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ABSTRACT

In many geophysical inverse problems, smoothness assump-
tions on the underlying geology are used to mitigate the effects
of nonuniqueness, poor data coverage, and noise in the data and
to improve the quality of the inferred model parameters. Within a
Bayesian inference framework, a priori assumptions about the
probabilistic structure of the model parameters can impose such
a smoothness constraint, analogous to regularization in a deter-
ministic inverse problem.We have considered an empirical Bayes
generalization of the Kirchhoff-based least-squares migration
(LSM) problem. We have developed a novel methodology for
estimation of the reflectivity model and regularization parameters,
using a Bayesian statistical framework that treats both of these

as random variables to be inferred from the data. Hence, rather
than fixing the regularization parameters prior to inverting for the
image, we allow the data to dictate where to regularize. Estimat-
ing these regularization parameters gives us information about the
degree of conditional correlation (or lack thereof) between neigh-
boring image parameters, and, subsequently, incorporating this
information in the final model produces more clearly visible dis-
continuities in the estimated image. The inference framework is
verified on 2D synthetic data sets, in which the empirical Bayes
imaging results significantly outperform standard LSM images.
We note that although we evaluated this method within the con-
text of seismic imaging, it is in fact a general methodology that
can be applied to any linear inverse problem in which there are
spatially varying correlations in the model parameter space.

INTRODUCTION

Seismic imaging (also known as migration) refers to the process
of creating an image of the earth’s subsurface reflectivity from seis-
mograms generated by sources and recorded by receivers located,
typically, at or near the surface. Traditional migration methods for
constructing the image generally involve operating on the seismic
data with the adjoint of an assumed forward-modeling operator
(Claerbout, 1992), possibly along with a modifying function that
attempts to correct for amplitude loss due to geometric spreading,
transmission, absorption, etc. (Bleistein, 1984; Hanitzsch et al.,
1994). In recent years, attempts have been made to cast the imaging
problem as a least-squares inverse problem (Nemeth et al., 1999;
Duquet et al., 2000). This approach to imaging is conventionally re-
ferred to as least-squares migration (LSM). Early treatments of this
approach can be found in LeBras and Clayton (1988) and Lambare

et al. (1992). This paper will deal mainly with Kirchhoff-based
LSM , which uses a ray-theoretic-based forward-modeling operator;
its derivation and application are discussed in Nemeth et al. (1999)
and Duquet et al. (2000). In our formulation, we make the additional
simplifying assumption that there is a single reflectivity at each grid
point independent of offset or angle of incidence (where the offset
effects are instead captured in our forward model). Beyond Kirch-
hoff-based methods, LSM can also be applied with wave-equation-
based forward modeling, as shown by Kühl and Sacchi (2003). In
solving the least-squares inverse problem, it is common to include
some form of regularization in the LSM cost function to penalize
less smooth images. For example, Clapp (2005) describes two regu-
larization schemes for LSM in which the image is constrained to be
smooth either along geologic features predetermined by a seismic
interpreter or along the ray-parameter axis. In these and other ap-
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plications of LSM, the regularization is chosen independently of the
seismic data; i.e., it is a fixed input to the inversion procedure (as it
is in the vast majority of geophysical applications of inversion).
This, however, may result in suboptimal inversion results; overly
strong regularization may result in oversmoothing the image, whereas
weak regularization may not adequately penalize roughness in the
image due to noise. Even if an appropriate regularization strength is
determined, the true smoothness structure of the model need not be
spatially uniform or even isotropic; for example, the true earth may
typically contain many sharp discontinuities in which any form of
smoothing would be undesirable.
In this paper, we propose a more general approach to LSM that

solves for parameters defining the image regularization in conjunc-
tion with the optimal image itself. The approach is formulated
within the framework of Bayesian inference, in which regulariza-
tion can be accomplished with a prior probability density function
(PDF) on the image parameters. We define a prior PDF with spa-
tially varying smoothness properties and seek to jointly estimate its
parameters along with the image. In particular, we use a variant of
Bayesian inference known as hierarchical Bayes, which provides a
rigorous mathematical framework for addressing the joint estima-
tion of the image and regularization parameters. This should allow
for preserving sharpness in the image at the true discontinuities
while still smoothing the effects of noise.
Hierarchical Bayesian methods have been applied in geophysics

in many settings. Examples include Malinverno and Briggs (2004),
who apply a hierarchical Bayesian framework to 1D traveltime
tomography, Buland and Omre (2003), who apply hierarchical
Bayesian methods in amplitude variation with offset (AVO) inver-
sion, and Bodin et al. (2012), who apply Bayesian techniques to
determine group velocities for the Australian continent; in these
three examples, the hierarchical framework is used to estimate the
noise in the data. Another method, in the same spirit as hierarchical
Bayes, is transdimensional Bayesian inference, in which the dimen-
sionality of the model parameters is inferred from the data; this is
applied by Bodin et al. (2012) and Bodin (2010), in the aforemen-
tioned study, by Malinverno (2002, 2000), who uses it to find op-
timal parameterizations of 1D density and resistivity models, and by
Ray and Key (2012) and Ray et al. (2013) to invert marine con-
trolled-source electromagnetic data. An important distinction
among the work presented in this paper and these studies is that
we are using the hierarchical Bayesian method to specifically infer
spatially varying regularization parameters, rather than data noise or
model parameterization.
In the next sections, we review Kirchhoff-based LSM and pro-

ceed to develop the hierarchical Bayesian framework and discuss
the algorithms used to solve the inference problem. We conclude
with two synthetic 2D data examples and a discussion of our results.

METHODOLOGY

Standard Kirchhoff-based least-squares migration
framework

Kirchhoff modeling

The Kirchhoff modeling operator is a ray-based forward model-
ing operator that gives the seismic data as a linear function of the
reflectivity model. In particular, to simulate the seismogram dsrðtÞ
recorded at a seismic receiver r from a seismic source s, Kirchhoff

forward modeling first generates a source-to-reflector-to-receiver
traveltime (or two-way traveltime) field τsrðxÞ by using what is
known as the exploding reflector concept. This concept refers to
the treatment of each point in the reflectivity model as a point
source. The two-way traveltime can be computed as the sum of
the source-to-reflector and reflector-to-receiver traveltimes, as de-
termined by ray tracing through a specified background velocity
model of the subsurface. The ray tracer also computes the field of
raypath lengths RsðxÞ and RrðxÞ and opening angles between the
source and receiver rays at each reflection point θsrðxÞ. Once these
quantities have been computed, the synthetic data d̂srðtÞ are com-
puted by superposition over reflector locations x of scaled and
shifted versions of the source wavelet wsðtÞ (after applying a 90°
phase shift to simulate the effects of 2D propagation). For each
x, the phase-shifted wavelet ~wsðtÞ is delayed by τsrðxÞ and scaled
by the reflectivity value mðxÞ, an obliquity correction factor
cosðθsrðxÞ∕2Þ, and a geometric spreading correction (in 2D,
1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RsðxÞRrðxÞ

p
). Thus,

d̂srðtÞ ¼
Z
X
mðxÞ ~ws½t − τsrðxÞ� cos½θsrðxÞ∕2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RsðxÞRrðxÞ
p dx; (1)

where X ⊂ R2 is the model domain. We note that the above Kirch-
hoff modeling operator is precisely the adjoint operator to the
Kirchhoff migration operator, given by

m̂ðxÞ¼
X
s

X
r

Z
t
dsrðtÞ

~ws½t− τsrðxÞ� cos½θsrðxÞ∕2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RsðxÞRrðxÞ

p dt: (2)

If we discretize time and space, we can represent our data and
image as finite-dimensional vectors d and m, where the dimension
of d is the number of source-receiver pairs times the number of time
samples, and where the dimension ofm is the number of points in a
spatial grid sampling the model domain. Then, replacing the inte-
gral in equation 1 with a summation, we can express the Kirchhoff
modeling operator in matrix form:

d̂ ¼ Am: (3)

In particular, the ith column of A, corresponding to a point xi in the
model grid, will contain a sampled version of the source wavelet for
each source-receiver pair, appropriately scaled or shifted, giving (in
2D)

Asrt;i ¼
~ws½t − τsrðxiÞ� cos½θsrðxiÞ∕2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RsðxiÞRrðxiÞ
p l2; (4)

where l is the spatial discretization interval.

