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Abstract

This paper investigates the possibility to analyse the structure of un-
conditional or conditional (and possibly nonlinear) dependence in ..nancial
returns without requiring the speci..cation of mean-variance models or a
theoretical probability distribution.

Abstract

The main goal of the paper is to show how mutual information can
be used as a measure of dependence in ..nancial time series. One major
advantage of this approach resides precisely in its ability to account for
nonlinear dependencies with no need to specify a theoretical probability
distribution or use of a mean-variance model.

1 Introduction

Most of the theoretical literature in ..nance is based on arguments of market
ec¢ciency which imply unpredictability and independence of returns, leading
to no pro..t opportunities. For a long period, the economists considered that
the ..nancial returns are independent. However, during the 1980s, it became
widely accepted the fact that (linear) autocorrelations show some kind of “long-
range dependence” and nonlinear dependence eaects [Maasoumi et al., (2002);
Darbellay et al., (2000)].

The linear autocorrelations of the returns are not statistically dicerent from
zero, except possibly for very short time lags, although the empirical evidence
is mixed and the linear model results seem to be inconclusive. However the
absence of linear autocorrelations is not synonymous of independence. Some
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recent studies indicate the presence of nonlinear dependence in ..nancial time
series [Hsieh, (1989); Cont, (2000); Darbellay et al., (2000); Granger et al.,
(1994); Granger et al., (2002)].

The residuals of empirical economic models may incorporate nonlinearities,
heterogeneity and serial dependence for many and varied reasons. Most studies
deal with nonlinearities in the basis of the conditional mean and conditional
variance [see e.g. Engle (1982); Hsieh (1989); Soares (1994); Qi (1999) and
Curto, (2003)].

The use of linear or neural-network models, pose a number of problems be-
cause we test not only for the dependence of the model but also for its functional
speci..cation. Thus, some authors have explored nonlinear, nonparametric and
semiparametric approaches. For instance White (1988) and Stengos (1995) con-
sidered nonlinear models and nonparametric regressions for returns on certain
equities and precious metals to evaluate serial nonlinear dependence. Diaz,
Grau-Carles and Mangas (2002) consider that nonlinearities in ..nancial returns
can be explained in two ways: they arise from a deterministic process that seems
to be random (e.g. a chaotic process), or the returns are nonlinear stochastic
functions of their own past. They conclude that the nonlinearities in foreign
exchange rate returns can be the product of shifts in the variance, which is in
contrast with the conclusion of other authors.

The most known measure of dependence between two random variables is
the coeccient of linear correlation, but its application requires a pure linear
relationship, or at least a linear transformed relationship [see e.g. Granger et
al.,, (1994); Bernhard et al., (1999)], because it is nothing but a normalized
covariance and only accounts for linear relationships. However, this statistics
may not be helpful in determining serial dependence if there is some kind of
nonlinearity in the data.

In this context, it seems that a measure of global dependence is required,
that is, some measure that captures linear and nonlinear dependencies, without
requiring the speci..cation of any kind of model of dependence. Urbach (2000)
defends a strong relationship between entropy, dependence and predictability.
This relation has been studied by several authors, namely Granger and Lin
(1994); Maasoumi and Racine (2002); Darbellay and Wuertz (2000).

On the basis of the above arguments we try to ..nd out a rationale to the
following question: “Is it possible to inquire about any unconditional, or condi-
tional (and possibly nonlinear) dependence structure in returns without requiring
the speci..cation of mean-variance models and theoretical distribution probabili-
ties?”

The main goal of this paper is to show that mutual information may be used
as a measure of dependence in ..nancial time series. One important advantage
of this approach resides in its ability to account for nonlinear dependences,
without any request about the theoretical probability distribution or mean-
variance models.

We apply those concepts to some international stock indexes, in order to
verify the possible existence of (linear and nonlinear) dependence and draw
some conclusions about the e¢ciency of those markets.



This paper is organized as follows: in Section 2 we present the basic concepts
of mutual information and the mathematical background for its estimation.
Section 3 presents the main results and comprises 3 subsections: daily data,
weekly data and monthly data. Finally, in Section 4 we present the concluding
of this paper.

2 Information and predictability

A measure that takes the value 0 when there is total independence and 1 for
total dependence is one of the most practical ways to evaluate (in)dependence

between two vectors of random variables )_5,7' Let Py » (A x B) be the joint
probability distribution of ()7,7) and Py (A), Py (B) the underlying marginal

probability distributions, where A is a subset of the observation space of X and

. 7 .
B a subset of a observation space of Y, such that we can evaluate the following
expression:

0 PZ? (A X B)

If the two events are independent, then Py~ (A x B) = P (A) x Py (B), and

so equation (1) will take the value zero.
Granger, Maasoumi and Racine (2002) consider that a good measure of
dependence should satisfy the following six ideal” properties:

M

(a) Must be well de..ned for both continuous and discrete variables;

(b) Must be normalized to zero if X and Y are independent, and lying between
—1 and +1, in general,

(c) The modulus of the measure should equal 1 if there is an exact nonlinear
relationship between the variables;

(d) Must be similar or simple related to the linear correlation coe€cient in the
case of a bivariate normal distribution;

(e) Must be metric in the sense that it is a true measure of "distance” and not
just a measure of “divergence”;

(f) Must be an invariant measure under continuous and strictly increasing
transformations.

