7 research outputs found

    Sampling high-dimensional Gaussian distributions for general linear inverse problems

    No full text
    International audienceThis paper is devoted to the problem of sampling Gaussian distributions in high dimension. Solutions exist for two specific structures of inverse covariance: sparse and circulant. The proposed algorithm is valid in a more general case especially as it emerges in linear inverse problems as well as in some hierarchical or latent Gaussian models. It relies on a perturbation-optimization principle: adequate stochastic perturbation of a criterion and optimization of the perturbed criterion. It is proved that the criterion optimizer is a sample of the target distribution. The main motivation is in inverse problems related to general (non-convolutive) linear observation models and their solution in a Bayesian framework implemented through sampling algorithms when existing samplers are infeasible. It finds a direct application in myopic,unsupervised inversion methods as well as in some non-Gaussian inversion methods. An illustration focused on hyperparameter estimation for super-resolution method shows the interest and the feasibility of the proposed algorithm

    Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems using MCMC Methods

    Get PDF
    The resolution of many large-scale inverse problems using MCMC methods requires a step of drawing samples from a high dimensional Gaussian distribution. While direct Gaussian sampling techniques, such as those based on Cholesky factorization, induce an excessive numerical complexity and memory requirement, sequential coordinate sampling methods present a low rate of convergence. Based on the reversible jump Markov chain framework, this paper proposes an efficient Gaussian sampling algorithm having a reduced computation cost and memory usage. The main feature of the algorithm is to perform an approximate resolution of a linear system with a truncation level adjusted using a self-tuning adaptive scheme allowing to achieve the minimal computation cost. The connection between this algorithm and some existing strategies is discussed and its efficiency is illustrated on a linear inverse problem of image resolution enhancement.Comment: 20 pages, 10 figures, under review for journal publicatio

    Iterative estimation of reflectivity and image texture: Least-squares migration with an empirical Bayes approach

    Get PDF
    In many geophysical inverse problems, smoothness assumptions on the underlying geology are used to mitigate the effects of nonuniqueness, poor data coverage, and noise in the data and to improve the quality of the inferred model parameters. Within a Bayesian inference framework, a priori assumptions about the probabilistic structure of the model parameters can impose such a smoothness constraint, analogous to regularization in a deterministic inverse problem. We have considered an empirical Bayes generalization of the Kirchhoff-based least-squares migration (LSM) problem. We have developed a novel methodology for estimation of the reflectivity model and regularization parameters, using a Bayesian statistical framework that treats both of these as random variables to be inferred from the data. Hence, rather than fixing the regularization parameters prior to inverting for the image, we allow the data to dictate where to regularize. Estimating these regularization parameters gives us information about the degree of conditional correlation (or lack thereof) between neighboring image parameters, and, subsequently, incorporating this information in the final model produces more clearly visible discontinuities in the estimated image. The inference framework is verified on 2D synthetic data sets, in which the empirical Bayes imaging results significantly outperform standard LSM images. We note that although we evaluated this method within the context of seismic imaging, it is in fact a general methodology that can be applied to any linear inverse problem in which there are spatially varying correlations in the model parameter space.MIT Energy Initiative (Shell International Exploration and Production B.V.)ERL Founding Member Consortiu

    Bayesian Fusion of Multi-Band Images -Complementary results and supporting materials

    Get PDF
    Abstract In this paper, a Bayesian fusion technique for remotely sensed multi-band images is presented. The observed images are related to the high spectral and high spatial resolution image to be recovered through physical degradations, e.g., spatial and spectral blurring and/or subsampling defined by the sensor characteristics. The fusion problem is formulated within a Bayesian estimation framework. An appropriate prior distribution exploiting geometrical consideration is introduced. To compute the Bayesian estimator of the scene of interest from its posterior distribution, a Markov chain Monte Carlo algorithm is designed to generate samples asymptotically distributed according to the target distribution. To efficiently sample from this high-dimension distribution, a Hamiltonian Monte Carlo step is introduced in the Gibbs sampling strategy. The efficiency of the proposed fusion method is evaluated with respect to several state-of-the-art fusion techniques. In particular, low spatial resolution hyperspectral and multispectral images are fused to produce a high spatial resolution hyperspectral image. Index Terms Part of this work has been supported by the Hypanema ANR Project
    corecore