
Massively Parallelizing the RRT and the RRT∗

Joshua Bialkowski Sertac Karaman Emilio Frazzoli

Abstract— In recent years, the growth of the computational
power available in the Central Processing Units (CPUs) of
consumer computers has tapered significantly. At the same time,
growth in the computational power available in the Graphics
Processing Units (GPUs) has remained strong. Algorithms
that can be implemented on GPUs today are not only lim-
ited to graphics processing, but include scientific computation
and beyond. This paper is concerned with massively parallel
implementations of incremental sampling-based robot motion
planning algorithms, namely the widely-used Rapidly-exploring
Random Tree (RRT) algorithm and its asymptotically-optimal
counterpart called RRT*. We demonstrate an example imple-
mentation of RRT and RRT* motion-planning algorithm for
a high-dimensional robotic manipulator that takes advantage
of an NVidia CUDA-enabled GPU. We focus on parallelizing
the collision-checking procedure, which is generally recognized
as the computationally expensive component of sampling-based
motion planning algorithms. Our experimental results indicate
significant speedup when compared to CPU implementations,
leading to practical algorithms for optimal motion planning in
high-dimensional configuration spaces.

I. INTRODUCTION

Given a description of the robot, an initial configuration,
a set of goal configurations, and a set of obstacles, the robot
motion planning problem is to find a path that starts from
the initial configuration and reaches a goal configuration
while avoiding collision with the obstacles. This problem of
navigating through a complex environment has been widely
studied in the robotics literature for at least three decades and
has several applications outside the domain of robotics [1].

Although the motion planning problem is known to be
challenging form a computational point of view [2], several
practical algorithms have been proposed in the literature.
Arguably, one of the most widely-used class of practical
motion planning algorithms is the sampling-based methods,
introduced by Kavraki et al. [3], under the name of Proba-
bilistic RoadMaps (PRMs). Incremental sampling-based al-
gorithms, such as the Rapidly-exploring Random Tree (RRT)
algorithm [4], have emerged as online counterparts of PRMs,
tailored mainly for single-query applications.

Both the PRM and RRT algorithms are probabilistically
complete in the sense that the probability that these algo-
rithms return a solution, if one exists, converges to one
as the number of samples approaches infinity, under mild

J. Bialkowski is with the Department of Aeronautics and Astronau-
tics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
jbialk@mit.edu

S. Karaman is with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139, USA sertac@mit.edu

E. Frazzoli is with the Department of Aeronautics and Astronau-
tics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
frazzoli@mit.edu

technical assumptions. Since their introduction in the litera-
ture, sampling-based motion algorithms have been extended
in several directions (see e.g., [5]). In particular, the RRT
algorithm was showcased in major robotics events [6].

In most applications of motion planning, finding not only
a feasible solution, but also one that has good quality, e.g.,
in terms of a cost function, is highly desired. In this context,
a sampling-based motion planning algorithm is said to be
asymptotically optimal, if the solution returned by the algo-
rithm converges to an optimal solution almost surely as the
number of samples approaches infinity [7]. A recently pro-
posed incremental sampling-based algorithm, called RRT∗,
was shown to have the asymptotic optimality property, which
the RRT algorithm lacked, while incurring no substantial
computational cost when compared to RRT [7].

Traditionally, these motion planning algorithms have been
designed in a serial manner, leading to direct implemen-
tation on commodity CPUs. However, especially recently,
the computational power embedded in the commercially-
available CPUs, e.g., in terms of clock frequency, has tapered
significantly. On the other hand, dedicated computational
architectures such as GPUs continue to provide rapidly-
increasing computational power by making use of massively
parallel architectures in which thousands of data-parallel
logical processing units are common. In fact, a recent trend
in computing technology has been fueled by increasing the
number of dedicated processing units embedded into a single
chip. To benefit from this trend, however, next generation
motion planning algorithms have to be able to process
large blocks of data in parallel in order to provide better
performance as the number of processing units increase.

Roughly speaking, massively parallelizable algorithms are
those whose throughput scales well (e.g., almost linearly)
with the number of available logical processors. In this paper,
we investigate massively parallel implementations of the
RRT and RRT* algorithms, and describe their implementa-
tion for a robotic manipulator with several links operating in
two dimensions in the presence of axis-aligned rectangular
obstacles. We focus on the first step of a massively par-
allel implementation by addressing the primary bottleneck
of many practical motion-planning problems, i.e., collision
checking.