Standard least-squares migration framework

LSM attempts to solve the imaging problem by seeking the image
mLS that minimizes the l2-norm of the residual (the difference be-
tween the observed data d and the modeled data d̂ ¼ Am). Without
regularization, the LSM image is given by

mLS ¼ arg min
m

kd − Amk22; (5)

where k · k2 denotes the l2-norm in the (discretized) data-space
given by
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kdk22 ¼
X
s

X
r

X
t

dsrðtÞ2: (6)

To ensure well posedness of the LSM solution, regularization is
often introduced by augmenting the LSM cost function with a term
that penalizes differences between model parameters and an addi-
tional term that penalizes the model norm. This gives the regular-
ized LSM image as

mRLS ¼ argmin
m

kd − Amk22

þ λ

� X
ði;jÞ∈E

βijðmi −mjÞ2 þ ϵ
X
i

m2
i

�
(7)

¼ argmin
m

kd − Amk22 þ λmTðDðβÞ þ ϵIÞm; (8)

where βij ∈ ½0; 1� indicates how strongly to penalize the difference
between mi and mj, E is the set of all pairs of image parameter
indices whose difference we decide to potentially penalize, λ > 0

assigns the maximal weight given to penalizing these differences
(and controls the trade-off between model smoothness and data fit),
and ϵ > 0 weights the penalty on the model norm. Equation 8 is
equation 7 rewritten in compact matrix-vector notation, where D
is a differencing operator defined by the vector β ¼ fβij∶ði; jÞ ∈
Eg. Taking the derivative of the right side of equation 8 and setting
it to zero yields the solution to the regularized LSM problem:

mRLS ¼ ½ATAþ λðDðβÞ þ ϵIÞ�−1ATd: (9)

Note that ϵ > 0 ensures that the regularized LSM cost function is a
positive-definite quadratic function of the image m, and hence its
minimizer is unique. It is worth noting that the LSM formulation
leading to the minimum least-squares solution is one among many
valid solution frameworks to the inverse problem, each of which
may yield a different answer for the optimal model parameters.

Bayesian framework

Standard Bayesian formulation

The same solution to LSM can be derived from a Bayesian for-
mulation of the imaging problem, wherein the imagem and the data
d are taken to be random vectors. In particular, we takem a priori to
be Gaussian with zero mean and some covariance matrix C (i.e.,
m ∼N ð0;CÞ) , so that the prior PDF pðmÞ for m is given by

pðmÞ ∝ exp
n
−
1

2
mTC−1m

o
: (10)

We choose to use a zero-mean prior due to the nature of the imaging
problem: Because seismic reflectors result from discontinuities in
the subsurface and are hence likely to be sparse, we assume a prior
model involving no discontinuities. We model the seismic data as
d ¼ Amþ n, where A is our Kirchhoff modeling operator and n is
zero-mean Gaussian noise with some covariance matrix Σ (i.e.,
n ∼N ð0;ΣÞ). Thus, the conditional PDF for the data d given the
model m, known as the model likelihood function, will be

pðdjmÞ ∝ exp
n
−
1

2
ðd − AmÞTΣ−1ðd − AmÞ

o
; (11)

i.e., djm ∼N ðAm;ΣÞ. Other, non-Gaussian noise models (such as
the Laplace PDF, resulting from a 1-norm in the exponential), could
also be used to formulate our problem, which would result in a very
different posterior PDF for the model. However, the Gaussian PDF
is somewhat of a natural choice for our formulation for probabilistic
reasons (given no other information about the noise other than its
mean and covariance matrix, the Gaussian distribution is the distri-
bution with maximum entropy) and for reasons of mathematical
convenience (because it allows us to remain analogous to the least-
squares formulation).
Applying Bayes’ rule gives the posterior PDF for the model m

conditioned on the data d as

pðmjdÞ ¼ pðmÞpðdjmÞ
pðdÞ (12)

∝
1

pðdÞ exp

�
−
1

2
½mTC−1mþ ðd − AmÞTΣ−1ðd − AmÞ�

�
:

(13)

Rearranging terms in equation 13 and dropping any multiplicative
factors that do not depend on m, we obtain

pðmjdÞ ∝ exp

�
−
1

2
ðm − μpostÞΛ−1

postðm − μpostÞT
�
; (14)

where μpost is the posterior mean given by

μpost ¼ ðATΣ−1Aþ C−1Þ−1ATΣ−1d (15)

and Λpost is the posterior model covariance matrix given by

Λpost ¼ ðATΣ−1Aþ C−1Þ−1; (16)

that is, the posterior PDF for m conditioned on d is itself Gaus-
sian: mjd ∼N ðμpost;ΛpostÞ:
The Bayesian maximum a posteriori (MAP) estimatemMAP is the

image that maximizes the posterior PDF (equation 13). It is clear
from equation 15 that mMAP ¼ μpost. Comparing to equation 9, we
also see that mMAP ¼ mRLS when we set the prior model and noise
covariance matrices as

C ¼ fλ½DðβÞ þ ϵI�g−1 (17)

and

Σ ¼ I: (18)

We note that although modeling the additive noise as white, as
above, will cause the MAP solution to be equivalent to the regular-
ized least-squares solution, we are free to design Σ according to a
more realistic noise model; to emphasize this generality, we leave
our formulation in terms of a general noise covariance matrix Σ.
When implementing our methodology on the synthetic data exam-
ples discussed in the “Results” section, we indeed make Σ propor-
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tional to I, but we test our algorithm against data containing corre-
lated noise. As will be seen in the “Results” section, our algorithm is
still able to handle correlated noise, despite assuming a white
noise model.

Interpretation of the prior probability density function

The choice of β plays a key role in determining the spatial
smoothness properties of the PDF on the model. In particular, β
defines the prior model precision matrix Q ¼ λ½DðβÞ þ ϵI�, which
induces a Markov random field (MRF) on the model. What this
means in probabilistic terms is that β captures the prior conditional
dependence structure of the imagem, such that βij ¼ 0 implies that,
prior to observing d, mi is conditionally independent of mj when
fmk∶k ≠ i; jg is given (a detailed review of probabilistic graphical
models and MRFs can be found in Koller and Friedman, 2009). The
MRF defined by β on a nine-pixel image is shown in the undirected
graph of Figure 1, which depicts the conditional dependence that
the βij (which parameterize the edges of the graph) impose on
mi and mj (encoded in the vertices of the graph). For this reason,
we sometimes refer to the elements of β as the edge strengths of the
MRF and to DðβÞ as its weighted-graph Laplacian (weighted by β).
Note that although Figure 1 shows edges connecting only nearest

neighbors horizontally and vertically, this need not be the case. We
can consider a situation in which each node shares an edge with all

other nodes within a specified radius; the graphical model depicted
in the figure results from using a radius of 1 node.

