3 research outputs found

    Satellite system performance assessment for in-flight entertainment and air traffic control

    Get PDF
    Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. However, the development of a dedicated satellite system for ATS (Air Traffic Services) and AOC (Airline Operational Communications) seems to be a long-term perspective. The objective of the presented system design is to provide both passenger application traffic access (Internet, GSM) and a high-reliability channel for aeronautical applications using the same satellite links. Due to the constraints in capacity and radio bandwidth allocation, very high frequencies (above 20 GHz) are considered here. The corresponding design implications for the air interface are taken into account and access performances are derived using a dedicated simulation model. Some preliminary results are shown in this paper to demonstrate the technical feasibility of such system design with increased capacity. More details and the open issues will be studied in the future of this research work

    Etude des performances et optimisation d'un réseau d'accès par satellite pour les communications

    Get PDF
    La croissance rapide du trafic aérien et les besoins en nouveaux services notamment pour les passagers imposent l'introduction de nouveaux moyens de communication pour les avions avec une bande passante globale fortement accrue. Les satellites sont appelés à jouer un rôle important dans ce contexte, non seulement en complément des systèmes terrestres pour les services « cockpit » (services ATM, Air Traffic Management) mais aussi pour les services « cabine » (In-Flight Entertainment). L'objectif de la thèse est d'étudier l'architecture d'un système satellite supportant l'ensemble de ces services, en se focalisant sur l'architecture du terminal embarqué à bord des aéronefs. L'architecture retenue repose sur des liaisons DVB-S2/DVB-RCS normalisées par l'ETSI. Cette option permet d'utiliser efficacement l'importante bande passante disponible en bande Ka pour les services mobiles aéronautiques (allocation primaire) ou en bande Ku (allocation secondaire). Ces normes ont été conçues pour les applications multimédia (Broadband Satellite Multimedia). Le défi est alors d'utiliser de telles liaisons satellite pour des services aux caractéristiques et besoins fortement hétérogènes. Par ailleurs, l'utilisation de la bande Ka n'est pas concevable sans l'activation de techniques de lutte contre les affaiblissements (FMT – Fade Mitigation Techniques). L'utilisation d'une marge statique conduit à une perte importante de capacité. Les techniques FMT reposent sur une évaluation dynamique du bilan de liaison et permettent une modification de la forme d'onde. Le système utilise ainsi la forme d'onde la plus efficace spectralement pour chaque terminal et maximise la capacité globale du système. Par contre, chaque terminal observe une modification de la ressource allouée au fil du temps. L'objectif de la thèse est de concevoir une architecture au niveau terminal qui permette d'exploiter les liaisons DVB-S2/RCS afin de fournir les services passagers (Internet et téléphonie mobile de type GSM/UMTS) et un canal haute fiabilité pour les services aéronautiques. Deux approches ont été retenues. La première repose sur une application du modèle ETSI BSM (Broadband Satellite Multimedia) en couches séparant strictement les couches dépendantes satellite et les couches indépendantes satellite. Les simulations de cette architecture montrent que les liaisons ne peuvent être utilisées de façon efficace sans une interaction entre couches afin de tenir compte de l'évolution de la capacité disponible. La seconde approche consiste en la concentration de la gestion de la ressource et la gestion de la qualité de service dans la même couche protocolaire. L'idée de départ est d'utiliser la méthode d'encapsulation générique Generic Stream Encapsulation (GSE). GSE a été conçu pour la projection des paquets de couches supérieures à l'intérieur des trames DVB-S2. GSE tient compte de la taille variable des trames DVB-S2 et introduit une capacité de multiplexage entre différents flux (identification de fragments). Sur cette base, une gestion de l'accès est introduite pour gérer la liaison DVB-RCS au format MF-TDMA. Nous introduisons ainsi une utilisation conjointe de GSE, d'une politique de service différentiée et de flux de signalisation inter-couches (« cross-layer »). Les performances des deux approches sont étudiées à l'aide d'un modèle de simulation développé à l'aide du logiciel OPNET Modeler (simulations à événements discrets). Les résultats obtenus démontrent le meilleur comportement de la seconde architecture avec une meilleure utilisation de la ressource et des performances de transmission satisfaisant les objectifs