Due to the specifics of GPU hardware, and the infancy
of the general purpose GPU (GP-GPU) technology, the
tools available to the programmer are far less sophisticated
than those available for traditional (CPU) programming. The
hardware and conceptual models supported by manufacturers
continue to change meaning that the implementation of a
particular planning algorithm will necessarily be specialized

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/18173531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for the problem class at hand and the hardware chosen to
address the problem. This paper will address the design
issues involved in implementing RRT and RRT* on an
NVidia R© CUDA R©-enabled GPU in the hopes that it will
provide a template for those who attempt to implement these
algorithms for other problems on platforms with similar
models of parallel computation.

Some early work has been done on implementing parallel
versions of the RRT algorithm, such as [8], and [9]. A
parallel RRT/PRM hybrid is presented in [10]. Yet these
implementations focus on a distributed memory model of
parallel computation. While this model has the advantage of
being highly scalable, computing clusters are expensive and
specialized. This paper addresses instead a shared memory
model of computation allowing for significant improvements
in runtime on cheaper and more readily available equipment.

II. PROBLEM DESCRIPTION

We address the problem of feasible motion planning for a
multi-link robotic manipulator in a 2D workspace, as shown
in Fig. 1. We assume the manipulator is fully actuated. and
that each link arm of the manipulator is the same length, l.
The manipulator’s configuration space is denoted as X = Sd,
where the configuration is expressed in coordinates as x =
(θ1, . . . , θd), and θi ∈ [−π, π) is the angle of the i-th joint.
Given a configuration x ∈ X , the set of all points occupied
by the links of the manipulator is denoted by Γ(x) ⊂ R2.
A path of the manipulator is a continuous function from the
real interval [0, 1] to the set X of all configurations, usually
denoted by σ : [0, 1]→ X .

Given an initial configuration xinit, a goal set Xgoal ⊂ R2,
and an obstacle set Xobs ⊂ R2, the feasible motion planning
problem for the manipulator is to find a path σ that (i) starts
from the initial configuration, i.e., σ(0) = xinit, (ii) reaches
the goal region, i.e., σ(1) ∈ Xgoal, and (iii) avoids collision
with obstacles, i.e., Γ(σ(τ)) ∩ Xobs = ∅ for all τ ∈ [0, 1].
Given also a cost function c(·) that maps each path to a
non-negative cost, the optimal motion planning problem is
to find a path σ∗ that solves the feasible motion planning
problem such that σ∗ minimizes the cost function c(·), i.e.,
σ∗ = arg minσ c(σ). We assume throughout the paper that
Xgoal and Xobs are open sets.

III. ALGORITHMS

A. The RRT and the RRT∗ algorithms

Before presenting the RRT and the RRT∗ algorithms, we
discuss a set of primitive procedures that they rely on. Im-
plementation details of these procedures for the manipulator
link example are explained in the next section.

a) Sampling: The Sample procedure returns a config-
uration sampled uniformly at random from the configuration
space.

b) Nearest Vertex: Given a finite set V of configura-
tions and a configuration x ∈ X , the Nearest procedure
returns the configuration x̄ ∈ V that is closest to x in terms
of e.g. geodesic distance.

Algorithm 1: RRT and RRT* Algorithms
1 V ← {xinit}; E ← ∅; i← 0;
2 while i < N do
3 xrand ← Sample(i);
4 (V,E)← Extend((V,E), xrand);
5 i← i+ 1;

c) Near Vertices: Given a set V of configurations and
a configuration x ∈ X , the Near procedure returns the set
of all vertices that are within the ball of volume (log n)/n
centered at x, i.e.,

Near(V, x) =

{
x′ ∈ V : ‖x′ − x‖ ≤

(
log n

n

)1/d
}
,

where n = |V | is the cardinality of V .
d) Steering: Given two configurations x, x′ ∈ Rn, the

Steer procedure returns a straight path σ that connects x
and x′. That is, σ(τ) = τx + (1 − τ)x′ for all τ ∈ [0, 1].
Note that we are considering a kinematic model.

e) Collision Checking: Given a path σ, the
ObstacleFree procedure returns true if the d-link
manipulator executing this path avoids collision with the
obstacles, i.e, if Γ(σ(τ)) ∩ Xobs = ∅ for all τ ∈ [0, 1], and
returns false otherwise.

