4,119 research outputs found

    Discrete coherent states for higher Landau levels

    Get PDF
    We consider the quantum dynamics of a charged particle evolving under the action of a constant homogeneous magnetic field, with emphasis on the discrete subgroups of the Heisenberg group (in the Euclidean case) and of the SL(2, R) group (in the Hyperbolic case). We investigate completeness properties of discrete coherent states associated with higher order Euclidean and hyperbolic Landau levels, partially extending classic results of Perelomov and of Bargmann, Butera, Girardello and Klauder. In the Euclidean case, our results follow from identifying the completeness problem with known results from the theory of Gabor frames. The results for the hyperbolic setting follow by using a combination of methods from coherent states, time-scale analysis and the theory of Fuchsian groups and their associated automorphic forms.Comment: Revised for Annals of Physic

    Restrictions and extensions of semibounded operators

    Full text link
    We study restriction and extension theory for semibounded Hermitian operators in the Hardy space of analytic functions on the disk D. Starting with the operator zd/dz, we show that, for every choice of a closed subset F in T=bd(D) of measure zero, there is a densely defined Hermitian restriction of zd/dz corresponding to boundary functions vanishing on F. For every such restriction operator, we classify all its selfadjoint extension, and for each we present a complete spectral picture. We prove that different sets F with the same cardinality can lead to quite different boundary-value problems, inequivalent selfadjoint extension operators, and quite different spectral configurations. As a tool in our analysis, we prove that the von Neumann deficiency spaces, for a fixed set F, have a natural presentation as reproducing kernel Hilbert spaces, with a Hurwitz zeta-function, restricted to FxF, as reproducing kernel.Comment: 63 pages, 11 figure

    Wavelet frames, Bergman spaces and Fourier transforms of Laguerre functions

    Get PDF
    The Fourier transforms of Laguerre functions play the same canonical role in wavelet analysis as do the Hermite functions in Gabor analysis. We will use them as analyzing wavelets in a similar way the Hermite functions were recently by K. Groechenig and Y. Lyubarskii in "Gabor frames with Hermite functions, C. R. Acad. Sci. Paris, Ser. I 344 157-162 (2007)". Building on the work of K. Seip, "Beurling type density theorems in the unit disc, Invent. Math., 113, 21-39 (1993)", concerning sampling sequences on weighted Bergman spaces, we find a sufficient density condition for constructing frames by translations and dilations of the Fourier transform of the nth Laguerre function. As in Groechenig-Lyubarskii theorem, the density increases with n, and in the special case of the hyperbolic lattice in the upper half plane it is given by b\log a<\frac{4\pi}{2n+\alpha}, where alpha is the parameter of the Laguerre function.Comment: 15 page

    Hardy's paradox tested in the spin-orbit Hilbert space of single photons

    Full text link
    We test experimentally the quantum ``paradox'' proposed by Lucien Hardy in 1993 [Phys. Rev. Lett. 71, 1665 (1993)] by using single photons instead of photon pairs. This is achieved by addressing two compatible degrees of freedom of the same particle, namely its spin angular momentum, determined by the photon polarization, and its orbital angular momentum, a property related to the optical transverse mode. Because our experiment involves a single particle, we cannot use locality to logically enforce non-contextuality, which must therefore be assumed based only on the observables' compatibility. On the other hand, our single-particle experiment can be implemented more simply and allows larger detection efficiencies than typical two-particle ones, with a potential future advantage in terms of closing the detection loopholes.Comment: 7 pages, 5 figures and 1 tabl

    Polynomial Ensembles and Recurrence Coefficients

    Full text link
    Polynomial ensembles are determinantal point processes associated with (non necessarily orthogonal) projections onto polynomial subspaces. The aim of this survey article is to put forward the use of recurrence coefficients to obtain the global asymptotic behavior of such ensembles in a rather simple way. We provide a unified approach to recover well-known convergence results for real OP ensembles. We study the mutual convergence of the polynomial ensemble and the zeros of its average characteristic polynomial; we discuss in particular the complex setting. We also control the variance of linear statistics of polynomial ensembles and derive comparison results, as well as asymptotic formulas for real OP ensembles. Finally, we reinterpret the classical algorithm to sample determinantal point processes so as to cover the setting of non-orthogonal projection kernels. A few open problems are also suggested.Comment: 23 page

    The Spectrum of Volterra-type integration operators on generalized Fock spaces

    Full text link
    We describe the spectrum of certain integration operators acting on general- ized Fock spaces
    corecore