Hierarchical Bayesian formulation

Thus far, we have assumed that the parameters λ, ϵ, and β, which
determine the regularization in the LSM framework and the prior
model covariance structure in the Bayesian framework, are known.
We now describe how we can expand the Bayesian formulation to
the problem of estimating these regularization parameters from the
data d, in addition to the imagem. We focus on the estimation of the
edge strengths β, which capture our belief about where we think the
image should be smooth. Essentially, we would like to learn what
the data have to say about the smoothness in the model parameters.
By expanding our unknowns to include the edge strengths (so that
they are now no longer considered part of a prior PDF), we can learn
these edge strengths from the data by using the probabilistic rela-
tionship between the edge strengths, the model, and the data. This
is depicted in the directed graphical model of Figure 2, which also
illustrates the induced Markov chain structure between β,m, and d.
To estimate β from d, we consider β to be a random vector en-

dowed with its own prior PDF pðβÞ. Accordingly, all probability
distributions in the previous sections can be considered as condi-
tional on β. In particular, we now write the prior PDF on mjβ as

pðmjβÞ ¼
jλ½DðβÞ þ ϵI�j1∕2 exp

�
− 1

2
mT ½λðDðβÞ þ ϵIÞ�m

�

ð2πÞN∕2

(19)

and the conditional PDF for djm; β as

pðdjm; βÞ ¼ pðdjmÞ (20)

¼
exp

�
− 1

2
ðd − AmÞTΣ−1ðd − AmÞ

�

ð2πÞK∕2Σ1∕2 ; (21)

where N is the number of model parameters (i.e., the dimension of
m) and K is the number of data points (the dimension of d). We
again apply Bayes’ rule to obtain the joint posterior PDF for m
and β given the data d:

pðm; βjdÞ ¼ pðβÞpðmjβÞpðdjm; βÞ
pðdÞ (22)

¼pðβÞ
pðdÞ

jλðDðβÞþϵIÞj1∕2
ð2πÞðNþKÞ∕2Σ1∕2

exp

�
−
1

2
½ðd−AmÞTΣ−1ðd−AmÞþmTðλðDðβÞþϵIÞÞm�

�
:

(23)

To define pðβÞ, we endow each βij with a uniform prior PDF on
the set ½0; 1� and we let the βij be mutually independent random
variables, so that

Figure 1. The MRF imposed on model m by fixing the spatially
varying smoothness parameters β prior to observing the data d,
for a simple nine-pixel image. Note that we labeled the edges of
the MRF with the βij because β parameterizes these edges.

Figure 2. The directed graphical model capturing the relationship
between the spatially varying smoothness parameters β, the model
m, and the data d. The node for d is shaded to indicate that d is an
observed quantity that the posterior distributions of β and m are
conditioned upon.
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pðβÞ ¼
Y

ði;jÞ∈E
1½0;1�ðβijÞ; where 1SðxÞ ¼

�
1 if x ∈ S
0 if x ∈= S

:

(24)

We note that equation 23 is very similar to the posterior PDF in the
nonhierarchical Bayesian setting (where β is fixed) with some im-
portant differences: First, equation 23 is now a function ofm and β,
and second, outside the exponential of equation 23 is the determi-
nant of m’s prior precision matrix Q (which can no longer be
dropped as a proportionality constant, because it depends on β).
Computing this determinant is expensive, with time complexity
OðN2Þ (because Q is a sparse matrix with bandwidth N1∕2); this re-
flects the additional computational cost of the hierarchical Bayesian
approach.
Having obtained the joint posterior PDF pðm; βjdÞ, the task of

estimating the best image remains. Here, we explore two estimation
methodologies within the hierarchical Bayesian framework: the
hierarchical Bayes solution and the empirical Bayes solution
(Malinverno and Briggs, 2004). What is strictly known as the hier-
archical Bayes solution is the full marginal posterior PDF of the
image pðmjdÞ (marginalizing out β from the joint posterior PDF
pðm; βjdÞ). Hence, we have for the hierarchical Bayes solution

pðmjdÞ ¼
Z
B
pðm; βjdÞdβ; (25)

where B is the domain of admissible vectors β. Unfortunately, the
marginalization operation cannot be performed analytically and
must be computed numerically. We may also consider the MAP es-
timates for the image that can be derived within the hierarchical
Bayesian setting. The hierarchical Bayes MAP estimate mHB is the
MAP estimate of m based on its marginal posterior PDF pðmjdÞ:

mHB ¼ arg max
m

Z
B
pðm; βjdÞdβ: (26)

One can think ofmHB as the single best imagem over all choices of
edge strengths β. Although the posterior marginal PDF for the im-
age (equation 25) is the complete solution to the Bayesian inference
problem, several computational issues prevent its use in practice.
First, due to the high dimensionality of B and the cost of evaluating
the joint posterior PDF (which involves a matrix determinant; see
equation 23), stochastic sampling from and direct marginalization
of the joint posterior PDF are computationally intractable. Further-
more, even if we were able to evaluate the marginal posterior (equa-
tion 25), the high dimension ofmwould make it difficult to explore.
One potential way to avoid the problem of high model dimension-
ality, although not pursued in this paper, is the transdimensional
Bayesian approach (e.g., Bodin et al., 2012), in which the number
of model parameters is also determined by the data.
A somewhat different solution for estimating the image is known

as the empirical Bayes solution, which first looks for the best choice
for β, then, using that choice, finds the best imagemEB. If one takes
the MAP estimate for β, then we would have

βMAP ¼ arg max
β

Z
M

pðm; βjdÞdm; (27)

where, it turns out, the marginalization over m can be performed
analytically but the maximization over β must still be performed

numerically. Given βMAP, the empirical Bayes solution is taken
as the MAP estimate with respect to pðmjd; βMAPÞ. The results of
the previous sections then imply

mEB ¼ fATΣ−1Aþ λ½DðβMAPÞ þ ϵI�g−1ATΣ−1d: (28)

The empirical Bayes solution is within reach as long as we are
able to compute βMAP by solving the marginal MAP problem of
equation 27. To do so, we turn to the expectation-maximization
(E-M) algorithm, which has direct application in solving such mar-
ginal MAP problems.

The expectation-maximization algorithm

The E-M algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 2008) is a powerful and versatile algorithm for solving
maximum-likelihood and MAP parameter estimation problems
when a subset of the variables relevant to the parameter estimation
is unobserved (referred to as latent variables). In the context of the
seismic imaging problem we consider here, we view the imagem as
the latent variables. In the empirical Bayes approach, these variables
must be marginalized from the joint posterior PDF onm and βwhen
attempting to estimate the edge strengths β. For our purposes, E-M
can be thought of as a coordinate ascent algorithm for solving the
marginal MAP optimization problem (equation 27), whereby sub-
sequent estimations are performed between the latent variables (m)
and the parameters to be estimated (β).
In Appendix A, we review the E-M algorithm by means of a brief

derivation; similar derivations and a more thorough treatment of E-
M can be found in Bishop (2006) or McLachlan and Krishnan
(2008). We specialize the equations of the E-M algorithm to the
LSM problem in Appendix B; this specialization yields the specific
quantities that must be computed in each iteration of the E-M algo-
rithm, particularly, the posterior model mean and the elements of the
prior and posterior model covariance matrices that correspond to
each βij (all conditioned upon the last iterates for the estimated
βMAP). Exact computation of these elements of the covariance ma-
trices can be intractable because they would require direct matrix
inversions; hence, in Appendices C and D, we discuss approximate
methods that can be used to estimate these elements. Appendix E
summarizes these developments with a pseudocode for our com-
plete implementation of the E-M algorithm (using the above
approximate methods).
As its output, our specific implementation of the E-M algorithm

yields the MAP estimate of the edge strengths βMAP and the em-
pirical Bayes MAP imagemEB; in addition, the posterior covariance
matrix Λ (conditioned on βMAP) is computed as a by-product of our
implementation and quantifies the uncertainty associated with the
empirical Bayes solution.