The RRT [4] and RRT∗ [7] algorithms are summarized in
Algorithm 1. Both algorithms maintain a tree of trajectories,
denoted by G = (V,E), where V is the set of vertices
and E is the set of edges. Initially, the set of vertices
contains only xinit while the set of edges is empty (Line 1).
In each iteration, both algorithms first randomly sample a
configuration from the configuration space using the Sample

procedure (Line 3), and then extend the tree towards this
sample using the Extend procedure (Line 4).

The RRT and the RRT∗ algorithms differ in the way that
they handle the extension procedure. The extension sub-
routine of the RRT algorithm is shown in Algorithm 2. The
procedure finds the configuration xnearest ∈ V that is closest
to the sampled configuration, and checks whether the straight
path connecting xnearest and the sampled configuration is

Fig. 1. Robotic Manipulator

Algorithm 2: ExtendRRT ((V,E), x)

1 V ′ ← V ; E′ ← E;
2 xnearest ← Nearest(G, x);
3 σ ← Steer(xnearest, x);
4 if ObstacleFree(σ) then
5 V ′ ← V ′ ∪ {xnew};
6 E′ ← E′ ∪ {(xnearest, xnew)};
7 return G′ = (V ′, E′)

Algorithm 3: ExtendRRT∗((V,E), x)

1 V ′ ← V ; E′ ← E;
2 xnearest ← Nearest(G, x);
3 σ ← Steer(xnearest, x);
4 if ObstacleFree(σ) then
5 V ′ ← V ′ ∪ {x};
6 xmin ← xnearest;
7 cmin ← Cost(xnearest) + c(σ);
8 Xnear ← Near(G, x, |V |);
9 for all xnear ∈ Xnear do

10 σ ← Steer(xnear, x);
11 if ObstacleFree(σ) and

Cost(xnear) + c(σ) < cmin then
12 xmin ← xnear;
13 cmin ← Cost(xnear) + c(σ);

14 E′ ← E′ ∪ {(xmin, x)};
15 for all xnear ∈ Xnear \ {xmin} do
16 σ ← Steer(x, xnear);
17 if ObstacleFree(σ) and

Cost(xnear) > cmin + c(σ) then
18 xparent ← Parent(xnear);
19 E′ ← E′ \ {(xparent, xnear)};

E′ ← E′ ∪ {(xnew, xnear)};

20 return G′ = (V ′, E′)

collision free. If so, the sampled configuration is added to the
tree as a vertex along with an edge connecting it to xnearest.

The extension sub-routine of the RRT* (Algorithm 3) is
slightly more involved. The same operations are performed
as in the RRT up to the point of checking that the path
is collision free. However, before inserting the sampled
configuration in the graph, the procedure runs through the
set of all near nodes around the sampled configuration. The
near vertex xnear that reaches the sampled configuration with
the smallest accumulated cost is picked for connection, and
the sampled configuration is added to the tree connected to
this near vertex with an edge. Then, for each vertex in the set
of near vertices, the algorithm checks whether the trajectory
connecting the sampled configuration and xnear is collision-
free and the cost of the trajectory that connects xnear to the
root vertex through the sampled configuration is lower than
current path that reaches xnear. If so, the incoming edge
to xnear is “re-wired” through xnew. The reader is referred
to [7] for a more elaborate description of the RRT and the
RRT∗ algorithms.

(a) (b)

Fig. 2. Collision Checking Formula

B. The manipulator link domain

1) Sampling and Steering: For the manipulator case,
in both algorithms our sampling, steering, and extension
routines are the same. We sample points from the state space
independently according to a uniform distribution with the
range of each joint in [−π, π].

2) Graph Operations: We maintain the graph for both
the RRT and RRT* via a balanced KD-tree [11]. Let us note
that, for a given graph-size of n nodes, the expected time
complexity for finding the nearest neighbor and for node
insertion is O(log(n)) for approximate queries [12].

3) Collision Checking: By modeling the manipulator
arms as line segments and the obstacles as axis-aligned
rectangles checking whether a particular link is in collision
with a particular obstacle can be carried out as follows. First,
consider the four lines coincident with the four edges of the
obstacle. Check to see if both end-points of the link lie on
the outer side of any one of these lines, indicating the link
is not in collision. See Fig. 2(a) for an illustration. In the
figure, it is found that link a is not in collision with the
obstacle because, for each end-point, x < xmin indicating
that the entire link lies to the left of the minimum x extent.
Second, if these first four tests are inconclusive then examine
the line in the plane coincident with link. If all corners of
the obstacle lie on the same side of that line the link is not
in collision with that obstacle. We perform this check by
calculating the y coordinates on that line of the two points
whose x coordinates correspond with the x extents of the
obstacle, and checking to make sure that it is either above,
or below both y extents of the obstacle, as illustrated in
Fig 2(b). Finally, conclude that a given configuration is in
collision with a particular obstacle if the at least one link is
in collision given that configuration.