2.1 Mutual information

The concept of mutual information comes from the theory of communication
and measures the information of a random variable contained in another random
variable. The de..nition of mutual information goes back to Shannon (1948) and



the theory was extended and generalized by Gelfand, Kolmogorov e Yaglom
(1956) [in Darbellay, (1998a)] and Perez (1957).

The properties of mutual information appears to con..rm its importance
as a measure of dependence [Perez, (1957); Klan et al., (1997); Soo.., (1997);
Darbellay et al., (1999), (2000); Darbellay, (1998a), (1998b), (1999); Bernhard
et al., (1999)]. Some of those properties will be presented and explored in this
section.

Broadly speaking, there are two ways of estimating the mutual information:
The ..rst consists in a direct estimation and the second require previously the
computation of the entropies in order to obtain mutual information®.

The entropy of a continuous distribution, with probability density function
(pdf) px of the random variable X € X'is de..ned by?:

Hﬂm:—/hﬂ@wauMm @)

The entropy of a continuous distribution can be negative [Shannon, (1948)] and
may change if we change the coordinates of X [Fieldman, (1998)]. If we have
two arguments X and Y, where then the pdf of Y is py and px,y is the joint
pdf, the joint entropy is given by:

H(X,Y) = //mewmmY@wM@ ®)

The conditional entropy is de..ned by:

HY|X) = - H(X) (4)

//pxy T,y 1ongY(( ) )dfcdy,

or, in a similar way:

H(X|Y)=H(X,Y)- H(Y). (5)

The mutual information can be de..ned by the following expression:

[(X,Y) = H(Y)-H(Y|X) (6)
H(X) - H (X]Y)
)+ H(Y)— H(X,Y)

: //“nymlﬁﬁ @d@

INote that the mutual information is the dizerence of entropies.

2The selection of the base of the logarithm is irrelevant, but is convenient to distinguish
among results: log,- entropy measure in bits; log;,- entropy measure in dits; log, = In -
entropy measure in nats.




Since H (Y) > H (Y|X), we have I (X,Y’) > 0, assuming equality if and only if
X and Y are statistically independent. So the mutual information between the
random variables X and Y can be considered a measure of dependence between
these variables, or better yet, the statistical correlation of X and Y. Although,
we can not say that is X is causing Y or vice-versa.
In the case of continuous distribution, the mutual information assumes non-
negative values. If we have a discrete distribution, then 0< I (X,Y) < min{H (X),H (Y)}.
Pompe (1998) presents some of the properties of mutual information to the dis-
crete case, namely:

(i) I(X,Y) =0ie X and Y are statistically independent, in the sense that
p(ANB)=p(A)p(B);

(i) I(X,Y)=H(X) ie X is a function of Y;
(iii) I(X,Y)=H (Y) i= Y is a function of X.

The statistics de..ned in equation (6) satis...es some of the desirable properties
of a good measure of dependence described in the previous section, namely (a)
and after some transformations, will satis..es also properties (b), (c) and (d)
[Granger et al., (2002)].3

In order to satisfy the properties b) and d) it is convenient to de..ne a measure
that can be compared to the linear correlation coe¢cient. In equation (6), we
have 0 < T (X,Y) < +oo, which di¢cult comparisons between dicerent samples.
In this way, we can compare mutual information with the covariance, since both
are dependence measures and for both, comparisons between dicerent samples
can be inconclusive.

To obtain a statistic that satis..es property (d) without loosing the properties
from (a) to (c) it is convenient to de..ne an equation similar to that in (7). In
this context Granger and Lin (1994), Darbellay (1998a) and Soo.. (1997), among
others, use a standard measure for the mutual information, global correlation
coeCcient, de..ned by:

—21()_5,17)

A=V1-—e @)

This measure varies between 0 and 1 being thus directly comparable to the
linear correlation coe¢cient, based in the relationship between the measures of
information theory and variance analysis [Garner et al, (1956)].

The function A <)_(>,)7>> captures the overall dependence, both linear and

norﬂnear,_l):)etween X and Y and it can be interpreted as the predictability
of Y by X. This measure of predictability is based on empirical probability
distributions, but it does not depend on the particular model used to predict

Y. In this particular case, the properties mentioned above assume the following
form:

3The demonstration of some theorems about mutual information properties can be found
in Kullback, S. (1968). Information Theory and Statistics, Dover, New York.



o )\ (X, Y) = 0, if and only if X contains no information on Y, which

implies that Y cannot be predicted by means of )_(7;

o )\ (X, Y) =1, if exists a perfect relationship between the vectors X and

Y. This is the limit case of determinism;

e When modelling the input-output pair ()_(),}_/)) by any model with in-
— — — . . —

put X and output U = f (X) where f is some function of X, the

predictability of Y by U cannot exceed the predictability of Y by )_f, i.e.

A ()_(’17’) > A (ﬁ,?) . (8)

It is well known that the Gaussian distribution maximizes Shannon entropy
for given ..rst and second moments. This implies that the entropy of Shannon of
any distribution is bounded upwards by the normal mutual information (N M),
and depends on the covariance matrix [Kraskov et al., (2003)). Let us consider
a normal probability distribution, de..ned in a Euclidian space with dimension

d. Then the normal mutual information for ()7,7) is given by:

- = 1 det Vx det V3
I(X,Y = —log———
( ’ ) 98 det V' ©)

NMI (? )7’) , (10)

where V' is the covariance matrix of ()7:7) and Vx and V4 are the respectively

covariances matrices of X and Y. It can be shown that the argument of the
logarithm in the right-hand side of (9) depends only on the coeccients of linear

correlation [see e.g. Darbellay, (1998a)]. When d = 2, that is, for ()7:?) =
(X,Y) equation (9) takes the form [Kullback, (1968)]:

I(X,Y)= —% log (1 -1 (X,Y)). (11)

If the empirical distribution is normal, the mutual information can be calcu-
lated by equation (11), because normal distribution is a "linear” distribution, in
the sense that the linear correlation coe€cient captures the overall dependence.
In this case, any empirical mutual information must be greater or equal to the
normal mutual information [Kraskov et al., (2003)].