RESULTS

To validate our approach, we ran our inference algorithm on syn-
thetic data sets. We present two test cases: the first case being a
simple example in which the data arise from a small image consist-
ing of three dipping reflectors separated by a weakly reflective fault
and the second case being data simulated from the Marmousi
model. Synthetic data were created using the same Kirchhoff mod-
eling operator A that is used in the inference algorithms. To some-
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what avoid the inverse crime, we add noise to the data according to
two different noise models. We formulated our methodology as-
suming zero-mean white Gaussian noise, and this is the noise model
we used for the three-layer synthetic model (with noise standard
deviation equal to 10% of the maximum amplitude of the data)
to test the results of our inversion procedure when the assumptions
used in the formulation hold. In practice, however, noise will nec-
essarily be band-limited and correlated; hence, for the Marmousi
example, we used a more realistic noise model in which the noise
is “colored” by the forward-modeling process. To be precise, we
obtain colored noise by generating zero-mean white Gaussian noise
in the image domain (having a standard deviation equal to 10% of
the maximum amplitude of the true reflectivity model), then we pass
this noise through the forward-modeling operator A, to obtain a col-
ored zero-mean Gaussian noise vector that is added to the syn-
thetic data.
In the first example of three dipping reflectors, the data are cre-

ated from a single surface seismic source (at the center) and 50
equally spaced surface seismic receivers (with spacing of 50 m) us-
ing a homogeneous background velocity model (of 4000 m∕s). The
source wavelet is a 20-Hz Ricker wavelet; hence, the dominant
wavelength is 200 m. The seismic traces are sampled at 1 ms,
and the medium is sampled spatially at 50 m in the lateral and ver-
tical directions. The entire medium has spatial dimensions of
2500 m × 2500 m; hence, Nx ¼ Nz ¼ 50 and the number of image
parameters is N ¼ NxNz ¼ 2500. The purpose of testing our algo-
rithm on such a small model is so that we can verify the perfor-
mance of our algorithm in the absence of any approximations
(i.e., in this case, we can directly compute the elements of the prior
and posterior covariance matrices without the need of the approx-
imations discussed in Appendices C and D). For this example, we
used an MRF in which each node shares an edge with its four near-
est neighbors, giving a total of 4900 edge strengths. Here, we ran 10
iterations of the E-M algorithm to obtain the MAP estimate of the
edge strengths and the empirical Bayes image, in which each iter-
ation of the E-M algorithm ran in approximately one minute on a

quad-core Intel™ Xeon W3550 3.0 GHz processor. By contrast, a
standard LSM run (using a fixed regularization scheme) took ap-
proximately 1 s on the same machine. Note that the vast increase
in computational cost from that of the standard LSM to the empiri-
cal Bayes method is due to the fact that, in this example, we com-
puted and stored the entire prior and posterior covariance matrices
in each iteration, whereas on a larger problem, we would avoid di-
rectly inverting and storing matrices.
For the case of the Marmousi model, we use a smoothed version

of the true Marmousi velocity model (sampled at 24-m spacing) for
our background velocity model in conjunction with the true (un-
smoothed) reflectivity model to simulate the data. The data are cre-
ated from a set of 20 evenly spaced surface sources firing into 20
receivers at the same location (resulting in 400 traces with different
offsets), with 480-m spacing between stations, in which the source
wavelet is a 25-Hz Ricker wavelet. We chose to use such a sparse
data set (where standard methods often perform poorly) to show the
strength of the empirical Bayes method in the face of poor data res-
olution. Because we have a larger model in this example, with
46,343 image parameters, we must resort to the approximate meth-
ods outlined in Appendices C and D to compute the quantities re-
quired by the E-M algorithm. Here, to capture the more complex
dipping structures of the Marmousi model, we defined the MRF
so that each node shares an edge with all nodes within a radius
of

ffiffiffi
2

p
nodes (i.e., a node shares an edge with its four diagonal

neighbors in addition to its four nearest neighbors, resulting in
183,862 edge strengths to be estimated). We note here that the
choice of the radius defining the extent of the edge set E is ad
hoc; the practitioner of this method should pick an edge set large
enough to be able to suitably capture the complexity of the struc-
tures expected to be seen, and often the appropriate radius is de-
cided using a trial-and-error approach with a few different
options (e.g., radii of 1,

ffiffiffi
2

p
, 2, etc.). Although it may be possible

to formulate a methodology for learning the best choice (e.g., within
a hierarchical Bayesian setting) for the edge set E of an MRF, this
remains an open area of research within the field of probabilistic
graphical models. In this example, the MAP estimate of the edge
strengths and the empirical Bayes image were obtained with three
iterations of the E-M algorithm, where each iteration of the E-M
algorithm took approximately 33 min on a quad-core Intel Xeon
W3550 3.0 GHz processor. By comparison, a single LSM run (with
fixed regularization parameters) took approximately 2–3 min on the
same machine. We note that each iteration of the E-M algorithm
requires performing a standard LSM in addition to the computation
required to approximate the elements of the posterior and prior
covariance matrices. Applying these approximations, the increase
in computation from standard LSM to the empirical Bayes method
is significantly less than for the previous example.
Figures 3–10 show the results from the test case of the three dip-

ping layer model. Figure 3 displays the true reflectivity model used
to generate the synthetic data (shown in Figure 4). Performing a
Kirchhoff migration on the data results in the image of Figure 5;
here, the reflectors are imaged somewhat, but we also see heavy
imaging artifacts (i.e., the migration smiles) due to the limited
source-receiver geometry (where only a single source is being
used). We observe that in the case of the unregularized LSM image
(Figure 6), the reflectors are imaged, but unfortunately, the noise in
the data is also imaged so strongly that the reflectors are nearly
impossible to distinguish from the noise. We can improve on the