Checking whether a particular path is collision-free is
carried out by discretizing the path uniformly according to
the length of the path in the d-dimensional space. That
is for m discretization points along a path between two
configurations, say x1 and x2, the configuration j for link i is
the joint angle θi,j = θi,1 + (j/m)(θi2 − θi1), where θi1 and
θi2 are the joint angles for the ith joint given configurations
x1 and x2, respectively.

Fig. 3. Discretization of Trajectory

C. Implementation

The algorithms for the manipulator case are implemented
using the Sampling-based Motion Planning (SMP) C++
library maintained by the ARES group at MIT, and available
at http://ares.lids.mit.edu/software/. SMP is a C++ template
library that provides baseline templates for common modules
of motion planning algorithms including samplers, distance
metrics, reachability criteria, collision checkers and planners.
To implement this test case, we use SMP along with a
specialized collision checker and reachability criteria with
a serial and parallel version. Both the serial and parallel
versions of the code used for the manipulator example are
available as a part of SMP.

IV. PARALLELIZATION OF THE ALGORITHMS

A. Finding the Bottleneck

For a static environment, the time complexity of the RRT
is governed by the graph operations, such as evaluating
nearest neighbors, since collision checking is a constant-time
operation, while the time complexity of the nearest-neighbor
search and insertion grows as O(log n). However, while the
graph operations may be the asymptotic bottleneck, in many
cases, such as the manipulator case, the collision checking
consumes most of the computational time.

In fact, profiling the SMP implementation in Valgrind’s
Callgrind [13] shows that, within the planner’s iterate
method, 99% of the instructions executed are within the
collision-checker. More illustrative though is a profiling of
the computation time spent in the collision-checker routines
versus that spent in the graph operation routines, as in Fig.
4(a). The RRT was executed for one million iterations for a
nine-link manipulator with four obstacles and a discretization
count of 100. Fig. 4(a) shows the per-iteration time spent
on finding the nearest neighbor, and inserting a new node,
along with the time spent doing collision checking, plotted
against the graph size. It is clear that for the manipulator the
collision checker is the bottleneck. Fig. 4(b) shows the per-
iteration time spent on graph operations alone, illustrating its
logarithmic increase, but note that after a million iterations
the RRT had found 40,000 solutions and yet the graph
operations consumed less than 1% of the time used by the
collision checker. Note that in these figures recorded times
are averaged over 100 runs to smooth out the variance and
illustrate the trends.

20 40 60 80 100 120 140
0

2

4

6

8

10

thousands of nodes in graph

tim
e

of
co

lli
si

on
ch

ec
k

(m
s)

collision
graph

(a) Computation time of collision checking and graph operations

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

thousands of nodes in graph

tim
e

of
 g

ra
ph

 o
pe

ra
tio

ns
 (

m
s)

(b) Computation time of graph operations only

Fig. 4. Computation time of sub-algorithms.

For the RRT*, the number of collision checks that are
required per iteration scales by O(log n), which is, in fact,
by design [7]. Given that the range-nearest-neighbor search
grows with the same complexity, it is clear that collision-
checking for the RRT* will be the bottleneck.

B. NVidia CUDA

The CUDA model of parallel programming has a three
level thread-hierarchy. At the hardware level, threads are
grouped into warps of at most 32 threads. Within a single
warp, threads are executed by Single Instruction Multiple
Data (SIMD). At the lower of the two logical levels, threads
are organized in a one, two, or three dimensional block. At
the top level, blocks are organized into a one or two di-
mensional grid. The logical levels of the hierarchy allow for
execution in the Single Instruction Multiple Thread (SIMT)
whereby individual warps are scheduled separately allowing
kernels to branch when necessary, and only incurring branch-
overhead when threads within the same warp diverge. An
exhaustive description of the functional considerations of
programming in CUDA is given in [14].

The CUDA memory model exposes three levels of mem-
ory. Global memory is a large-volume, persistent, high-
latency memory. Texture caches are a mapped store of persis-
tent memory that is optimized and aligned for lower-latency
access of large arrays. Shared and per-thread memory are
low-latency on-chip small memory caches. Shared memory
is mapped per thread-block, and thread-memory is mapped
per-thread.

