for. Because overload usually oc-
curs rather seldom, it is not economical to overprovision the servers for these
traffic peaks, instead admission control mechanisms can be implemented in
the servers. This paper investigates two overload control strategies with
performance bounds for a web server. In service level agreements, we bound
average response times and throughputs for all service classes. Each request
is sorted into a class, where each class is assigned a weight representing the
income for the web site owner. Then a linear optimization algorithm is ap-
plied so that the total revenue for the web site during overload is maximized.
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5.1 Introduction

Web sites on the Internet can be seen as server systems with one or more web
servers processing incoming requests at a certain rate. The web servers have
a waiting-queue where requests are queued while waiting for service. There-
fore, a web server can be modelled as a queueing system including a server
with finite or infinite queue. One problem with web servers is that they
are sensitive to overload. The servers may become overloaded during tem-
porary traffic peaks when more requests arrive than the server is designed
for. Because overload usually occurs rather seldom, it is not economical
to overprovision the servers for these traffic peaks, instead admission con-
trol mechanisms can be implemented in the servers. The admission control
mechanism rejects some requests whenever the arriving traffic is too high
and thereby maintains an acceptable load in the system. In this paper we
study two admission control strategies based on percent blocking where we
assume that the traffic rate are known.

Other papers have been presented in this area of research. Chen et al.
describes in [1] an admission control scheme that divides requests into classes
and then tries to guarantee a maximum response time for prioritized classes.
Lee et al. describe a similar admission control scheme in [2]. Zhang et
al. [3] develop a profit-aware QoS policy for web servers, where each request
generates a certain profit to the site owner depending on the response time.
Kanodia and Knightly propose an admission control scheme without profit
optimization where requests are given priorities and response time limits
called Latency-Targeted Multiclass Admission Control (LMAC) [4].

Also, control theoretic methods have been applied to web servers, Ab-
delzaher [5, 6] modelled the web server as a static gain to find optimal con-
troller parameters for a PI-controller. A scheduling algorithm for an Apache
web server was designed using system identification methods and linear con-
trol theory by Lu et al [7]. Bhatti [8] developed a queue length control with
priorities. By optimizing a reward function, a static control was found by
Carlström [9]. An on-off load control mechanism regulating the admittance
of client sessions was developed by Cherkasova [10]. Voigt [11] proposed a
control mechanism that combines a load control for the CPU with a queue
length control for the network interface. Bhoj [12] used a PI-controller in
an admission control mechanism for a web server.

In this paper we use a web server model that consists of a processor
sharing node with a queue attached to it. A more thorough investigation
of the model can be found in previous works, [13] and [14], by Cao et al.
From the studies by Kihl and Widell [15] and Menasce et al. [16], we have
introduced a set of classes that each request to a typical E-commerce site
can be sorted into. The classes have different attributes such as revenue,
throughput, service time requirements. Together with the class definition,
we set up a service level agreement that the E-commerce site should uphold.
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The service level agreement regulate the throughput for each class as well
as the maximum allowed average response time.

Requests can be rejected in numerous ways, but since the requests gen-
erate different revenues for the site owner, it is a good idea to optimize the
total profit during overload. Two different control strategies are therefore
investigated that optimizes the total profit. One controller acknowledges
the request’s class attribute whereas the other one disregards the class at-
tribute. The latter one is introduced as a comparison to the class dependent
controller. Their performance regarding the ability to hold the service level
agreement and the generated profit during overload is studied. One im-
portant thing to consider is that a rejection requires processing. It is not
enough to simply disconnect the client, instead some ”rejection page” should
be sent. The rejection action therefore costs about the same amount of work
as a small static web page. This is included in our model and the simula-
tions show that this affects the total profit in an overloaded server. Also,
the connection setup processing is considered. Before any rejections can be
performed, the web server must set up a connection to see what kind of re-
quest that is coming. This connection setup processing has to be performed
for all requests, not only the admitted ones.

The rest of the paper is organized as follows; Section 5.2 gives an in-
troduction to web servers. It describes the web server model we use and
explains the concept of classes and the service level agreement. Section 5.4
defines the admission control problem that can be formulated as two al-
ternate linear programming problems. Section 5.5 shows simulations that
compare the two methods investigated in this paper. Section 5.6 discusses
the results while the last section concludes the work.

5.2 Preliminaries

This section describes how a web server works. We describe the web server
model that we use and we also define classes in a commercial web site con-
text.