True image
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2500 −1

−0.5

0
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Figure 3. True image (normal incidence reflectivities) for the three-
layer test case. The receiver locations are indicated by the blue in-
verted triangles, and the location of the single source is indicated by
the red “x.” The discretization interval used here is 50 m in the lat-
eral and vertical directions. Note that the “staircased” appearance of
the dipping reflectors is due to the spatial discretization interval.
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unregularized image by using a uniform regularization scheme (set-
ting each βij ¼ 1) to obtain the regularized LSM image of Figure 7;
here, the use of regularization has filtered out the noise, but as a side
effect, it has also smoothed out the reflectors. Regularizing instead
using our estimate of the edge strengths (Figure 8), we obtain the
empirical Bayes MAP image (Figure 9) significantly improving on
the previous result. This is clear from a qualitative comparison be-
tween the images; we can see the reflectors imaged quite strongly
with sharpness preserved at the reflectors, while the noise is filtered
out elsewhere in the image. Additionally, the weakly reflective fault
is also slightly imaged in the empirical Bayes MAP image, whereas
it cannot be seen in the other images. We further note that the cor-
relation of the empirical Bayes MAP image with the true image is
significantly higher than the correlations of the other images with
the true image. Examining the estimate of the edge strengths in Fig-
ure 8, we see that the edge strengths take on a pattern similar to what
we expect: They are high where the image is constant, but they are
close to zero where there are differences in the image (surrounding

the reflectors). The uncertainty associated with the empirical Bayes
estimate of the model parameters is given by the posterior model
standard deviations (conditioned on βMAP), which are shown in
Figure 10 and were computed from the square root of the diagonal
of the posterior model covariance matrix. As seen in the figure, the
model uncertainty increases both in deeper parts of the model (as
expected, due to weaker signal contribution) and at parts of the
model adjacent to the reflectors, where the edge strengths are close
to zero. A small edge strength means that very little smoothness is
being enforced across the corresponding model parameters, thereby
allowing for larger changes between these model parameters; this
relaxation of constraints translates probabilistically to the increased
model uncertainty seen in the figure.
Figures 11–18 show the results from the test case with the Mar-

mousi model. The true reflectivity model is shown in Figure 11 and
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Figure 4. Noisy synthetic data for the three-layer test case.

Kirchhoff migrated image
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Figure 5. Kirchhoff-migrated image for the three-layer test case.
Correlation with the true image ¼ 0.4705. Note that the fault is
not visible in this image and the reflectors are somewhat obscured
by strong migration artifacts.

Unregularized LSM image
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Figure 6. Unregularized LSM image (each βij ¼ 0) for the three-
layer test case. Correlation with the true image ¼ 0.3649. Due to the
lack of regularization, the noise in the image is so strong that it
obscures the dipping reflectors and the fault.

Regularized LSM image
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Figure 7. Uniformly regularized LSM image (each βij ¼ 1) for the
three-layer test case. Correlation with the true image ¼ 0.5879.
Here, due to the uniform regularization scheme, smoothness is en-
forced in the inversion even at places in which sharpness is desired
(e.g., adjacent to the reflectors and fault). Hence, the fault is again
not visible, and the reflectors have been obscured by the smoothing.
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is used to generate the synthetic seismic data shown in Figure 12.
We again observe the same features in the images as seen in the
three-layer test case. Here, performing a Kirchhoff migration (Fig-
ure 13) results in many reflectors not being imaged correctly due to
heavy acquisition artifacts and sparse sampling of the seismic wave-
field. The unregularized LSM image (Figure 14) shows the reflec-
tors along with a very strong noise component. Regularizing in a
uniform fashion (by setting each βij ¼ 1) results in the regularized
image of Figure 15 in which the noise has been filtered out, but the
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Figure 8. Edge strengths (or smoothness parameters) β estimated
with the E-M algorithm for the three-layer test case. Note that the
edge strengths spatially define the level of smoothness to enforce
between adjacent pixels, and they have been plotted at the midpoint
between the image pixels they “connect” (see the graph in Figure 1).
The edge strengths are close to zero near the reflectors (to prevent
smoothing out the true structure) but are close to one away from the
reflectors and along the direction of the reflectors (allowing noise to
be smoothed out).

Empirical bayes MAP image
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Figure 9. Empirical Bayes MAP image (computed after estimating
β) for the three-layer test case. Correlation with the true image
¼ 0.9607. Here, due to adaptive regularization (tuned by the spa-
tially varying parameter β), smoothness is enforced away from the
reflectors, thereby removing the noise, but sharpness is preserved at
the reflectors. Additionally, now the weakly reflective fault is vis-
ible in the image.
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Figure 10. Posterior model standard deviation (conditioned on
βMAP) obtained from the posterior model covariance matrix. Note
that the uncertainty in the model parameter estimates increases in
the deeper parts of the model and near the reflectors (where the edge
strengths are closer to zero, allowing for larger changes in the model
thereby resulting in increased model uncertainty).
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Figure 11. True image (normal incidence reflectivities) for the Mar-
mousi test case. The source and receiver locations are indicated by
the blue “x”s.
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Figure 13. Kirchhoff-migrated image for the Marmousi test case.
Correlation with the true image ¼ 0.3439. Note that the sparsity
of the data set does not allow for imaging of the shallow reflectors
with Kirchhoff migration.
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Figure 12. Noisy synthetic data for the Marmousi test case.
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image is also overly smooth in some areas. Once again, using our
algorithm to estimate the edge strengths (which are shown in Fig-
ure 16) results in the empirical Bayes MAP image of Figure 17. We
notice the same qualitative improvements in the image as seen pre-

viously: The image remains sharp near the reflectors while smooth-
ing out the noise away from the reflectors. As before, the correlation
of the empirical Bayes MAP image with the true image is signifi-
cantly higher than the correlations of the other images with the true
image. The posterior model standard deviations are plotted in Fig-
ure 18, in which again we see increased model uncertainty in deeper
parts of the model and below the strong reflectors (particularly those
on the bottom left and right sides of the image, where the signal
contribution is significantly weaker) as well as at points in the
model near the reflectors because, as before, at these points the edge
strengths are close to zero.

CONCLUSIONS AND FUTURE WORK

Our study shows that the Bayesian framework provides a flexible
methodology for estimating the image and smoothness parameters
(or edge strengths) in an LSM setting. By estimating the spatially
varying smoothness parameters, we are able to remove the effects of
noise while, by and large, preserving sharpness at the reflectors in
the image. The E-M algorithm, in particular, allowed us to solve the
marginal MAP problem for estimating the smoothness parameters β
(without having to explicitly integrate out or sample the high-
dimensional model space from the posterior distribution to compute
the marginal posterior PDF for β).
We note that although our algorithm was presented within the

context of the seismic imaging problem, the methodology we have
developed is broadly applicable to many linear inverse problems in
which the model parameters may exhibit spatially (or temporally)
varying smoothness properties. The operator A (or, more generally,
the conditional PDF for the data given the model pðdjmÞ) would
change if we were solving a different problem, but the methodology
and algorithm described in this paper would still apply.
Although we have developed our algorithm in the setting of solv-

