331 research outputs found

    Approximating Local Homology from Samples

    Full text link
    Recently, multi-scale notions of local homology (a variant of persistent homology) have been used to study the local structure of spaces around a given point from a point cloud sample. Current reconstruction guarantees rely on constructing embedded complexes which become difficult in high dimensions. We show that the persistence diagrams used for estimating local homology, can be approximated using families of Vietoris-Rips complexes, whose simple constructions are robust in any dimension. To the best of our knowledge, our results, for the first time, make applications based on local homology, such as stratification learning, feasible in high dimensions.Comment: 23 pages, 14 figure

    On Vietoris-Rips complexes of ellipses

    Full text link
    For XX a metric space and r>0r>0 a scale parameter, the Vietoris-Rips complex VR<(X;r)VR_<(X;r) (resp. VR(X;r)VR_\leq(X;r)) has XX as its vertex set, and a finite subset σX\sigma\subseteq X as a simplex whenever the diameter of σ\sigma is less than rr (resp. at most rr). Though Vietoris-Rips complexes have been studied at small choices of scale by Hausmann and Latschev, they are not well-understood at larger scale parameters. In this paper we investigate the homotopy types of Vietoris-Rips complexes of ellipses Y={(x,y)R2  (x/a)2+y2=1}Y=\{(x,y)\in \mathbb{R}^2~|~(x/a)^2+y^2=1\} of small eccentricity, meaning 1<a21<a\le\sqrt{2}. Indeed, we show there are constants r1<r2r_1 < r_2 such that for all r1<r<r2r_1 < r< r_2, we have VR<(X;r)S2VR_<(X;r)\simeq S^2 and VR(X;r)5S2VR_\leq(X;r)\simeq \bigvee^5 S^2, though only one of the two-spheres in VR(X;r)VR_\leq(X;r) is persistent. Furthermore, we show that for any scale parameter r1<r<r2r_1 < r < r_2, there are arbitrarily dense subsets of the ellipse such that the Vietoris-Rips complex of the subset is not homotopy equivalent to the Vietoris-Rips complex of the entire ellipse. As our main tool we link these homotopy types to the structure of infinite cyclic graphs

    Persistent Homology analysis of Phase Transitions

    Get PDF
    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called XY-mean field model and by the phi^4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a-priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.Comment: 10 pages; 10 figure

    The Vietoris-Rips complexes of a circle

    Full text link
    Given a metric space X and a distance threshold r>0, the Vietoris-Rips simplicial complex has as its simplices the finite subsets of X of diameter less than r. A theorem of Jean-Claude Hausmann states that if X is a Riemannian manifold and r is sufficiently small, then the Vietoris-Rips complex is homotopy equivalent to the original manifold. Little is known about the behavior of Vietoris-Rips complexes for larger values of r, even though these complexes arise naturally in applications using persistent homology. We show that as r increases, the Vietoris-Rips complex of the circle obtains the homotopy types of the circle, the 3-sphere, the 5-sphere, the 7-sphere, ..., until finally it is contractible. As our main tool we introduce a directed graph invariant, the winding fraction, which in some sense is dual to the circular chromatic number. Using the winding fraction we classify the homotopy types of the Vietoris-Rips complex of an arbitrary (possibly infinite) subset of the circle, and we study the expected homotopy type of the Vietoris-Rips complex of a uniformly random sample from the circle. Moreover, we show that as the distance parameter increases, the ambient Cech complex of the circle also obtains the homotopy types of the circle, the 3-sphere, the 5-sphere, the 7-sphere, ..., until finally it is contractible.Comment: Final versio

    Dimension Detection with Local Homology

    Full text link
    Detecting the dimension of a hidden manifold from a point sample has become an important problem in the current data-driven era. Indeed, estimating the shape dimension is often the first step in studying the processes or phenomena associated to the data. Among the many dimension detection algorithms proposed in various fields, a few can provide theoretical guarantee on the correctness of the estimated dimension. However, the correctness usually requires certain regularity of the input: the input points are either uniformly randomly sampled in a statistical setting, or they form the so-called (ε,δ)(\varepsilon,\delta)-sample which can be neither too dense nor too sparse. Here, we propose a purely topological technique to detect dimensions. Our algorithm is provably correct and works under a more relaxed sampling condition: we do not require uniformity, and we also allow Hausdorff noise. Our approach detects dimension by determining local homology. The computation of this topological structure is much less sensitive to the local distribution of points, which leads to the relaxation of the sampling conditions. Furthermore, by leveraging various developments in computational topology, we show that this local homology at a point zz can be computed \emph{exactly} for manifolds using Vietoris-Rips complexes whose vertices are confined within a local neighborhood of zz. We implement our algorithm and demonstrate the accuracy and robustness of our method using both synthetic and real data sets
    corecore