Intuitively, one would like to have the measure of predictability larger than
the measure of linear predictability, i.e. A > r. Unfortunately, this not always
true [Darbellay, (1998b)]*. It is important to refer that the dicerence (A — r)

4 A situation that can induce A < r is the small size of the sample. A small size, in this
context, sample is a sample with n < 500.




cannot be equated to the nonlinear part of the predictability. Nevertheless, in
the majority of cases, we do have A ( X, Y | = ‘7‘ X,Y )|, and in R? we have

MX,Y) =|r(X,Y)| [Granger et al., (1994); Darbellay, (1998a)].

Maasoumi (1993) shows that the mutual information doesn’t satisfy property
(e). In this case, mutual information is just a measure of divergence, because it
does not satisfy the triangular inequality.

Another important property of the mutual information is the additivity,
and it says that can be decomposed into hierarchical levels [Shannon, (1948);
Kraskov et al., (2003)], that is:

1()_(’,17’,7):1((}7,?),7)+1<?,_)>. (12)

_— = — . — —
It follows that I (X, Y, Z) will be always greater or equal to I (X, Y) . By

the same token, the coe..cient of linear determination and the coe..cient of linear
correlation cannot decrease when one adds more variables to the model.

According to properties presented by mutual information, and because inde-
pendence is one of the most valuables concepts in econometry, we can construct
a independence test based on the following hypothesis:

Hy : pxy (2,9)=px (@) py (¥),
Hy @ pxy (%,y) # px () py (v) -

If (pxy (z,y) =px ()py (v)), then I(X,Y) = 0 and the independence be-
tween the variables is found. If (pxy (z,y) # px (z)py (y)) then I (X,Y) >0
and we reject the null hypothesis of independence. The above hypothesis can
be reformulated in the following way:

Hy : I(X,Y)=0,
Hy : I(X,Y)>0.

In order to test adequately the independence between variables (or vectors of
variables) we will need to calculate the critical values. There are three ap-
proaches to obtaining critical values for our test under this null: asymptotic
approximations to the null distribution; simulated critical values for the null
distribution and permutation-based critical values for the null distribution.

The critical values calculated in this paper for mutual information are based
upon simulated critical values for the null distribution or the percentile ap-
proach (see Appendix A). These values have been found through the simulation
of critical values based upon a white noise, for a number of sample sizes. Given
that the distribution of mutual information is skewed, we can adopt a percentile
approach to obtain critical values.

Appendix A lists the 90t", 95" and 99" percentiles of the empirical distrib-
ution of the mutual information for the process y; = ¢, with ¢, ~i.i.d.N (0, 1),
having been made 5000 simulations for each critical value. This methodology



was applied as proposed by Granger, Maasoumi and Racine (2002), and accord-
ing to these authors, the critical values can be used as the base to test for time
series serial independence.

According to Pompe (1998), mutual information is very useful to analyze sta-
tistical dependences in scalar or multivariate time series as well as for detecting
fundamental periods, detecting optimal time combs for forecasting, modelling
and analyzing the (non)stationarity of data. Some of those potentialities have
been explored by some authors, namely Granger and Lin (1994) and Darbellay
and Wuertz (2000), whose results reveal that mutual information varies in a
nonstationary time series framework.

2.2 Estimation from data - marginal equiquantisation

One di¢culty for calculating the mutual information from empirical data lies
in the fact that the underlying pdf is unknown. There are, essentially, three
dizerent methods to estimate mutual information:

e Histogram-based estimators;
e Kernel-based estimators;

e Parametric methods.

According to Moddemeijer (1999), histogram-based estimators are divided
in two groups: equidistant cells (see e.g. Moddemeijer, 1999) and equiprobable
cells, i.e. marginal equiquantisation [see e.g. Darbellay, (1998a)]. The second
approach presents some advantages, since it allows for a better adequacy to the
data and maximizes mutual information [Darbellay, (1998a)].

The kernel-based estimators have too many adjustable parameters such as
the optimal kernel width and the optimal kernel form, and a non-optimal choice
of those parameters may cause a large bias the in results [Granger et al., (2000)].
Moreover, this kind of estimators can only deal with bivariate distributions. For
the application of parametric methods one needs to know the speci..c form of
the stochastic process.