    Analyse de sécurité et QoS dans les réseaux à contraintes temporelles

    Get PDF
    Dans le domaine des réseaux, deux précieux objectifs doivent être atteints, à savoir la QoS et la sécurité, plus particulièrement lorsqu’il s’agit des réseaux à caractère critique et à fortes contraintes temporelles. Malheureusement, un conflit existe : tandis que la QoS œuvre à réduire les temps de traitement, les mécanismes de sécurité quant à eux requièrent d’importants temps de traitement et causent, par conséquent, des délais et dégradent la QoS. Par ailleurs, les systèmes temps réel, la QoS et la sécurité ont très souvent été étudiés séparément, par des communautés différentes. Dans le contexte des réseaux avioniques de données, de nombreux domaines et applications, de criticités différentes, échangent mutuellement des informations, souvent à travers des passerelles. Il apparaît clairement que ces informations présentent différents niveaux de sensibilité en termes de sécurité et de QoS. Tenant compte de cela, le but de cette thèse est d’accroître la robustesse des futures générations de réseaux avioniques de données en contrant les menaces de sécurité et évitant les ruptures de trafic de données. A cet effet, nous avons réalisé un état de l’art des mécanismes de sécurité, de la QoS et des applications à contraintes temporelles. Nous avons, ensuite étudié la nouvelle génération des réseaux avioniques de données. Chose qui nous a permis de déterminer correctement les différentes menaces de sécurité. Sur la base de cette étude, nous avons identifié à la fois les exigences de sécurité et de QoS de cette nouvelle génération de réseaux avioniques. Afin de les satisfaire, nous avons proposé une architecture de passerelle de sécurité tenant compte de la QoS pour protéger ces réseaux avioniques et assurer une haute disponibilité en faveur des données critiques. Pour assurer l’intégration des différentes composantes de la passerelle, nous avons développé une table de session intégrée permettant de stocker toutes les informations nécessaires relatives aux sessions et d’accélérer les traitements appliqués aux paquets (filtrage à états, les traductions d’adresses NAT, la classification QoS et le routage). Cela a donc nécessité, en premier lieu, l'étude de la structure existante de la table de session puis, en second lieu, la proposition d'une toute nouvelle structure répondant à nos objectifs. Aussi, avons-nous présenté un algorithme permettant l’accès et l’exploitation de la nouvelle table de session intégrée. En ce qui concerne le composant VPN IPSec, nous avons détecté que le trafic chiffré par le protocole ESP d’IPSec ne peut pas être classé correctement par les routeurs de bordure. Afin de surmonter ce problème, nous avons développé un protocole, Q-ESP, permettant la classification des trafics chiffrés et offrant les services de sécurité fournis par les protocoles AH et ESP combinés. Plusieurs techniques de gestion de bande passante ont été développées en vue d’optimiser la gestion du trafic réseau. Pour évaluer les performances offertes par ces techniques et identifier laquelle serait la plus appropriée dans notre cas, nous avons effectué une comparaison basée sur le critère du délai, par le biais de tests expérimentaux. En dernière étape, nous avons évalué et comparé les performances de la passerelle de sécurité que nous proposons par rapport à trois produits commerciaux offrant les fonctions de passerelle de sécurité logicielle en vue de déterminer les points forts et faibles de notre implémentation pour la développer ultérieurement. Le manuscrit s’organise en deux parties : la première est rédigée en français et représente un résumé détaillé de la deuxième partie qui est, quant à elle, rédigée en anglais. ABSTRACT : QoS and security are two precious objectives for network systems to attain, especially for critical networks with temporal constraints. Unfortunately, they often conflict; while QoS tries to minimize the processing delay, strong security protection requires more processing time and causes traffic delay and QoS degradation. Moreover, real-time systems, QoS and security have often been studied separately and by different communities. In the context of the avionic data network various domains and heterogeneous applications with different levels of criticality cooperate for the mutual exchange of information, often through gateways. It is clear that this information has different levels of sensitivity in terms of security and QoS constraints. Given this context, the major goal of this thesis is then to increase the robustness of the next generation e-enabled avionic data network with respect to security threats and ruptures in traffic characteristics. From this perspective, we surveyed the literature to establish state of the art network security, QoS and applications with time constraints. Then, we studied the next generation e-enabled avionic data network. This allowed us to draw a map of the field, and to understand security threats. Based on this study we identified both security and QoS requirements of the next generation e-enabled avionic data network. In order to satisfy these requirements we proposed the architecture of QoS capable integrated security gateway to protect the next generation e-enabled avionic data network and ensure the availability of critical traffic. To provide for a true integration between the different gateway components we built an integrated session table to store all the needed session information and to speed up the packet processing (firewall stateful inspection, NAT mapping, QoS classification and routing). This necessitates the study of the existing session table structure and the proposition of a new structure to fulfill our objective. Also, we present the necessary processing algorithms to access the new integrated session table. In IPSec VPN component we identified the problem that IPSec ESP encrypted traffic cannot be classified appropriately by QoS edge routers. To overcome this problem, we developed a Q-ESP protocol which allows the classifications of encrypted traffic and combines the security services provided by IPSec ESP and AH. To manage the network traffic wisely, a variety of bandwidth management techniques have been developed. To assess their performance and identify which bandwidth management technique is the most suitable given our context we performed a delay-based comparison using experimental tests. In the final stage, we benchmarked our implemented security gateway against three commercially available software gateways. The goal of this benchmark test is to evaluate performance and identify problems for future research work. This dissertation is divided into two parts: in French and in English respectively. Both parts follow the same structure where the first is an extended summary of the second
    corecore