ing a linear inverse problem, an interesting direction for future work
is to generalize this methodology to nonlinear inverse problems.
This generalization is nontrivial, as the nonlinearity of the
forward model will likely result in a posterior PDF that could be
multimodal and not belong to a nice analytic family such as Gaus-
sian or other exponential family PDFs. A second direction for future
work is to explore alternative ways to parameterize the prior PDF on
the image within the hierarchical Bayesian setting; for example, we
may wish to apply a transdimensional Bayesian framework to the
imaging problem using, for example, Voronoi cells. Another natural
future direction is application of this methodology to a more real-
istic synthetic data set (or to a field data set), in which we expect
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Figure 14. Unregularized LSM image (each βij ¼ 0) for the Mar-
mousi test case. Correlation with the true image ¼ 0.4100. Here, the
strong level of noise appearing in the image (due to lack of regu-
larization) again obscures the reflectors.
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Figure 15. Uniformly regularized LSM image (each βij ¼ 1) for
the Marmousi test case. Correlation with true image ¼ 0.4834.
Here, the regularization removes the noise from the image, but it
also smooths the image at the true reflectors.
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Figure 16. The edge strengths (or smoothness parameters) β esti-
mated with the E-M algorithm for the Marmousi test case. Note that
the edge strengths are close to zero near the reflectors (to prevent
smoothing out the true structure) but are closer to one away from the
reflectors (allowing noise to be smoothed out in these locations).
The edge strengths are plotted at the midpoint between the image
pixels they connect (see the graph in Figure 1).
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Figure 17. Empirical Bayes MAP image (computed after estimat-
ing β) for the Marmousi test case. Correlation with the true image
¼ 0.6909. Here, we see that regularizing with the optimal set of
edge strengths allows for the smoothing out of noise in the image
while preserving sharpness at the reflectors.
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Figure 18. Posterior model standard deviation (conditioned on
βMAP) obtained from the posterior model covariance matrix. Again,
the uncertainty in the model parameter estimates increases in the
deeper parts of the model (particularly below the strong reflectors
on the lower left and right sides of the model), as well as near the
reflectors (where the edge strengths are closer to zero).
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similar improvements in quality of the resulting image. We note
here that in order for our method to be applied to a real data set,
it will be necessary to use a more realistic forward model, such as a
wave-equation-based forward modeling operator because the sim-
plifying assumptions in our Kirchhoff operator do not correctly
account for more complex physical phenomena such as AVO or
attenuation effects. Because our modeling operator was formulated
for a 2D case, we would also expect 3D out-of-plane effects (how-
ever, the Kirchhoff operator we have defined is readily generaliz-
able to the 3D case). Having stated this, it is worth noting that as
long as the forward modeling operator is linear in the image param-
eters (as is a typical assumption when inverting for reflectivity), the
inversion methodology discussed herein can still be applied (be-
cause operator A can be any linear forward-modeling operator).
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APPENDIX A

REVIEW OF THE E-M ALGORITHM

Here, we review the E-M algorithm by means of a brief deriva-
tion. Similar derivations and a more thorough treatment of E-M
can be found in Bishop (2006) or McLachlan and Krishnan (2008).
Recall that the goal of the E-M algorithm is to compute the MAP
estimate for β, such that

βMAP ¼ arg max
β

pðβjdÞ: (A-1)

To derive the E-M algorithm, we start by noting that maximizing
a PDF is equivalent to maximizing its logarithm, and we define our
objective function as the log marginal posterior:

lðβÞ ¼ log pðβjdÞ: (A-2)

We note that we are only passing from the marginal posterior PDF
to its logarithm for the purpose of maximizing the PDF with respect
to β to obtain its MAP estimate. Once we have obtained the optimal
βMAP, we are able to use this to compute the posterior PDF (con-
ditioned on βMAP) and take the posterior model mean and covari-
ance matrix to find the best model and quantify its uncertainty.
Rearranging terms in the joint posterior PDF, we can rewrite the
MAP objective function as

lðβÞ ¼ log

Z
M

pðm; βjdÞdm (A-3)

¼ log

Z
M

pðm; β; dÞ
pðdÞ dm (A-4)

¼ log

Z
M

pðβÞpðm; djβÞ
pðdÞ dm (A-5)

¼ log

Z
M

pðm; djβÞdmþ log pðβÞ − log pðdÞ: (A-6)

Here, we introduce a proxy PDF on the image, qðmjdÞ, where we
can choose q to be any PDF we like as long as it has the same sup-
port as pðmÞ and where we have made explicit that q can depend on
the data d. Dividing and multiplying by q, we have

lðβÞ¼ log

Z
M

qðmjdÞ
qðmjdÞpðm;djβÞdmþ log pðβÞ− log pðdÞ

(A-7)

¼ log EqðmjdÞ

�
pðm; djβÞ
qðmjdÞ

�
þ log pðβÞ − log pðdÞ; (A-8)

where the integral in equation A-7 has been recognized as the expected
valuewith respect to q (denoted byEq) to arrive at equation A-8. Now,
by Jensen’s inequality (McLachlan and Krishnan, 2008) and the con-
cavity of the log function, we have

lðβÞ ≥ EqðmjdÞ

�
log

�
pðm; djβÞ
qðmjdÞ

��
þ log pðβÞ − log pðdÞ

(A-9)

¼ l̂ðq; βÞ: (A-10)

We see that the function l̂ðq; βÞ is a lower bound on the original ob-
jective function lðβÞ. The E-M algorithmmaximizes this lower bound
according to the following coordinate ascent scheme, starting with an
initial guess β̂ð0Þ and iterated for t ¼ 0; 1; 2; : : : :

E-Step∶q̂ðtþ1Þ ¼ arg max
q

l̂ðq; β̂ðtÞÞ (A-11)

M-Step∶β̂ðtþ1Þ ¼ arg max
β

l̂ðq̂ðtþ1Þ; βÞ. (A-12)

It turns out that the E-step can be solved analytically. Let us pro-
pose a candidate solution ~q as the Bayesian posterior of m condi-
tioned on d and the last iterate β̂ðtÞ of β:

~qðmjdÞ ¼ pðmjd; β̂ðtÞÞ: (A-13)

Then, if we plug ~q into the E-step objective function (equation A-
11), we have

l̂ð ~q; β̂ðtÞÞ ¼ Epðmjd;β̂ðtÞÞ

�
log

�
pðm; djβ̂ðtÞÞ
pðmjd; β̂ðtÞÞ

��

þ log pðβ̂ðtÞÞ − log pðdÞ: (A-14)
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Recognizing the quotient in equation A-14 as pðdjβ̂ðtÞÞ, and be-
cause the expectation of pðdjβ̂ðtÞÞ is just itself, we have

l̂ð ~q; β̂ðtÞÞ ¼ log pðdjβ̂ðtÞÞþ log pðβ̂ðtÞÞ− log pðdÞ (A-15)

¼ log
pðdjβ̂ðtÞÞpðβ̂ðtÞÞ

pðdÞ ¼ log pðβ̂ðtÞjdÞ (A-16)

¼ lðβ̂ðtÞÞ (A-17)

ðby eq: A − 10Þ ≥ l̂ðq; β̂ðtÞÞ ∀ q: (A-18)

Because l̂ðq; β̂ðtÞÞ ≤ lðβ̂ðtÞÞ for any q, it is clear that the candidate
solution ~q solves the E-step; i.e.,

qðtþ1Þ ¼ pðmjd; β̂ðtÞÞ: (A-19)

Now, coming to the M-step, we can simplify its objective func-
tion by dropping all terms that do not depend on β. Thus, plugging
into equation A-12 and employing equation A-19, we can write

β̂ðtþ1Þ ¼ arg max
β

flog pðβÞ þ Epðmjd;β̂ðtÞÞ½log pðm; djβÞ�g:

(A-20)

Because we were able to solve the E-step analytically, the E-M al-
gorithm reduces to iterating the single step given by equation A-20.
We do not actually need to compute the Bayesian posterior in the E-
step, but need only take the expectation with respect to it (which is
why the E-step is so named). It can be shown that, under very mild
conditions, the E-M algorithm (via iteration of equation A-20) does
indeed converge to a (local) maximum of the original marginal
MAP problem of equation 27 (McLachlan and Krishnan, 2008).

APPENDIX B

APPLICATION OF E-M TO LSM

We now proceed to apply the E-M algorithm to our LSM prob-
lem. For notational convenience, we can rewrite the E-M algorithm
of equation A-20 in terms of the E-M objective function ϕðtÞðβÞ
given by

ϕðtÞðβÞ ¼ log pðβÞ þ Epðmjd;β̂ðtÞÞ½log pðm; djβÞ�; (B-1)

so the E-M iteration becomes

β̂ðtþ1Þ ¼ argmax
β

ϕðtÞðβÞ: (B-2)

For every iteration of E-M, we perform the maximization of ϕðtÞ via
a gradient ascent scheme, for which we must compute the gradient
of ϕðtÞ.