The de..nition of mutual information is expressed in an abstract way and it
is based on space partitions. To simplify, let us consider a ..nite dimension in an
Euclidian space, R/= R xR?, and let 'y = {4;};2; Ty = {B;}7, be two
generic partitions of the spaces R?x and R%. Then the mutual information is
a positive number de..ned as:

P)—(> v (Az X BJ)

I (Y 7) Y Py o (A x Byl ‘
, = sup — = (A; X B;)log ’ .
(s BT T Py (A) Py (B)

13
| (13)

The supreme is taken over all the ..nite partitions of R¢x and R% . The con-
ventions 01n (2) =0 for z > 0 and zIn (£) = +oo are used. Darbellay (1998a)
shown that mutual information is ..nite if and only if the measure P5; 5 is ab-

solutely continuous with respect to the product measure P x Py:. The system



I = 'y x 'y is a partition of R%= R%* xR? and is the product of two marginal

partitions, one of R?x and another of R? . Dobrushin (1959) shows that this

restriction to the product partitions is not necessary [in Darbellay, (1998a)].
Let D be a sequence of numbers from a partition, so:

m m PH*)(O]%)
Dr=> Do, =S P = (Cy)log X, , (14)
v=2 Do =) Pry (OOl proip ey

never decreases, as the partition I' = {Cy, = Ay X By, k = 1,...,m} is made ..ner
and ..ner.

Lemma 1 Let ' = {Cy} be a ..nite partition of R? and A = {Cj;} be a re..ne-
ment of I", then
Dr < Dy, (15)

and the equality holds if and only if, for every cell C} of the partition T
Py (Cri)  Pey(Gr)
P3 (Cky) Py (Cky) Py (Ck) Py (C)

VL. (16)

The inequality follows from Inz < z — 1, Vz > 0, with Inz = z — 1 if and only if
z=1.

The lemma tells us that if we construct ..ner and ..ner partitions of I", then
the sequence of numbers will monotonically increase until for every ..nite sub-
partitions {Cy ;! = 1,...,n;} of an arbitrary cell Cj, of I" is possible. This fact,
according to Darbellay (1998a, 1999) shows that mutual information is a ..nite
measure. The condition (16) means that if the random vectors X and Y are
conditionally independent, then there is local independence. If this is true for

— —
every cell Cy of ', then we can set I { X, Y) = Dr.

Darbellay (1998a) and Bernhard and Darbellay (1999) show how to pro-
ceed for homogeneous partitions. These authors defend the use of equiprobable
cells, given the texibility and adequacy of this approach and in accordance with
the invariance of mutual information under one-to-one transformations of its
component variables:

I((fr(X1)s oo fa, (Xdo)) s (faur1 (Xag41) 5 -5 fa (Xa))) (17)
= I((X1,-,Xa,), Xa,+1,---»Xa))

It is possible to compute the marginal equiquantisation through dicerent
algorithms. Let ¢ be a variable ranging from 1 to 3, where 3 is the number of
subpartitions and a*? the number of cells. The algorithms can be formulated
according to the following rules:

Algorithm A:

1. Let R? be the initial one-cell partition;



2. A subpartion of all cells into o*? subcells can be obtained by dividing each
edge into « equidistant intervals;

3. S_t}op the subpartitioning of a cell if the vectors of random variables X and
Y are uniformly distributed;

Algorithm B:
1. Let R? be the initial one-cell partition;

2. A subpartion of all cells into «'? subcell can be obtained by dividing each
edge into « equiprobable intervals;

3. Stop the subpartitioning of a cell if the vectors of random variables X and
—
Y are conditionally independent on it.

The number « of equiprobable intervals is arbitrary. However, in order to
simplify computation, we may choose o = 2, because a large a will complicate
unnecessarily the calculus [Darbellay, (1999)].

Marginal equiquantisation consists of dividing each edge of a cell into «
intervals with approximately the same number of points. The approximativeness
of the division has two causes: the number of points in a cell may not be exactly
divisible by «, or some X may take repeating values. The lower (L) and upper
(U) bounds and =% (L) and =¥ (U) (i —th edge of the hyperrectangle ..nal points
of the cell) are found through marginal equiquantisation.

. . == . . —

Our goal is to estimate I (X,Y) from a ..nite sample of N points = =
(z1,...,24) in RY, then:

Ny (Cy) represents the number of points 7" such that R (L) < 2 <
xk (U), Vi = 1,...,d. Then, the underlying marginal number of points is: N+ (Ck)
which represents the number of points 7z’ such that =% (L) < z; < 2% (U),
Vi=1,...,dx and Ny (Cy) is the number of points Z such that 2} (L) < z; <
oF (U), Vi=dx +1,...,d.

The probabilities are estimated by the underlying frequencies, i.e.,

Ny (C
Pey (Ci) = %(“ (18)
N= (Cy
P (Cy) =~ 7XN ) (19)
N- (C,
Py (C) ~ ), (20)

Then the local independence condition becomes:

N)—(> (Ck;,l) N? (Ok,l)
N (Ck) N3 (Cy) 7

Nz (Crp) = Nyy (Ck) [=1,..,a'  (20)

10



For each t, the subpartition {C%;} of Cy, is clearly ..ner, and therefore dicerent.
The Nﬂa (Cy,) observations contained in cell Cj, are classi..ed into at¢ mutually
excluswe classes, the subcells. The right hand side of (21) is the expected
number in class [, and the left hand side is the observed number in class I.
These observed numbers follow a multinomial distribution whose probabilities
are given by the expected numbers, which is a standard situation in statistics.
In this context Darbellay (1998a) suggest the use of a x? statistics rather then
analyze all conditions about o' in an individual way.

If we use algorithm A, the distribution is tested using the Y2 test. We
test whether the data are uniformly distributed in (A x B) by comparing the
estlmated probability of each subcube with the test probability P, (A; x B;) =

am

XQZZ(N(Ai x B;) — N (A x B) P (A; x Bj))* 22)

=1 N(A X B) ]D(x4z X BJ)
Here, N (A x B) denotes the number of points (X, Y) following in the hyper-

rectangle Ax B, A is a subset of the observation space of X and B a subset of
the observation space of Y.

