8,000 research outputs found

    Sampling and Super-resolution of Sparse Signals Beyond the Fourier Domain

    Full text link
    Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super-resolution. In many cases, however, Fourier domain may not be the natural choice. For example, in holography, low-pass projections of sparse signals are obtained in the Fresnel domain. Similarly, time-varying system identification relies on low-pass projections on the space of linear frequency modulated signals. In this paper, we study the recovery of sparse signals from low-pass projections in the Special Affine Fourier Transform domain (SAFT). The SAFT parametrically generalizes a number of well known unitary transformations that are used in signal processing and optics. In analogy to the Shannon's sampling framework, we specify sampling theorems for recovery of sparse signals considering three specific cases: (1) sampling with arbitrary, bandlimited kernels, (2) sampling with smooth, time-limited kernels and, (3) recovery from Gabor transform measurements linked with the SAFT domain. Our work offers a unifying perspective on the sparse sampling problem which is compatible with the Fourier, Fresnel and Fractional Fourier domain based results. In deriving our results, we introduce the SAFT series (analogous to the Fourier series) and the short time SAFT, and study convolution theorems that establish a convolution--multiplication property in the SAFT domain.Comment: 42 pages, 3 figures, manuscript under revie

    Super-Resolution in Phase Space

    Get PDF
    This work considers the problem of super-resolution. The goal is to resolve a Dirac distribution from knowledge of its discrete, low-pass, Fourier measurements. Classically, such problems have been dealt with parameter estimation methods. Recently, it has been shown that convex-optimization based formulations facilitate a continuous time solution to the super-resolution problem. Here we treat super-resolution from low-pass measurements in Phase Space. The Phase Space transformation parametrically generalizes a number of well known unitary mappings such as the Fractional Fourier, Fresnel, Laplace and Fourier transforms. Consequently, our work provides a general super- resolution strategy which is backward compatible with the usual Fourier domain result. We consider low-pass measurements of Dirac distributions in Phase Space and show that the super-resolution problem can be cast as Total Variation minimization. Remarkably, even though are setting is quite general, the bounds on the minimum separation distance of Dirac distributions is comparable to existing methods.Comment: 10 Pages, short paper in part accepted to ICASSP 201

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin

    Towards a Mathematical Theory of Super-Resolution

    Full text link
    This paper develops a mathematical theory of super-resolution. Broadly speaking, super-resolution is the problem of recovering the fine details of an object---the high end of its spectrum---from coarse scale information only---from samples at the low end of the spectrum. Suppose we have many point sources at unknown locations in [0,1][0,1] and with unknown complex-valued amplitudes. We only observe Fourier samples of this object up until a frequency cut-off fcf_c. We show that one can super-resolve these point sources with infinite precision---i.e. recover the exact locations and amplitudes---by solving a simple convex optimization problem, which can essentially be reformulated as a semidefinite program. This holds provided that the distance between sources is at least 2/fc2/f_c. This result extends to higher dimensions and other models. In one dimension for instance, it is possible to recover a piecewise smooth function by resolving the discontinuity points with infinite precision as well. We also show that the theory and methods are robust to noise. In particular, in the discrete setting we develop some theoretical results explaining how the accuracy of the super-resolved signal is expected to degrade when both the noise level and the {\em super-resolution factor} vary.Comment: 48 pages, 12 figure

    Sparsity-Based Super Resolution for SEM Images

    Full text link
    The scanning electron microscope (SEM) produces an image of a sample by scanning it with a focused beam of electrons. The electrons interact with the atoms in the sample, which emit secondary electrons that contain information about the surface topography and composition. The sample is scanned by the electron beam point by point, until an image of the surface is formed. Since its invention in 1942, SEMs have become paramount in the discovery and understanding of the nanometer world, and today it is extensively used for both research and in industry. In principle, SEMs can achieve resolution better than one nanometer. However, for many applications, working at sub-nanometer resolution implies an exceedingly large number of scanning points. For exactly this reason, the SEM diagnostics of microelectronic chips is performed either at high resolution (HR) over a small area or at low resolution (LR) while capturing a larger portion of the chip. Here, we employ sparse coding and dictionary learning to algorithmically enhance LR SEM images of microelectronic chips up to the level of the HR images acquired by slow SEM scans, while considerably reducing the noise. Our methodology consists of two steps: an offline stage of learning a joint dictionary from a sequence of LR and HR images of the same region in the chip, followed by a fast-online super-resolution step where the resolution of a new LR image is enhanced. We provide several examples with typical chips used in the microelectronics industry, as well as a statistical study on arbitrary images with characteristic structural features. Conceptually, our method works well when the images have similar characteristics. This work demonstrates that employing sparsity concepts can greatly improve the performance of SEM, thereby considerably increasing the scanning throughput without compromising on analysis quality and resolution.Comment: Final publication available at ACS Nano Letter

    Super-resolution Line Spectrum Estimation with Block Priors

    Full text link
    We address the problem of super-resolution line spectrum estimation of an undersampled signal with block prior information. The component frequencies of the signal are assumed to take arbitrary continuous values in known frequency blocks. We formulate a general semidefinite program to recover these continuous-valued frequencies using theories of positive trigonometric polynomials. The proposed semidefinite program achieves super-resolution frequency recovery by taking advantage of known structures of frequency blocks. Numerical experiments show great performance enhancements using our method.Comment: 7 pages, double colum
    • …
    corecore