187 research outputs found

    Sampling-based robot motion planning: a review

    Get PDF
    Motion planning is a fundamental research area in robotics. Sampling-based methods offer an efcient solution for what is otherwise a rather challenging dilemma of path planning. Consequently, these methods have been extended further away from basic robot planning into further difcult scenarios and diverse applications. A comprehensive survey of the growing body of work in sampling-based planning is given here. Simulations are executed to evaluate some of the proposed planners and highlight some of the implementation details that are often left unspecied. An emphasis is placed on contemporary research directions in this eld. We address planners that tackle current issues in robotics. For instance, real-life kinodynamic planning, optimal planning, replanning in dynamic environments, and planning under uncertainty are discussed. The aim of this paper is to survey the state of the art in motion planning and to assess selected planners, examine implementation details and above all shed a light on the current challenges in motion planning and the promising approaches that will potentially overcome those problems

    EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles

    Get PDF
    Existing sampling-based robot motion planning methods are often inefficient at finding trajectories for kinodynamic systems, especially in the presence of narrow passages between obstacles and uncertainty in control and sensing. To address this, we propose EG-RRT, an Environment-Guided variant of RRT designed for kinodynamic robot systems that combines elements from several prior approaches and may incorporate a cost model based on the LQG-MP framework to estimate the probability of collision under uncertainty in control and sensing. We compare the performance of EG-RRT with several prior approaches on challenging sample problems. Results suggest that EG-RRT offers significant improvements in performance.Postprint (author’s final draft

    Massively parallelizing the RRT and the RRT*

    Get PDF
    In recent years, the growth of the computational power available in the Central Processing Units (CPUs) of consumer computers has tapered significantly. At the same time, growth in the computational power available in the Graphics Processing Units (GPUs) has remained strong. Algorithms that can be implemented on GPUs today are not only limited to graphics processing, but include scientific computation and beyond. This paper is concerned with massively parallel implementations of incremental sampling-based robot motion planning algorithms, namely the widely-used Rapidly-exploring Random Tree (RRT) algorithm and its asymptotically-optimal counterpart called RRT*. We demonstrate an example implementation of RRT and RRT* motion-planning algorithm for a high-dimensional robotic manipulator that takes advantage of an NVidia CUDA-enabled GPU. We focus on parallelizing the collision-checking procedure, which is generally recognized as the computationally expensive component of sampling-based motion planning algorithms. Our experimental results indicate significant speedup when compared to CPU implementations, leading to practical algorithms for optimal motion planning in high-dimensional configuration spaces

    Human-Machine Interface for Remote Training of Robot Tasks

    Full text link
    Regardless of their industrial or research application, the streamlining of robot operations is limited by the proximity of experienced users to the actual hardware. Be it massive open online robotics courses, crowd-sourcing of robot task training, or remote research on massive robot farms for machine learning, the need to create an apt remote Human-Machine Interface is quite prevalent. The paper at hand proposes a novel solution to the programming/training of remote robots employing an intuitive and accurate user-interface which offers all the benefits of working with real robots without imposing delays and inefficiency. The system includes: a vision-based 3D hand detection and gesture recognition subsystem, a simulated digital twin of a robot as visual feedback, and the "remote" robot learning/executing trajectories using dynamic motion primitives. Our results indicate that the system is a promising solution to the problem of remote training of robot tasks.Comment: Accepted in IEEE International Conference on Imaging Systems and Techniques - IST201

    Planning hand-arm grasping motions with human-like appearance

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksFinalista de l’IROS Best Application Paper Award a la 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, ICROS.This paper addresses the problem of obtaining human-like motions on hand-arm robotic systems performing pick-and-place actions. The focus is set on the coordinated movements of the robotic arm and the anthropomorphic mechanical hand, with which the arm is equipped. For this, human movements performing different grasps are captured and mapped to the robot in order to compute the human hand synergies. These synergies are used to reduce the complexity of the planning phase by reducing the dimension of the search space. In addition, the paper proposes a sampling-based planner, which guides the motion planning ollowing the synergies. The introduced approach is tested in an application example and thoroughly compared with other state-of-the-art planning algorithms, obtaining better results.Peer ReviewedAward-winningPostprint (author's final draft
    • …
    corecore