If x2 < x2, being x2 the critical value of the statistic, then the null hypothe-
sis, i.e., the hypothesis of a uniform distribution holds with an error probability
of 1% or 5%.

If we use algorithm B, the y?test is used to search for local independence,
that is:

_ _ *({Cra})
X=X ({Cri}) = X ZN—> (Cot) N (Co)’ (23)

where

2
N+ (Ck,1) Ny (C1)
D*({Cri}) = | Ny (Cra) = Ny (Cr) =222 (24
{Cr.1}) l (Cra) = Nz (Ch) N3 (Ck) Ny (Cy) &9
or we can use the log-likelihood ratio statistic:

at N3 (Crit) Ng (Cr) N3 (C)
L=L({Cu}) =Y Neo (Cro)l . (25
({Cr,}) ; %y (Cri) Og[N_)_,(ck)Nﬁ(CM)Nﬁ(Ck) ()

The statistical test will be applied to each one of the § subpartitions into
a'® subcells, with ¢t = 1,...,3. If the test does not reject local independence
anymore on any cell, then we have the ..nal partition I = {Cy.k =1,...,m},
upon which the sample’s mutual information will be evaluated, i.e.,

11



w Ny (Cr)

— — 1 X
I (X, Y) =< (N?? () log e (Ck)> tlogN.  (26)

The value of 3 has a direct impact on the consistency of the estimator. A higher
value of 3 prevents an early stop in the partioning of a cell, avoiding spurious
results [Darbellay, (1998a)].

The level of signi..cance is the probability of partioning a cell, when it
shouldn’t be done. The signi..cance levels are (as usually) 1% and 5%, and
according to Darbellay (1998a) the higher the value of 3 the higher the signi..-
cance level, i.e., the signi..cance level for the case where 5 = 1 should be smaller
than the signi..cance level for 3 = 2. The selection of 3 depends on the sample
size as well as the dimension of the observation space.

Tambakis (2000) presents a mutual information estimator, which is based
on equidistant cells. This author suggests the determination of a new measure:
the Self-Information Measure (SIM), through the univariate non-parametric
predictability computation, as a function of the mutual information and the
number of partitions (K), that is:

N ()_(’17’)
Pr (X’ Y) - log K

Asymptotic predictability is smallest when the entropy reachs the maximum,

and is zero for an iid sequence. Based on the de..nition I <)_(), 7) =H <)_()> —

H ()_(>|}_/>> , Tambakis (2000) creates the Self-Information Measure (SIM) through

(27)

the maximization of the entropy H ()_f)

1 (X)
logK °
Tambakis (2000) applied this measure to several ..nancial time series, in order to
evaluate market ecciency, using K = 100. When the SIM increases, the power
of predictability vanishes, and then the market is more e¢cient.

Paninski (2003) justi..ed the di¢culties about the computation of mutual
information by the fact that is a nonlinear measure de..ned for a unknown
joint probability space. The same author defends that when the ratio % —
oo, with N being the number of observations and m the number of bins, the
bias resulting from the estimation process decays. This author suggests the
mutual information estimation based on a sequence of intervals, whose points
are calculated by functions over the random variables in study. The "method of
sieves” is based on a log-likelihood function [Paninski (2003)].

Moddemeijer (1999) points out some problems related with the estimation
of mutual information based on histograms, namely:

SIM; = (28)

e Variance;

12



¢ Bias caused by the ..nite number of observations;
e Bias caused by the quantization;

e Bias caused by the ..nite histogram.

The relative contribution of these factors depends on the empirical applica-
tion, namely on the number of observations, the con..guration of the histogram
cells and the smoothness of the pdf. The last two factors are independent of
the number of observations and are only relevant in the case of continuous vari-
ables. According to Darbellay (1998a), Darbellay and Vajda (1999), Kraskov,
Stogbauer and Grassberger (2003) the space partition in equiprobable cells min-
imizes the bias.

3 Empirical evidence

We now apply the concepts of mutual information and global correlation co-
eccient (equation (7)) as a measures of dependence in ..nancial time series in
order to evaluate the use of these measures and extract the advantages of this
approach face to the traditional linear correlation coe®cient. Mutual informa-
tion was estimated through marginal equiguantisation, and was applied to some
stock market indexes.

>From the data base DataStream we selected the daily closing prices of
several stock market indexes: ASE (Greece), CAC 40 (France), DAX 30 (Ger-
many), FTSE 100 (UK), PSI 20 (Portugal), IBEX 35 (Spain) and S&P 500
(USA), spanning the period from 4/01/1993 to 31/12/2002, which corresponds
to 2596 observations per index, in order to compute the rates of return.

The rates of return were computed in the following way:

[Pz:,t + Dz},t]
Py

where r; ; is the stock market index ¢ rate of return at moment ¢; P; ; is the stock
market index 4 closing price at moment ¢; D, , are the dividends and P, ;_, is
the stock market index ¢ closing price at moment ¢ — 1.

Weekly rates of return were computed through the mean of each week and
we obtained 517 observations; to monthly rates of return we applied the same
method which generate 119 observations. It was necessary to make some ad-
justments on the stock market index prices, especially in what concerns to the
opening market days. To avoid loosing observations when some index does not
have a price in some day, we used for that day’s the previous price of that index.

ri¢ = 1In (29)

)

3.1 Daily data analysis

In order to evaluate the possible serial dependence in some ..nancial time series,
we have tested for the possible linear dependence, in attempting to verify the
presence of autocorrelation. To this end the Ljung-Box test was applied, and
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the results are presented in Table 1°. It is interesting to note the fact that
serial dependence is statistically signi..cant for most indexes, except for DAX
30, IBEX 35 and S&P 500°.

