10 research outputs found

    Backdoors to Acyclic SAT

    Full text link
    Backdoor sets, a notion introduced by Williams et al. in 2003, are certain sets of key variables of a CNF formula F that make it easy to solve the formula; by assigning truth values to the variables in a backdoor set, the formula gets reduced to one or several polynomial-time solvable formulas. More specifically, a weak backdoor set of F is a set X of variables such that there exits a truth assignment t to X that reduces F to a satisfiable formula F[t] that belongs to a polynomial-time decidable base class C. A strong backdoor set is a set X of variables such that for all assignments t to X, the reduced formula F[t] belongs to C. We study the problem of finding backdoor sets of size at most k with respect to the base class of CNF formulas with acyclic incidence graphs, taking k as the parameter. We show that 1. the detection of weak backdoor sets is W[2]-hard in general but fixed-parameter tractable for r-CNF formulas, for any fixed r>=3, and 2. the detection of strong backdoor sets is fixed-parameter approximable. Result 1 is the the first positive one for a base class that does not have a characterization with obstructions of bounded size. Result 2 is the first positive one for a base class for which strong backdoor sets are more powerful than deletion backdoor sets. Not only SAT, but also #SAT can be solved in polynomial time for CNF formulas with acyclic incidence graphs. Hence Result 2 establishes a new structural parameter that makes #SAT fixed-parameter tractable and that is incomparable with known parameters such as treewidth and clique-width. We obtain the algorithms by a combination of an algorithmic version of the Erd\"os-P\'osa Theorem, Courcelle's model checking for monadic second order logic, and new combinatorial results on how disjoint cycles can interact with the backdoor set

    A join-based hybrid parameter for constraint satisfaction

    Get PDF
    We propose joinwidth, a new complexity parameter for the Constraint Satisfaction Problem (CSP). The definition of joinwidth is based on the arrangement of basic operations on relations (joins, projections, and pruning), which inherently reflects the steps required to solve the instance. We use joinwidth to obtain polynomial-time algorithms (if a corresponding decomposition is provided in the input) as well as fixed-parameter algorithms (if no such decomposition is provided) for solving the CSP. Joinwidth is a hybrid parameter, as it takes both the graphical structure as well as the constraint relations that appear in the instance into account. It has, therefore, the potential to capture larger classes of tractable instances than purely structural parameters like hypertree width and the more general fractional hypertree width (fhtw). Indeed, we show that any class of instances of bounded fhtw also has bounded joinwidth, and that there exist classes of instances of bounded joinwidth and unbounded fhtw, so bounded joinwidth properly generalizes bounded fhtw. We further show that bounded joinwidth also properly generalizes several other known hybrid restrictions, such as fhtw with degree constraints and functional dependencies. In this sense, bounded joinwidth can be seen as a unifying principle that explains the tractability of several seemingly unrelated classes of CSP instances

    Bounded-depth Frege complexity of Tseitin formulas for all graphs

    Get PDF
    We prove that there is a constant K such that Tseitin formulas for a connected graph G requires proofs of size 2tw(G)javax.xml.bind.JAXBElement@531a834b in depth-d Frege systems for [Formula presented], where tw(G) is the treewidth of G. This extends HÃ¥stad's recent lower bound from grid graphs to any graph. Furthermore, we prove tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size 2tw(G)javax.xml.bind.JAXBElement@25a4b51fpoly(s). Through this result we settle the question posed by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution

    A SAT approach to branchwidth

    Get PDF
    Branch decomposition is a prominent method for structurally decomposing a graph, a hypergraph, or a propositional formula in conjunctive normal form. The width of a branch decomposition provides a measure of how well the object is decomposed. For many applications, it is crucial to computing a branch decomposition whose width is as small as possible. We propose an approach based on Boolean Satisfiability (SAT) to finding branch decompositions of small width. The core of our approach is an efficient SAT encoding that determines with a single SAT-call whether a given hypergraph admits a branch decomposition of a certain width. For our encoding, we propose a natural partition-based characterization of branch decompositions. The encoding size imposes a limit on the size of the given hypergraph. To break through this barrier and to scale the SAT approach to larger instances, we develop a new heuristic approach where the SAT encoding is used to locally improve a given candidate decomposition until a fixed-point is reached. This new SAT-based local improvement method scales now to instances with several thousands of vertices and edges

    Satisfiability, Branch-width and Tseitin Tautologies

    No full text
    For a CNF , let w b () be the branch-width of its underlying hypergraph
    corecore