5.2.1 Web servers

A web server contains software that offers access to documents stored on the
server. Clients can browse the documents in a web browser. The documents
can be for example static Hypertext Markup Language (HTML) files, image
files or various script files, such as Common Gateway Interface (CGI), Java-
script or Perl files. The communication between clients and server is based
on HTTP [17].

An HTTP transaction consists of three steps: TCP connection setup,
HTTP layer processing and network processing. The TCP connection setup
is performed as a so called three-way handshake, where the client and the
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server exchange TCP SYN, TCP SYN/ACK and TCP ACK messages. Once
the connection has been established, a document request can be issued with
a HTTP GET message to the server. The server then replies with a HTTP
GET REPLY message. Finally, the TCP connection is closed by sending
TCP FIN and TCP ACK messages in both directions.

5.2.2 Classes

It is natural to define a set of request classes when it comes to a server
system like the web server. The type of classes that are considered depends
on the web site. In this work, as will be shown, we have chosen to adopt
and extend the request types found in the works of Kihl and Widell [15]
and Menasce et al. [16]. In [15] they investigate admission control strategies
for commercial web sites using different types of requests, for example Buy,
Browse and Pay requests. The request types correspond to the different
stages that a visitor to the site goes through in a typical session.

5.2.3 Admission Control

A good admission control mechanism improves the site performance during
overload by only admitting a certain amount of customers at a time into the
site. The fundamental observation is that it is sometimes better to reject
some customers so that other customers may finish their tasks and thereby
generate some revenue for the site. Several kinds of blocking mechanisms
to use in admission control have been proposed in the literature, a survey is
given by Kihl in [18]. In this paper, we use percent blocking in the admission
control. In this mechanism, a certain fraction of the requests is admitted.

5.2.4 Model description

To be able to predict the web server’s performance it is important to have
a good performance model.

In [13] and [14] we show how a web server can be modeled as a single
server queue with a processor sharing discipline. The queue length is re-
stricted to a certain number of jobs. The model used here is similar (Figure
5.1).

The difference is that in this work, there is no maximum number of
threads in the web server. As will be seen, the admission control is handled
with another technique based on percent blocking. The server serves N
classes of requests. The arrival processes of all classes are assumed to be
Poisson. The arrival rate for the customers of class i is λi. The mean service
requirement for the customers of class i is vi besides the connection setup
time, denoted as vinit. The connection setup time is the same for all classes.
For each received request a TCP connection has to be set up. To be able
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Requests

Rejected

Admitted

Served

Processor sharing

Fig. 5.1: The web server model.

to determine what class the request belongs to, the HTTP header must be
parsed in the HTTP layer. The total arrival rate of all classes is therefore

Λ =
N∑

i=1

λi (5.1)

Since the service discipline is processor sharing, the actual service time
distribution can be neglected. Let the customer of class (N + 1) represent
the ”rejection service”. In some papers dealing with admission control, the
rejection service is neglected. If an admission controller should work in a
realistic way, it is not suitable to just drop connections. Some sort of message
should be sent to the rejected visitor that notifies about the rejection. The
rejection service required must be less than the originally requested service
to be of any practical use. We assume that a rejection requires vrej amount
of service and

vrej ≤ mini(vi), (i = 1..N) (5.2)

For requests of class i, the probability that the request will be served
normally, that is without rejection is denoted xi. If the request is rejected,
it will become a request of class (N + 1). This gives

λN+1 =
N∑

i=1

(1− xi)λi (5.3)

5.3 Admission Control

We will investigate two admission controllers based on percent blocking:

CAC-CI, Contract-based Admission Control - Class Independent: The cus-
tomers are accepted with probability xi = x, disregarding their class identity.

CAC-CD, Contract-based Admission Control - Class Dependent: The cus-
tomers of class i are accepted based on their class identity, with probability
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xi. For the CAC-CI controller the server utilization is

ρ =
N∑

i=1

λi · (vinit + x · vi + (1− x) · vrej) (5.4)

and for the CAC-CD controller

ρ =
N∑

i=1

λi · (vinit + x · vi + (1− xi) · vrej) (5.5)

It follows from the model that the average response time for served customers
of class i is

wi =
vinit + vi

1− ρ
(5.6)

where ρ is the server utilization and thus depends on the type of admission
control in question.

