2,020 research outputs found

    An investigation of a frequency diverse array

    Get PDF
    This thesis presents a novel concept for focusing an antenna beam pattern as a function of range, time, and angle. In conventional phased arrays, beam steering is achieved by applying a linear phase progression across the aperture. This thesis shows that by applying an additional linear frequency shift across the elements, a new term is generated which results in a scan angle that varies with range in the far-field. Moreover, the antenna pattern is shown to scan in range and angle as a function of time. These properties result in more flexible beam scan options for phased array antennas than traditional phase shifter implementations. The thesis subsequently goes on to investigate this phenomenon via full scale experimentation, and explores a number of aspects of applying frequency diversity spatially across array antennas. This new form of frequency diverse array may have applications to multipath mitigation, where a radio signal takes two or more routes between the transmitter and receiver due to scattering from natural and man-made objects. Since the interfering signals arrive from more than one direction, the range-dependent and auto-scanning properties of the frequency diverse array beam may be useful to isolate and suppress the interference. The frequency diverse array may also have applications to wideband array steering, in lieu of true time delay solutions which are often used to compensate for linear phase progression with frequency across an array, and to sonar, where the speed of propagation results in large percentage bandwidth, creating similar wideband array effects. The frequency diverse array is also a stepping stone to more sophisticated joint antenna and waveform design for the creation of new radar modes, such as simultaneous multi-mode operation, for example, enabling joint synthetic aperture radar and ground moving target indication

    An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery

    Get PDF
    Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described

    A Study of Adobe Wall Moisture Profiles and the Resulting Effects on Matched Illumination Waveforms in Through-The-Wall Radar Applications

    Get PDF
    In this dissertation, methods utilizing matched illumination theory to optimally design waveforms for enhanced target detection and identification in the context of through-the-wall radar (TWR) are explored. The accuracy of assumptions made in the waveform design process is evaluated through simulation. Additionally, the moisture profile of an adobe wall is investigated, and it is shown that the moisture profile of the wall will introduce significant variations in the matched illumination waveforms and subsequently, affect the resulting ability of the radar system to correctly identify and detect a target behind the wall. Experimental measurements of adobe wall moisture and corresponding dielectric properties confirms the need for accurate moisture profile information when designing radar waveforms which enhance signal-to-interference-plus-noise ratio (SINR) through use of matched illumination waveforms on the wall/target scenario. Furthermore, an evaluation of the ability to produce an optimal, matched illumination waveform for transmission using simple, common radar systems is undertaken and radar performance is evaluated

    Synthetic Aperture Radar (SAR) data processing

    Get PDF
    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system
    • 

    corecore