To derive the exact form of ϕðtÞ and its gradient, we substitute our
distributions into the E-M objective function. From equation 24, we
have

log pðβÞ ¼
�

0 if βij ∈ ½0; 1�; ∀ ði; jÞ ∈ E
−∞ otherwise

; (B-3)

which means the prior PDF on β restricts us to consider only
βij ∈ ½0; 1�. From equations 19 and 20, we have

log pðm;djβÞ ¼ 1

2
flog det ½λðDðβÞþ ϵIÞ�−mT ½λðDðβÞþ ϵIÞ�m

− ðd−AmÞTΣ−1ðd−AmÞg−Z; (B-4)

where Z is a normalization constant given by

Z ¼ ðN þ KÞ log 2π þ log Σ
2

: (B-5)

Inserting these into equation B-1 yields (when every βij ∈ ½0; 1�)

ϕðtÞðβÞ¼ 1

2
Epðmjd;β̂ðtÞÞflog det ½λðDðβÞþ ϵIÞ�−mT ½λðDðβÞþ ϵIÞ�m

−ðd−AmÞTΣ−1ðd−AmÞg−Z: (B-6)

The log determinant term in equation B-6 only depends on β and is
not affected by the expectation with respect to m. Now, we can re-
write the second term in the above expectation as

mTfλ½DðβÞ þ ϵI�gm ¼ λtrf½DðβÞ þ ϵI�mmTg; (B-7)

so

Epðmjd;β̂ðtÞÞfmT ½λðDðβÞþϵIÞ�mg¼ λtrf½DðβÞþϵI�Epðmjd;β̂ðtÞÞ½mmT �g:
(B-8)

The expected value on the right side of equation B-8 is just the non-
central second moment matrix of m, as determined by the posterior
PDF pðmjd; β̂ðtÞÞ, given by

Epðmjd;β̂ðtÞÞ½mmT � ¼ ΛðtÞ þ μðtÞμðtÞT; (B-9)

and where μðtÞ and ΛðtÞ are the posterior mean and covariance ma-
trix, respectively, when conditioning on d and β̂ðtÞ, given by

μðtÞ ¼ fATΣ−1Aþ λ½Dðβ̂ðtÞÞ þ ϵI�g−1ATΣ−1d (B-10)

and

ΛðtÞ ¼ fATΣ−1Aþ λ½Dðβ̂ðtÞÞ þ ϵI�g−1: (B-11)

We further note that the ϵIE½mmT � term in equation B-8 does not
depend on the variable β, which is being optimized and hence can
be dropped from the E-M objective function ϕðtÞðβÞ. Similarly, the
third and fourth terms in equation B-6 also do not depend on β and
can be neglected. Combining the above and rearranging terms, we
can rewrite the E-M objective function as
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ϕðtÞðβÞ ¼ 1

2
flog det ½λðDðβÞ þ ϵIÞ� − λtr½DðβÞΛðtÞ�

− λμðtÞTDðβÞμðtÞg: (B-12)

To compute ∇ϕðtÞ, the gradient of ϕðtÞ with respect to β, we first
note that the β-weighted graph Laplacian matrix DðβÞ is a linear
function of β, particularly

DðβÞ ¼
X

ði;jÞ∈E
βijPij; (B-13)

where the entries of Pij are

Pij
kl ¼

8<
:

1 if kl ¼ ii or jj
−1 if kl ¼ ij or ji
0 otherwise

: (B-14)

We also note that ∂
∂βij

log detfλ½DðβÞþϵI�g¼ trf½λðDðβÞþϵIÞ�−1
∂½λðDðβÞþϵIÞ�

∂βij g.
Letting CðβÞ ¼ fλ½DðβÞ þ ϵI�g−1 denote the prior covariance

matrix of the image (when conditioning on β), to compute
∇ϕðtÞ, we have

∂
∂βij

ϕðtÞðβÞ ¼ λ

2
ftr½CðβÞPij� − tr½ΛðtÞPij� − μðtÞTPijμðtÞg

(B-15)

¼ λ

2
½CðβÞii þ CðβÞjj − 2CðβÞij − ðΛðtÞ

ii þ ΛðtÞ
jj − 2ΛðtÞ

ij Þ

− ðμðtÞi − μðtÞj Þ2�: (B-16)

We constrain each βij to the interval ½0; 1� by introducing proxy
variables γij that we map to the βij using a sigmoidal function. In
particular, we set

βij ¼
arc tanðγijÞ

π
þ 1

2
; (B-17)

so that although γij is free to take any value in R, βij remains within
½0; 1�. We can then compute ∇ϕðtÞðγÞ, the gradient of ϕðtÞ with re-
spect to γ, by

∂
∂γij

ϕðtÞðγÞ ¼ ∂ϕðtÞ

∂βij

∂βij
∂γij

(B-18)

¼ 1

πð1þ γ2ijÞ
∂ϕðtÞ

∂βij
: (B-19)

Unfortunately, direct computation of the gradient would require
matrix inversions to compute the prior and posterior model covari-
ance matrices. To avoid this, noting that we only need the node- and
edgewise elements of these covariance matrices, we develop approxi-

mate techniques for obtaining these quantities in Appendices C
and D.

APPENDIX C

PERTURBATION-OPTIMIZATION SAMPLING
OF GAUSSIAN DISTRIBUTIONS

Because application of the prior model covariance matrix is
relatively cheap (as we will discuss), we can estimate its elements
by sampling from its associated Gaussian probability distribution
and approximate these elements from the samples. Thus, to approxi-
mate the prior covariance matrix CðβÞ, we generate L samples
mð1Þ; : : : ;mðLÞ, of the underlying Gaussian prior PDF of mjβ and
approximate C as

CðβÞ ≈ 1

L

XL
l¼1

mðlÞmðlÞT: (C-1)

To sample from N ð0;CÞ, we first note that the precision matrix
Q ¼ λðDðβÞ þ ϵIÞ can be rewritten as

Q ¼ λ½FTBðβÞF þ ϵI�; (C-2)

where F is a first-differencing matrix (having a number of rows equal
to jEj, the number of edges in E, and a number of columns equal to
N, the number of image parameters) and BðβÞ is an jEj-×-jEj diago-
nal matrix, with the βij on its diagonal. Referred to as perturbation-
optimization (P-O) sampling by Orieux et al. (2012), a straightfor-
ward sampling algorithm (that avoids the need for Cholesky factori-
zation of the precision matrix) is available when the precision matrix
can be expressed in the form

Q ¼
XT
t¼1

MT
t R−1

t Mt (C-3)

and sampling fromN ð0; RtÞ is feasible (which is certainly true in our
case because we have diagonal Rt matrices). The sampling algorithm
given in algorithm 1.
The proof that m̂ is a sample from N ð0;Q−1Þ is straightforward

and given in Orieux et al. (2012). The optimization step requires
solving the linear system

Algorithm 1. Perturbation-optimization algorithm for sampl-
ing from N �0;Q−1� (Orieux et al., 2012).