The purpose of admission control is to guarantee that the served cus-
tomers enjoy reasonable service times. Let τi be the upper bound of the
average response time for customers of class i. We want

wi ≤ τi, ∀i = 1, .., N. (5.7)

We require that for customers of class i, the minimum acceptance probability
must be αi. For the CAC-CI controller, this means

max αi ≤ x ≤ 1 (5.8)

and for type CAC-CD admission control

αi ≤ xi ≤ 1 (5.9)

Now, given w1, w2, ...wN and α1, α2, ...αN we define the so called service
level agreement to be

S = ({wi}N
i=1, {αi}N

i=1). (5.10)

The service level agreement is considered broken if one or more of its con-
straints are violated. For example, if the response time for a certain class i
exceeds τi or less than αi requests gets served, the service level agreement
is broken.

Usually there are infinitely many admission control policies that satisfies
the service level agreement.

Let γi be the revenue (potential or real) for serving a class i customer.
We can therefore restrict our attention to those policies that maximize the
reward. Since the CAC-CI controller accepts customers regardless of class
identity, this is equivalent to maximize the throughput i.e.

max x ·
N∑

i=1

γi · λi (5.11)
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Tab. 5.1: Parameter list
Variable Description
N number of customer classes
i,j=1..N indices of the customer class
λi arrival rate for class i
vi average service requirement for class i
γi revenue for request of class i
vinit,rej service requirements for connection setup and rejection
αi acceptance rate guarantee
τi mean service time guarantee
ρ server utilization

For type CAC-CD, it is slightly more complicated but still, the objective
function is linear,

max
N∑

i=1

γi · λi · xi (5.12)

To summarize we give a list of parameters and variables in Table 5.1.

5.4 Linear programming formulations

Since both of the objective functions for the controllers are linear, it is now
feasible to set up linear programming formulations. For the CAC-CI and
CAC-CD controllers they can be formulated as follows:

CAC-CI: maximize

x ·
N∑

i=1

γi · λi

subject to (for all i = 1..N)

vinit + vi ≤ τi(1−
N∑

j=1

λj(vinit + xvj + (1− x)vrej) (5.13)

max
i

αi ≤ x ≤ 1 (5.14)
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CAC-CD: maximize

N∑
i=1

γi · λi · xi

subject to (for all i = 1..N)

vinit + vi ≤ τi(1 −
N∑

j=1

λj(vinit + xjvj + (1− x)vrej) (5.15)

max
i

αi ≤ x ≤ 1 (5.16)

CAC-CI. The CAC-CI problem can be solved explicitly as follows:
From 5.13, we have

x ≤ 1− (vinit + vrej)
∑N

j=1 λj − vinit+vi
τi∑N

j=1 λj(vj − vrej)
= li

Let K:= arg maxj
vinit+vj

τj
. Clearly the CAC-CI problem has a solution

max xi ≤ lK .

If the condition above is satisfied the optimal solution for the CAC-CI prob-
lem is

x = lK .

CAC-CD. The CAC-CD problem can be solved by any linear programming
solver, e.g. CPLEX [19] quite easily.

We will first examine the necessary and sufficient conditions for the ex-
istence of a solution and then study the special case when (vinit = vrej =
0).

By the definition of wi and 5.7, we have

ρ ≤ 1− vinit + vi

τi
∀i = 1, .., N

On the other hand, we can achieve the smallest server utilization when we
reject all customers and still fulfill the service level agreement:

Let K:= arg maxj
vinit+vj

τj
. Hence the problem has a solution

N∑
j=1

λj(vinit + αj + (1− αj)vrej) ≤ 1− vinit + vK

τK
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Let ρi := λi/Λ where Λ =
∑N

j=1 λj . The condition above implies

Λ ≤
1− vinit+vj

τj∑N
j=1 ρj(vinit + αj + (1− αj)vrej) ≤ 1− vinit+vK

τK

The similar condition for the CAC-CI controller is

Λ ≤
1− vinit+vj

τj∑N
j=1 ρj(vinit + αj + (1− αj)vrej) ≤ 1− vinit+vK

τK

where αs = maxi αi.

5.5 Experiments

In all simulations we set a total arrival rate, Λ. The arrival rates for the
different classes were then determined by the request type distribution de-
rived from [15] where the ratio of ”leaving customers” were ignored. The
distribution originally comes from the work of Menasce et al. [16], where
the occasional buyer on a web site is studied. The buyer’s requests are cat-
egorized into the classes shown in Table 5.2 and then the rates of each class
are determined. The service times for each class has been taken from the
simulation values in [15].

