494 research outputs found

    Backdoors to Acyclic SAT

    Full text link
    Backdoor sets, a notion introduced by Williams et al. in 2003, are certain sets of key variables of a CNF formula F that make it easy to solve the formula; by assigning truth values to the variables in a backdoor set, the formula gets reduced to one or several polynomial-time solvable formulas. More specifically, a weak backdoor set of F is a set X of variables such that there exits a truth assignment t to X that reduces F to a satisfiable formula F[t] that belongs to a polynomial-time decidable base class C. A strong backdoor set is a set X of variables such that for all assignments t to X, the reduced formula F[t] belongs to C. We study the problem of finding backdoor sets of size at most k with respect to the base class of CNF formulas with acyclic incidence graphs, taking k as the parameter. We show that 1. the detection of weak backdoor sets is W[2]-hard in general but fixed-parameter tractable for r-CNF formulas, for any fixed r>=3, and 2. the detection of strong backdoor sets is fixed-parameter approximable. Result 1 is the the first positive one for a base class that does not have a characterization with obstructions of bounded size. Result 2 is the first positive one for a base class for which strong backdoor sets are more powerful than deletion backdoor sets. Not only SAT, but also #SAT can be solved in polynomial time for CNF formulas with acyclic incidence graphs. Hence Result 2 establishes a new structural parameter that makes #SAT fixed-parameter tractable and that is incomparable with known parameters such as treewidth and clique-width. We obtain the algorithms by a combination of an algorithmic version of the Erd\"os-P\'osa Theorem, Courcelle's model checking for monadic second order logic, and new combinatorial results on how disjoint cycles can interact with the backdoor set

    Model counting for CNF formuals of bounded module treewidth.

    Get PDF
    The modular treewidth of a graph is its treewidth after the contraction of modules. Modular treewidth properly generalizes treewidth and is itself properly generalized by clique-width. We show that the number of satisfying assignments of a CNF formula whose incidence graph has bounded modular treewidth can be computed in polynomial time. This provides new tractable classes of formulas for which #SAT is polynomial. In particular, our result generalizes known results for the treewidth of incidence graphs and is incomparable with known results for clique-width (or rank-width) of signed incidence graphs. The contraction of modules is an effective data reduction procedure. Our algorithm is the first one to harness this technique for #SAT. The order of the polynomial time bound of our algorithm depends on the modular treewidth. We show that this dependency cannot be avoided subject to an assumption from Parameterized Complexity

    Understanding model counting for β\beta-acyclic CNF-formulas

    Full text link
    We extend the knowledge about so-called structural restrictions of #SAT\mathrm{\#SAT} by giving a polynomial time algorithm for β\beta-acyclic #SAT\mathrm{\#SAT}. In contrast to previous algorithms in the area, our algorithm does not proceed by dynamic programming but works along an elimination order, solving a weighted version of constraint satisfaction. Moreover, we give evidence that this deviation from more standard algorithm is not a coincidence, but that there is likely no dynamic programming algorithm of the usual style for β\beta-acyclic #SAT\mathrm{\#SAT}
    • …
    corecore