1) Perturbation step: Generate independent vectors

ηt ∼N ð0; RtÞ for t ¼ 1; : : : ; T

2) Optimization step: Compute m̂ as the minimizer of

JðmÞ ¼ P
T
t¼1ðηt −MtmÞTR−1

t ðηt −MtmÞ
Return m̂ as the sample from N ð0;Q−1Þ.
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Qm̂ ¼
XT
t¼1

MT
t R−1

t ηt; (C-4)

which, in our case, is very fast (OðkNÞ using an iterative solver with
k steps) due to the sparsity of F.

APPENDIX D

BLOCK DIAGONAL APPROXIMATIONS

Although the sampling approach of Appendix C can also be used
to approximate the elements of the posterior covariance matrix ΛðtÞ,
in practice, generating a reasonably large number of samples from
N ð0;ΛðtÞÞ is not feasible due to the increased cost of solving a sys-
tem involving the posterior precision matrix ATΣ−1Aþ λ½Dðβ̂ðtÞÞ þ
ϵI� (we would need to perform a regularized LSM inversion for each
sample when using the P-O approach).
To estimate the node and edgewise elements of ΛðtÞ, we note that

when using the Kirchhoff operator A, there is a closed-form expres-
sion for the elements of the posterior precision matrix ΛðtÞ−1 (com-
bining equations B-11 and 4). With this in mind, we can estimate
elements of ΛðtÞ by considering a block diagonal approximation to
the precision matrix. In particular, we can construct anM-×-M par-
tition of the posterior precision matrix corresponding to an image
point and its M − 1 nearest neighbors in space within some radius
(we used a 49-pixel neighborhood to perform this approximation),

then we approximate the covariance matrix at image point i, ΛðtÞ
ii ,

from the inverse of this M-×-M partition matrix. The off-diagonal

elements ΛðtÞ
ij (for each edge ði; jÞ ∈ E) are similarly estimated from

the same matrix inverse by taking the elements corresponding
to covariance between mi and mj (however, care must be taken

to ensure that the M-×-M partition of the precision matrix is large
enough to sufficiently “surround” the image point i and all its neigh-
bors j with which it shares an edge). This approximation will per-
form reasonably well as long as the posterior precision matrix
decays spatially (in the model domain) as we move away from
the diagonal (as is the case here).

APPENDIX E

SUMMARY OF E-M ALGORITHM

To implement the approximations of Appendices C and D to cal-
culate ∇ϕðtÞ, we need to approximate the entries of ΛðtÞ only once
per E-M iteration (because ΛðtÞ does not vary with β). However, we
would need to reapproximate the entries of CðβÞ with the sampling
algorithm in each iteration of the first-order gradient-ascent method
(which must be rerun in each iteration of the E-M algorithm). We
now summarize our above developments for applying the E-M
algorithm to obtain the empirical Bayes estimate of the image in
LSM in the algorithm 2.

NOMENCLATURE

mðxÞ = image/reflectivity parameters (i.e., model
parameters) at subsurface points x

m̂ðxÞ = migrated image at subsurface points x
m = discretized model vector
N = number of discretized model parameters
X = spatial domain of the model
dsrðtÞ = measured seismic data (pressure) from source

s to receiver r measured at time t
d̂srðtÞ = forward-modeled data from source s to re-

ceiver r measured at time t
d = discretized data vector
K = number of discretized data points
τsrðxÞ = two-way traveltime field from a source s to

subsurface point x to receiver r
θsrðxÞ = opening angle for rays traveling from a

source s to subsurface point x and from x to
receiver r

wsðtÞ = source wavelet at source s and time t
RsðxÞ; RrðxÞ = raypath length from source s or receiver r to

subsurface point x
A = forward-modeling operator
mLS = unregularized LSM image
mRLS = regularized LSM image
β = vector of spatially varying edge strengths/

smoothness parameters (βij ∈ ½0; 1� indicates
how strongly to penalize differences between
mi and mj)

V = the vertex set of the MRF on which m is de-
fined: the set of all indices into m

E = the edge set of the MRF on which m is de-
fined: set of pairs of image parameter indices
ði; jÞ indicating where smoothness constraints
are allowed (i.e., the set of pairs of indices in
which the βij are defined)

DðβÞ = differencing matrix defined by β

Algorithm 2. Expectation-maximization algorithm for least-
squares migration.

Initialize each γð0Þij ¼ 0, so that β̂ð0Þij ¼ 0.5.

Specify step-size α for gradient ascent.

Set t ¼ 0. Iterate on t:

1) Compute μðtÞ via equation B-10.

2) Compute ΛðtÞ
ii ð∀ i ∈ VÞ and ΛðtÞ

ij ð∀ði; jÞ ∈ EÞ via the block
diagonal approximation.

3) Initialize ~γð0Þ ¼ γðtÞ. Set s ¼ 0 and iterate on s to perform
gradient ascent on γ:
a) Generate samples from N f0;C½βð ~γðsÞÞ�g via P-O sampling.

b) Estimate C½βð ~γðsÞÞ�ii ð∀ i ∈ VÞ and C½βð ~γðsÞÞ�ij ð∀ði; jÞ ∈ EÞ
via equation C-1.

c) Compute ∇ϕðtÞð ~γðsÞÞ via equation B-19.

d) Update ~γðsþ1Þ ¼ ~γðsÞ þ α∇ϕðtÞð ~γðsÞÞ.
4) Update γðtþ1Þ ¼ ~γðsþ1Þ.
5) Update β̂ðtþ1Þ via equation B-17 using γðtþ1Þ.
Upon termination, return:

βMAP ¼ β̂ðtþ1Þ,
mEB ¼ fATΣ−1Aþ λ½DðβMAPÞ þ ϵI�g−1ATΣ−1d.
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λ = overall model smoothness regularization pa-
rameter: assigns maximal weight given to pe-
nalizing differences in model parameters

ϵ = regularization parameter that weights penalty
on the model norm

pð·Þ = PDF
N ðμ;CÞ = Gaussian PDF with mean vector μ and

covariance matrix C
C = prior model covariance matrix (given the

regularization parameters)
Q = prior model precision matrix (inverse covari-

ance matrix)
Σ = noise covariance matrix
μpost = posterior mean of model
Λpost = posterior model covariance matrix
mMAP = MAP estimate of model in the nonhierarchi-

cal framework
B;M = space of admissible edge strength β and

model m vectors
mHB = hierarchical Bayes MAP estimate of model
mEB = empirical Bayes MAP estimate of model
βMAP = MAP estimate for edge strengths/smoothness

parameters β
lðβÞ = log-likelihood function for β (maximized to

get βMAP)
l̂ðq; βÞ = lower bound on log-likelihood function that

is maximized by the E-M algorithm
Ep = expectation operator with respect to the dis-

tribution p (the subscript is omitted when the
distribution is clear from the context)

qðmjdÞ = proxy model PDF that is maximized for
(along with β) in the E-M algorithm

ϕðtÞðβÞ = objective function for β at the tth iteration of
the E-M algorithm

β̂ðtÞ;μðtÞ;ΛðtÞ = tth iterates of β and the posterior mean and
covariance matrix (given β̂ðtÞ) computed in
the E-M algorithm

γij = proxy variables for the βij used to map βij to
½0; 1�

Pij = partition of the differencing matrix DðβÞ cor-
responding to βij

F; BðβÞ = first-differencing and diagonal matrices used
to expand DðβÞ

Mt; Rt = factors used to expand the precision matrix Q
in the P-O sampling algorithm

ηt = samples of N ð0; RtÞ generated during the P-
O sampling algorithm

JðmÞ = cost function to be minimized in the P-O
sampling algorithm.
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