In all experiments, the work required in the connection setup phase was
set to 0.005 seconds. The rejection work was also set to 0.005 seconds. The
queueing model and the admission control algorithms were implemented as
a discrete event simulation program in Java. Two sets of simulations were
performed; one set where the CAC-CI controller was used, and one where
the CAC-CD controller was used. Both methods were evaluated for their
ability to enforce the service level agreement. In all simulations, the total
arrival rate was increased from 10 to 60 requests per second, in steps of 5
requests per second. Table 5.2 shows the simulation configuration for both
controllers with required service times vi, distribution di, request revenue γi,
acceptance rate guarantee αi and mean service time guarantee τi for classes
1 to 5. For the CAC-CD controller optimization of the linear programming
formulation was performed by using the Java version of lpsolver [20].

The simulations evaluated the controllers in terms of response times,
throughput counted as admitted requests and the total profit generated at
each arrival rate.

5.6 Results and Discussion

Figure 5.2 and 5.3 shows the response time for each class as a function of
the total arrival rate. The solid lines in the diagrams represent the agreed
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Tab. 5.2: Class Parameters
Description vi di γi αi τi

1 Browse 0.015 0.41 1 0.2 1.5
2 Search 0.030 0.40 1 0.4 3.0
3 Select 0.015 0.17 1 0.6 1.5
4 Add 0.015 0.014 5 0.8 1.5
5 Pay 0.035 0.006 10 1.0 3.0
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Fig. 5.2: Response times per class (CAC-CD)

response time limits. Figure 5.2 shows that the CAC-CD is capable of keep-
ing the agreed response time limits whereas the CAC-CI controller cannot
at higher arrival rates.

Figure 5.4 and 5.5 shows the throughput as a percentage, of completed
requests for each class. The solid lines in the diagrams represent the agreed
minimum service level. When it comes to throughput, each class receives
the contracted amount of throughput with the CAC-CD controller. The
CAC-CI breaks the contract at higher rates for classes 3, 4 and 5.

The two methods were compared from a profit perspective in Figures
5.6 and 5.7. The figure shows the profit per second versus arrival total
rate. As can be seen for the CAC-CD controller, requests from classes 4
and 5 are more likely to be admitted at the expense of requests in class 1,
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Fig. 5.3: Response times per class (CAC-CI)
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Fig. 5.4: Throughput per class (CAC-CD)



86 5. Paper IV

20 40 60
0

0.2

0.4

0.6

0.8

1
Class 1

T
hr

ou
gh

pu
t (

%
)

Arrival rate
20 40 60

0

0.2

0.4

0.6

0.8

1
Class 2

T
hr

ou
gh

pu
t (

%
)

Arrival rate
20 40 60

0

0.2

0.4

0.6

0.8

1
Class 3

T
hr

ou
gh

pu
t (

%
)

Arrival rate

20 40 60
0

0.2

0.4

0.6

0.8

1
Class 4

T
hr

ou
gh

pu
t (

%
)

Arrival rate
20 40 60

0

0.2

0.4

0.6

0.8

1
Class 5

T
hr

ou
gh

pu
t (

%
)

Arrival rate

Fig. 5.5: Throughput per class (CAC-CI)

2 and 3 in higher arrival rates. The reason is that higher individual request
revenue is generated in class 4 and 5. It may seem strange that the total
profit decreases after its peak at λ = 40. The decline of total profit when
the aggregrated traffic rate reaches a certain limit is mainly due to that the
server is busy with rejection most of the time in that traffic rate region. This
implies that the server should be properly dimensioned in order to achieve
the best performance, i.e. maximum profit, when the service of rejection
cannot be neglected. The same trend can be found in Figure 5.7. For CAC-
CI however, the total profit is lower at higher arrival rates. This is shown in
the comparison in Figure 5.8. The controllers behave the same, profit-wise,
up until λ = 35, after which the CAC-CD yields more total profit.

5.7 Conclusions

In this paper we have presented and compared two admission control strate-
gies for a web server. The CAC-CI controller disregards the request’s class
property resulting in inferior performance compared to the CAC-CD con-
troller that does regard class property. Both controllers optimize the total
profit given the constraints given in the service level agreement concerning
response times and throughput. The fact that each request is associated
with an initialization work (even for rejected requests) and that rejections
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Fig. 5.6: Profit per class (CAC-CD)
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Fig. 5.8: Total profit

also cost in terms of processing power is considered. It results in declining
total profit at higher arrival rates.
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