CUDA C functions that are executed on the GPU are called
kernels. For a particular kernel execution, the maximum
block-size and grid-size are determined by a couple of
different factors. For a particular compute-capability, there is

an upper limit for the dimensions of both thread block and
block grids, as well as an upper limit for the number of total
threads per block. In addition, the number of threads per-
block can be limited by the shared and per-thread memory
required by the kernel.

C. Parallel Collision Checking

The algorithms are implemented and tested on a laptop
computer with an Intel R© Core i7 at 1.73 GHz with 4GB
of main memory and an NVidia R© Quadro FX 1800M with
compute capability 1.2, clock rate of 1.1Ghz, 9 Streaming
Multiprocessors (72 CUDA Cores), and 1GB of global
memory. For this machine the maximum grid dimensions are
[65535× 65535× 1], while the maximum block dimensions
are [512 × 512 × 64] with a maximum number of threads
per block of 512. The total amount of shared memory and
per-thread memory is 16kB.

In designing the collision-checking kernel, we assume that
the dimension of the state space and number of obstacles is
much smaller than the number of discretizations required
for checking. Given that the CUDA thread block has three
indexed dimensions, one dimension enumerates discretiza-
tions of the trajectory. The second dimension enumerates
over obstacles to check. Thus, for nd discretizations and no
obstacles we have the constraint that nd×no < 512. For the
test case, we check against 4 obstacles meaning we can split
the path into a maximum of 128 configurations, although the
implementation uses 100. The thread-limit prevents us from
further enumerating dimensions of the configuration space
over the third dimension of the block. Ignoring memory-
transfer overhead, with this kernel we can perform nd × no
configuration collision checks roughly in the same amount
of computation time spent for a single configuration. We
do this by utilizing a shared-memory flag such that, if
any thread finds a collision, all threads in the block exit
immediately. Note that for CUDA-enabled NVidia hardware
with compute capability 1.3, there exists a block-voting
function that can reduce the overhead of a serialized-writes
to a shared memory flag.

For RRT alone, the capacity of the collision checking
kernel could be increased by expanding over several blocks
as described above. However, to the authors experience
communication between blocks is quite slow because of
serialized global-memory access, which is low latency. In-
stead, the excess capability is utilized by processing new
samples in batches. The first dimension of the block grid
enumerates configuration pairs (paths). For RRT*, a single
sample requires collision checking with several potential start
configurations as the algorithm considers all nodes in Xnear.
Therefore, the kernel enumerates over the second dimension
for batches of several configuration pairs.

Input to the kernel is organized in two arrays of global
memory. The first is the configuration batches. Because
RRT* checks collisions in batches where the start node is the
same, the implementation saves some memory by allocated
enough memory for (np + 1)× nb configurations, where np
is the number of pairs processed in an RRT* batch, and nb

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

nodes in graph

pe
r−

sa
m

pl
e

tim
e

in
co

lli
si

on
ch

ec
ke

r(
m

s)

serial gpu batch

Fig. 5. Comparison of parallel and serial implementations.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

nodes in graph

co
lli

si
on

:t
ot

al

serial gpu serial* gpu*

Fig. 6. Fraction of time spent for collision checking.

is the number of batches processed per call to the kernel.
Output from the kernel is stored in a third array in global
memory. The (i, j)th element of this array is set to 1 if any
thread in the (i, j)th block finds a collision.

V. RESULTS

A. Collision Checker

With the described kernel, the improvement in the run-time
of the collision checker is apparent. Profiling the collision
checker over 40000 iterations of the RRT shows a speed
up of about 10×. Fig. 5 shows the amount of time spent
in the collision check per trajectory checked. For the CPU
implementation the checker takes on average about 5ms
per trajectory, while the GPU implementation spends about
500ns. More importantly, the kernel succeeds alleviating the
collision checking bottleneck. Fig. 6 illustrates the relative
amount of time spent in the collision checker as compared
to the total time to perform one iteration of the planner. Note
that all the data is given in wall-clock-time for the collision
checking procedure averaged over 100 runs. Profiling is not
measured in CPU-time because it does not count time spent
waiting for the kernel to finish executing.

B. Batching

Batching the collision checking also has a significant
impact on reducing the runtime of the RRT. As shown in Fig.
5, the batched kernel achieves about 25× speedup over the
serial version. The actual runtime of the kernel is larger than
that of the non-batched kernel, but the increase is smaller
than the batch size, so the overall per-sample time is lower.

