6,025 research outputs found

    Exact Algorithm for Sampling the 2D Ising Spin Glass

    Get PDF
    A sampling algorithm is presented that generates spin glass configurations of the 2D Edwards-Anderson Ising spin glass at finite temperature, with probabilities proportional to their Boltzmann weights. Such an algorithm overcomes the slow dynamics of direct simulation and can be used to study long-range correlation functions and coarse-grained dynamics. The algorithm uses a correspondence between spin configurations on a regular lattice and dimer (edge) coverings of a related graph: Wilson's algorithm [D. B. Wilson, Proc. 8th Symp. Discrete Algorithms 258, (1997)] for sampling dimer coverings on a planar lattice is adapted to generate samplings for the dimer problem corresponding to both planar and toroidal spin glass samples. This algorithm is recursive: it computes probabilities for spins along a "separator" that divides the sample in half. Given the spins on the separator, sample configurations for the two separated halves are generated by further division and assignment. The algorithm is simplified by using Pfaffian elimination, rather than Gaussian elimination, for sampling dimer configurations. For n spins and given floating point precision, the algorithm has an asymptotic run-time of O(n^{3/2}); it is found that the required precision scales as inverse temperature and grows only slowly with system size. Sample applications and benchmarking results are presented for samples of size up to n=128^2, with fixed and periodic boundary conditions.Comment: 18 pages, 10 figures, 1 table; minor clarification

    Sampling algorithms for validation of supervised learning models for Ising-like systems

    Full text link
    In this paper, we build and explore supervised learning models of ferromagnetic system behavior, using Monte-Carlo sampling of the spin configuration space generated by the 2D Ising model. Given the enormous size of the space of all possible Ising model realizations, the question arises as to how to choose a reasonable number of samples that will form physically meaningful and non-intersecting training and testing datasets. Here, we propose a sampling technique called ID-MH that uses the Metropolis-Hastings algorithm creating Markov process across energy levels within the predefined configuration subspace. We show that application of this method retains phase transitions in both training and testing datasets and serves the purpose of validation of a machine learning algorithm. For larger lattice dimensions, ID-MH is not feasible as it requires knowledge of the complete configuration space. As such, we develop a new "block-ID" sampling strategy: it decomposes the given structure into square blocks with lattice dimension no greater than 5 and uses ID-MH sampling of candidate blocks. Further comparison of the performance of commonly used machine learning methods such as random forests, decision trees, k nearest neighbors and artificial neural networks shows that the PCA-based Decision Tree regressor is the most accurate predictor of magnetizations of the Ising model. For energies, however, the accuracy of prediction is not satisfactory, highlighting the need to consider more algorithmically complex methods (e.g., deep learning).Comment: 43 pages and 16 figure

    Sampling the ground-state magnetization of d-dimensional p-body Ising models

    Get PDF
    We demonstrate that a recently introduced heuristic optimization algorithm [Phys. Rev. E 83, 046709 (2011)] that combines a local search with triadic crossover genetic updates is capable of sampling nearly uniformly among ground-state configurations in spin-glass-like Hamiltonians with p-spin interactions in d space dimensions that have highly degenerate ground states. Using this algorithm we probe the zero-temperature ferromagnet to spin-glass transition point q_c of two example models, the disordered version of the two-dimensional three-spin Baxter-Wu model [q_c = 0.1072(1)] and the three-dimensional Edwards-Anderson model [q_c = 0.2253(7)], by computing the Binder ratio of the ground-state magnetization.Comment: 8 pages, 6 figures, 3 table

    Deep neural networks for direct, featureless learning through observation: the case of 2d spin models

    Full text link
    We demonstrate the capability of a convolutional deep neural network in predicting the nearest-neighbor energy of the 4x4 Ising model. Using its success at this task, we motivate the study of the larger 8x8 Ising model, showing that the deep neural network can learn the nearest-neighbor Ising Hamiltonian after only seeing a vanishingly small fraction of configuration space. Additionally, we show that the neural network has learned both the energy and magnetization operators with sufficient accuracy to replicate the low-temperature Ising phase transition. We then demonstrate the ability of the neural network to learn other spin models, teaching the convolutional deep neural network to accurately predict the long-range interaction of a screened Coulomb Hamiltonian, a sinusoidally attenuated screened Coulomb Hamiltonian, and a modified Potts model Hamiltonian. In the case of the long-range interaction, we demonstrate the ability of the neural network to recover the phase transition with equivalent accuracy to the numerically exact method. Furthermore, in the case of the long-range interaction, the benefits of the neural network become apparent; it is able to make predictions with a high degree of accuracy, and do so 1600 times faster than a CUDA-optimized exact calculation. Additionally, we demonstrate how the neural network succeeds at these tasks by looking at the weights learned in a simplified demonstration

    Adaptive cluster expansion for the inverse Ising problem: convergence, algorithm and tests

    Get PDF
    We present a procedure to solve the inverse Ising problem, that is to find the interactions between a set of binary variables from the measure of their equilibrium correlations. The method consists in constructing and selecting specific clusters of variables, based on their contributions to the cross-entropy of the Ising model. Small contributions are discarded to avoid overfitting and to make the computation tractable. The properties of the cluster expansion and its performances on synthetic data are studied. To make the implementation easier we give the pseudo-code of the algorithm.Comment: Paper submitted to Journal of Statistical Physic
    • …
    corecore