ASE CAC 40 DAX35 FTSE IBEX PSI20 S&P
100 35 500
LBQ(10) 37,197** 24,208** 17,43 45,716** 14,757 54,410** 16,782
P 0,108** 0,013 -0,025 0,022 0,032 0,129** 0,001
Do -0,006**  -0,028 -0,031 -0,058**  -0,035 0,039**  -0,025
03 -0,023**  -0,071** -0,021 -0,084**  -0,047** 0,005**  -0,046

Table 1: Ljung-Box test and autocorrelation coe®cients for daily observations.

Firstly, it was calculated the average mutual information and the global
correlation coe@cient for lags £ = 1,...,10 of all indexes in study. The global
correlation coeCcient (\) was calculated through equation (7). The indexes
does not present the same behaviour in terms of serial dependence, as shown in
Figure 1.

In a relatively coarse way we can group the indexes in three groups: the
weak serial dependence group, constituted by the indexes CAC 40 and FTSE
100; the average serial dependence group constituted by the IBEX 35 and PSI
20 indexes; and ..nally, the strong serial dependence group: ASE, DAX 30 and
S&P 500 indexes. The S&P 500 index presents the strongest global correlation
coe¢cient, which along with a non-signi..cant linear autocorrelation coe¢cient,
seems to indicate that there exists nonlinear dependence. The higher order lags
of the IBEX 35, DAX 30 and S&P 500 indexes have a stronger weight than nor-
mal. As noted by Bonanno, Lillo and Mantegna (2001) and Mantegna, Palagi
and Stanley (1999) the autocorrelation function should be a monotonically de-
creasing function with the time lag, being actually signi..cant for short periods.
This is some way not con..rmed by our results.

The property of “short run memory” is related to the e€cient market hy-
pothesis, where investors can not make systematic pro..ts. However, the lack
of autocorrelation does not mean independence; nonlinear dependence can be
signi..cant for higher lags. The authors state that the presence of signi..cant non-
linear dependence can be extended for about 20 days [Bonanno et al., (2001);
Mantegna et al., (1999)].

We have calculated the average mutual information and the global corre-
lation coe@cient (\) for the time series above mentioned and compared the
results with the normal mutual information (equation (9)) and with the linear
correlation coe€cient (see Tables 2, 3 and 4).

According to the results in Table 2, the linear correlation and global corre-

5** 105 level of signi..cance

* 5% level of signi..cance

6\We have also applied the LM test, but the results were not signi..cantly dizerent from
the Ljung-Box results.
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ASE - daily obser vations

CAC - daily obser vations

DAX - daily obser vations

Figure 1: Global correlation coe@cient for serial dependence in the stock market

index daily returns, for lags £ =1, ..., 10.
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Mutual Inf. NMI A r

lag: 1
ASE 0.03126**  0.00583 0.24618 0.10760
CAC 40 0.00008 0.00009 0.01273 0.01319

DAX 30 0.00772** 0.00031 0.12379 0.02470
FTSE 100 0.00054 0.00023 0.03277 0.02153
IBEX 35 0.00000 0.00051 0.00193 0.03203

PSI 20 0.01412** 0.00841 0.16687 0.12914
S&P 500 0.01901** 0.00000 0.19316 0.00118

Table 2: Average mutual information, global correlation coe¢cient (\), normal
mutual information and linear correlation (r) coeccient of daily data relative
to 1 lag.

lation coeCcients are not ranked in the same way:

rs&pPs500 < TocAc40 < TFTSE100 < TDAX30 < TIBEX35 < TASE < T'PSI20,
ArBEX3s < Acaca < AFTSsE100 < Apax30 < Apsi20 < Asgps500 < AASE.

The index S&P 500 is the one that presents the least linear correlation with

regard to the ..rst lag and the largest global correlation, indicating the possible
existence of strong nonlinear serial dependence.

Mutual Inf. NMI A r

lag: 1e?2
ASE 0.08042**  0.01191 0.38545 0.10901
CAC 40 0.01115* 0.00087 0.14853 0.0379
DAX 30 0.03701**  0.00105 0.26709 0.04018
FTSE 100  0.01508**  0.00174 0.17238 0.06247
IBEX 35 0.00001 0.00082 0.00488 0.04855
PSI 20 0.03596**  0.01706 0.26343 0.12992
S&P 500 0.07531**  0.00032 0.37392 0.02476

Table 3: Average mutual information, global correlation coe¢cient (\), normal
mutual information and linear correlation (r) coe€cient of daily data relative
to 2 lags.

Table 3 shows again that the linear and global correlation coe€cients are
not dispose in the same way:

Ts&P500 < TCAC40 < TDAX30 < TIBEX35 < TFTSE100 < TASE < TPSI20,
A1BEx35 < Acacao < ArTsE100 < Apsr20 < Apax3o < As&Ps500 < AASE-

Once more, the S&P 500 index is the one that presents least linear correlation
face to lags 1 and 2; however is the one having the highest global correlation,
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suggesting the existence of possible strong serial nonlinear dependence. The
ASE index does not lead to the same conclusions. It is the index that presents
the highest evidence of simultaneously linear and global dependence. The PSI
20 index is the one that presents the highest value for the linear correlation
coeCcient (r), but its global correlation coedcient (1)) is less than those for the
DAX 30, ASE and S&P 500 indexes.