400 600 800 1000 1200 1400 1600 1800 2000
10

10.5

11

11.5

12

12.5

13

13.5

14

samples processed

be
st

co
st

(a
vg

)

batch
non−batch

Fig. 7. Batched and Non-Batched RRT*

It is likely that the real advantage of the batched kernel,
though, will come from improvements to the RRT∗ imple-
mentation. Fig. 7 illustrates the averaged convergence of the
RRT∗ implementation for both the batched and non-batched
kernels for the number of samples processed. For this case
the implementation uses a batch size of 20 samples. Note
that the number of top-level iterations for the batched RRT∗

processes 20 new samples while the non-batched version
samples only one. Further note that, because the size of
the ball used for nearest neighbor searching is calculated
at the start of each top-level iteration, the batched kernel
considers more nodes than necessary for the sample batch.
For 40000 samples, the serial RRT∗ takes 6.62 minutes, the
RRT∗ with the GPU collision checker takes 25 seconds, and
the batched RRT∗ with the GPU collision checker takes 90
seconds. Note that the total runtime of the batched version is
longer, however, SMP makes use of std::list objects to
pass data between the different SMP components. Profiling
the code indicates that most of the time in the batched
implementation is spent on iterating over the lists, indicating
that the batched version would likely run faster than the
non-batched version once the CPU-side code is optimized.
However, the larger-than-necessary ball size of the batched
RRT∗, which leads to faster convergence is an effect that will
propagate to future development where the graph operations
are parallelized as well.

Fig. 8 illustrates the ratio of the per-iteration time of the
RRT∗ to the RRT algorithm for the three different variants.
Note that the GPU implementation of the collision checker
reduces the ratio between the two algorithms significantly,
and that the batched version brings the ratio quite close to
unity. As mentioned, the bottleneck in the batched version is
clearly non-cached CPU memory access during list iteration,
so the precision of this ratio may not be accurate for an
optimized implementation.

VI. CONCLUSIONS

In this paper, we have discussed a data-parallel implemen-
tation of two sampling-based motion planning algorithms,
namely RRT and RRT∗. We have shown that, for the par-
ticular problem at hand, the computationally most expensive
procedure is that of collision checking, and we have proposed
a parallel implementation of this procedure for a manipulator
with several degrees of freedom. Our experiments indicate

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

nodes in graph

ite
ra

tio
n

tim
e

rr
t*

:r
rt

serial gpu batch

Fig. 8. Ratio of RRT* to RRT runtime

that both the RRT and the RRT∗ algorithms largely benefit
from a parallel implementation. Moreover, the results show
that parallel implementations can marginalize the differences
in run-time between the RRT and RRT∗ algorithms. Indeed,
should the run-time gap between the RRT and the RRT∗ be
further reduced, designers will not have to make significant
sacrifices to move from the realm of feasibility planning,
into the realm of optimal planning. Future work includes
optimizing the CPU side of the batched code, and design
and development of parallel implementations of graph search
procedures.

REFERENCES

[1] J. C. Latombe, “Motion planning: A journey of robots, molecules,
digital actors, and other artifacts,” International Journal of Robotics
Research, vol. 18, no. 11, pp. 1119–1128, 1999.

[2] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in Proceedings of the IEEE Symposium on Foundations of Computer
Science, 1979.

[3] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[4] S. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[5] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[6] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. How,

“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems, vol. 17, no. 5, pp.
1105–1118, 2009.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research (to
appear), 2011.

[8] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
in Proc. 8th Conf. Italian Association for Artificial Intelligence, Pisa,
Italy, Sep 2003, p. pages?

[9] S. Sengupta, “A parallel randomized path planner for robot naviga-
tion,” International Journal of Advanced Robotic Systems, vol. 3, pp.
256–266, Sep 2006.

[10] E. Plaku, K. Bekris, B. Chen, A. Ladd, and L. Kavraki, “Sampling-
based roadmap of trees for parallel motion planning,” Robotics, IEEE
Transactions on, vol. 21, no. 4, pp. 597 – 608, Aug 2005.

[11] H. Samet, Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1989.

[12] S. Arya, D. M. Mount, R. Silverman, and A. Y. Wu, “An optimal al-
gorithm for approximate nearest neighbor search in fixed dimensions,”
Journal of the ACM, vol. 45, no. 6, pp. 891–923, November 1999.

[13] Valgrind Developers. (2011, Jul) Callgrind manual. [Online].
Available: http://valgrind.org/docs/manual/cl-manual.html

[14] NVIDIA CUDA C Programming Guide, NVIDIA, Nov 2010.

