21 research outputs found

    An Exact Characterization of the Generalization Error for the Gibbs Algorithm

    Get PDF
    Various approaches have been developed to upper bound the generalization error of a supervised learning algorithm. However, existing bounds are often loose and lack of guarantees. As a result, they may fail to characterize the exact generalization ability of a learning algorithm.Our main contribution is an exact characterization of the expected generalization error of the well-known Gibbs algorithm (a.k.a. Gibbs posterior) using symmetrized KL information between the input training samples and the output hypothesis. Our result can be applied to tighten existing expected generalization error and PAC-Bayesian bounds. Our approach is versatile, as it also characterizes the generalization error of the Gibbs algorithm with data-dependent regularizer and that of the Gibbs algorithm in the asymptotic regime, where it converges to the empirical risk minimization algorithm. Of particular relevance, our results highlight the role the symmetrized KL information plays in controlling the generalization error of the Gibbs algorithm

    Mutual information: a dependence measure for nonlinear time series

    Get PDF
    This paper investigates the possibility to analyse the structure of unconditional or conditional (and possibly nonlinear) dependence in financial returns without requiring the specification of mean-variance models or a theoretical probability distribution. The main goal of the paper is to show how mutual information can be used as a measure of dependence in financial time series. One major advantage of this approach resides precisely in its ability to account for nonlinear dependencies with no need to specify a theoretical probability distribution or use of a mean-variance model.Mutual information, nonlinear dependence, market efficiency

    Information-Theoretic Characterizations of Generalization Error for the Gibbs Algorithm

    Get PDF
    Various approaches have been developed to upper bound the generalization error of a supervised learning algorithm. However, existing bounds are often loose and even vacuous when evaluated in practice. As a result, they may fail to characterize the exact generalization ability of a learning algorithm. Our main contributions are exact characterizations of the expected generalization error of the well-known Gibbs algorithm (a.k.a. Gibbs posterior) using different information measures, in particular, the symmetrized KL information between the input training samples and the output hypothesis. Our result can be applied to tighten existing expected generalization errors and PAC-Bayesian bounds. Our information-theoretic approach is versatile, as it also characterizes the generalization error of the Gibbs algorithm with a data-dependent regularizer and that of the Gibbs algorithm in the asymptotic regime, where it converges to the standard empirical risk minimization algorithm. Of particular relevance, our results highlight the role the symmetrized KL information plays in controlling the generalization error of the Gibbs algorithm

    Learning a model is paramount for sample efficiency in reinforcement learning control of PDEs

    Full text link
    The goal of this paper is to make a strong point for the usage of dynamical models when using reinforcement learning (RL) for feedback control of dynamical systems governed by partial differential equations (PDEs). To breach the gap between the immense promises we see in RL and the applicability in complex engineering systems, the main challenges are the massive requirements in terms of the training data, as well as the lack of performance guarantees. We present a solution for the first issue using a data-driven surrogate model in the form of a convolutional LSTM with actuation. We demonstrate that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system. Furthermore, we show that iteratively updating the model is of major importance to avoid biases in the RL training. Detailed ablation studies reveal the most important ingredients of the modeling process. We use the chaotic Kuramoto-Sivashinsky equation do demonstarte our findings
    corecore