Mutual Inf. NMI A r
lag: 1, 2 €3
ASE 0.10195** 0.01745 0.42948 0.11092
CAC 40 0.00893 0.00359 0.13308 0.07683

DAX 30 0.05254** 0.00341 0.31584 0.04821
FTSE 100 0.04030** 0.00808 0.27829 0.10231
IBEX 35 0.00073 0.00223 0.03826 0.06566

PSI 20 0.06559** 0.02500 0.35063 0.12990
S&P 500 0.11376** 0.00152 0.45111 0.05229

Table 4: Average mutual information, global correlation coe¢cient (\), normal
mutual information and linear correlation (r) coe€cient of daily data relative
to 3 lags.

The analysis of Table 4 show some dicerences about the way the two corre-
lation coeCcients are ranked:

TDAXx30 < TS&P500 < TIBEX35 < TCAC40 < TFTSE100 < TASE < TPSI20,
ArBEX3s < Acacao < AFTSsE100 < Apax30 < Apsi20 < Aase < AsgPs500-

The global correlation coe€cient (\) is higher than the linear correlation co-
eccient (r) for the majority of the indexes, denoting the existence of possible
serial nonlinear dependence. The S&P 500 index presents a very strong nonlin-
ear dependence (already proven by the values shown in Figure 1). According to
the Ljung-Box test results this index does not show evidence of the existence of
signi..cant linear autocorrelation, but such conclusion is not true for the global
autocorrelation, whose values are above 0,19 in all analysed situations.

Relatively to the analysis of the serial dependence face to the two ..rst lags
(t —1, t —2) and to the three ..rst lags (¢t — 1, ¢ — 2, t — 3) it is possible to
ascertain that the nonlinear dependence tends to grow when the number of lags
included increases, while the linear correlation coeCcient tends to assume a
signi..cantly constant value in all analyses. The results allow us to verify the
mutual information additivity property, since when we include more lags in the
analysis, mutual information tends to increase. It is important to remember
that the dizerence (A — r) does not correspond exactly to the nonlinear part of
the measure of dependence.

Our results point to the existence of global dependence larger than the one
that is captured by the linear correlation coe€cient. It becomes interesting
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to analyze the ..Itered series, in order to capture the exclusively nonlinear de-
pendence. For the eoect, the ..Itered series was calculated as an ARM A(3,0)
process and applied the Ljung-Box test (Table 5). The ..Itered series for the
indexes DAX 30 and S&P 500 was not calculated because they do not present,
for any lag, a statistically signi..cant linear correlation coe¢cient.

ASE CAC 40 FTSE 100 IBEX 35 PSI20

LBQ(0) 7,484 11,702 37,572 9,012 9,4532
P1 0,002 0,011 0,018 0,031 -0,002
Pa -0,015  -0,03 -0,001 -0,034 0,013
P3 -0,02  -0,002 -0,085 -0,001  -0,002

Table 5: Ljung-Box test for the ..Itered daily series.

The ..Itered series of all indexes do not show any evidence of linear auto-
correlation. In this context, to verify if there exists nonlinear dependence, we
applied the BDS test [Hsieh, (1989)] where the results point clearly to the re-
jection of the null hypothesis, or either, is rejected the hypothesis of that the
time series in observation, are nonlinear independent. The measures of infor-
mation theory were also applied to the ..Itered series, and the results con..rm
the previous BDS tests results. Mutual information also allow the knowledge
of the relations intensity between ¢; € a ¢,_1. Table 6 shows that \ > r for all
cases (except for the IBEX 35 index), with the evidence of the ASE and PSI 20
indexes which present a very high global correlation coeGcient and statistically
signi..cant, and that could be a clear indicator of nonlinear dependence.

Mutual Inf. NMI A r

lag: 1

ASE 0.01142**  0.00000 0.15025 0.00190
CAC 40 0.00224* 0.00006 0.06690 0.01130
FTSE 100 0.00051 0.00014 0.03205 0.01673
IBEX 35 0.00001 0.00047 0.00541 0.03074

PSI 20 0.00535**  0.00000 0.10321 0.00166

Table 6: Average mutual information, global correlation coe¢cient (\), normal
mutual information and linear correlation (r) coe¢cient of ..Itered daily data.

The levels of global correlation are very high, especially if we take into ac-
count that the linear expression is not signi..cant. Our results are similar to
other author’s results in similar studies, namely Darbellay and Wuertz (2000)
and Maasoumi and Racine (2002).

The presence of serial dependence must provide some strategy to gener-
ate systematic pro..ts, for that market can be considered not eccient, being
a eCcient market some market where is not possible to make pro..ts in a sys-
tematic way, because there is any investor with more information than others.
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According to Fama (1970, 1991) the presence of serial statistically signi..cant
dependence does not mean that the market is not e€cient, since the existence
of transaction costs would eliminate any attempts of systematic pro..ts. In this
case, the investors must found which function is behind the global and nonlinear
dependence to use that to take decisions and try to make pro..ts, even with the
presence of transaction costs.

3.2 Weekly data analysis

The weekly data analysis is based on weekly averages of the daily rate of re-
turns, for about 517 observations. The Ljung-Box test applied to the weekly
stock market indexes’ time series reveals the existence of signi..cant linear de-
pendence for all the indexes (see Table 7). It is important to note that the linear
dependence in weekly observations is stronger than the one observed for daily
observations. That might be explained by the fact that in the present analysis
the observations correspond to average weekly data. This methodology allows
to not loose observations, or at least, the new time series is more representative
than the daily one, but, at the same time there is a smooth on the weekly time
series, which can increase the autocorrelation values. Another explanation for
the higher linear autocorrelation is that weekly averages are not isolated values
of a day in a week or month, and also because the daily movement can contain
some bias resulting from slow dilutions of information in the markets.

ASE CAC 40 DAX 30 FTSE IBEX PSI20 S&P
100 35 500
LBQ(10) 21,207* 19,066* 25,402** 16,668  37,002** 53,526** 29,480**
1 0,179** 0,143** 0,167** 0,110*  0,209** 0,278** 0,167**
P2 - - 0,022** 0,019*  0,090** 0,066** 0,032**
0,003**  0,003**
Ps3 0,027** 0,027* - -0,024 0,020**

0,013** 0,002**  0,002**

Table 7: Ljung-Box test and autocorrelation coe@cients for weekly observations.

In order to capture the possible nonlinear serial dependence that may exist
in the analysed series, we have calculated the average mutual information and
the corresponding global correlation coedcient, normal mutual information and
linear correlation coeccient.

Figure 2 reveals slightly higher levels of global correlation as compared to the
ones presented for daily data, as well as for linear correlation. The PSI 20 index
presents the highest correlation value for lag 1, but the remaining correlations
tend to decay quickly, which does not happen with the FTSE 100, DAX 30 and
ASE indexes, whose correlations for lagged observations do not tend to diminish
with the increase of respective lags. Though, we can say that the majority of
the indexes present ’short run memory”, i.e., the serial dependence tends to
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vanish for higher lags. We should also note that for lag 10 there is no index
with a global correlation coe€cient greater than 0.06.

ASE - weekly obser vations CAC - weekly obser vations DAX - weekly obser vations

Global corr. coef
Global corr. coef,
Global corr. ceof.

FTSE - weekly obser vations IBEX - weekly obser vations PSI-weekly obser vations

Global corr. coef.
Global corr.coef.

S& P- weekly obser vations

Global corr. coef.

Figure 2: Global correlation coe¢cient for serial dependence in stock market
indexes weekly returns, for lags k =1, ..., 10.

Table 8 evidences the highest value for the linear correlation coe€cient as

well as for the global correlation coeCcient, for the majority of the indexes. We
have then:

TEFTSE100 < TCAC40 < TS&P500 < TDAX30 < TASE < TIBEX35 < T'PSI20-

This arrangement dizers from the one for the global correlation coe¢cient, that
is:

ArTsE100 < ADAx30 < Acacao < ArBEX3s < As&ps00 < Aase < Apsrao.
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Mutual Inf. NMI A r

lag: 1

ASE 0.04037**  0.01639 0.27851 0.17956
CAC 40 0.00752* 0.01028 0.12222 0.14268
DAX 30 0.00244 0.01424 0.06971 0.16755
FTSE 100 0.00003 0.00609 0.00775 0.11000
IBEX 35 0.01089* 0.02226  0.14676 0.20867

PSI 20 0.05489**  0.04031 0.32244 0.27833
S&P 500 0.01458**  0.01413 0.16953 0.16691

Table 8: Average mutual information, global correlation coe¢cient (\), normal
mutual information and linear correlation (r) coe€cient of weekly data relative
to 1 lag.

The Portuguese PSI 20 index exhibits the highest levels of correlation (linear
and nonlinear) and the FTSE 100 index seems to be the most ”independent”
from the past, which seems to indicate the evects of persistence. We should
also note that S&P 500 index, whose global dependence relative to observation
(t — 1) is stronger than the simple linear dependence, especially if we compare
it with the German DAX 30 index.

Tables 9 and 10 present the measures of information theory for lags 1 and 2
and 1, 2 and 3. From Table 9 one should note that the PSI 20 index continues to
lead the serial dependence at a linear level but globally the ASE index presents
the highest global correlation coeCcient.

Mutual Inf. NMI A r
lag: 1e2
ASE 0.08563**  0.02944 0.39674 0.18122
CAC 40 0.01961 0.01829 0.19612 0.14643

DAX 30 0.04497* 0.02551 0.29328 0.16913
FTSE 100 0.00066 0.01192 0.03619 0.11000
IBEX 35 0.04073* 0.03304 0.27969 0.21205

PSI 20 0.07338** 0.07877 0.36945 0.27917
S&P 500 0.05750** 0.02948 0.39959 0.16695

Table 9: Average mutual information, global correlation coe¢cient (\), normal
mutual information and linear correlation (r) coe€cient of weekly data relative
to 2 lags.

The order of those measures is the following:

TFTSE100 < TCAC40 < TS&P500 < TDAX30 < TASE < TIBEX35 < T'PSI20,
ArTSsEI00 < Acacao < AIBEX35 < ADAx30 < As&P500 < Apsr2o < AASE-

In Table 10 we verify that the global correlation coe€cient assumes relatively
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high values for the majority of the indexes.

Mutual Inf. NMI A r
lag: 1,2e3
ASE 0.07106 0.04397 0.36399 0.18243
CAC 40 0.08927* 0.02656 0.40436 0.15161
DAX 30 0.01703 0.03822 0.18301 0.16951
FTSE 100 0.00400 0.01576 0.08927 0.11337
IBEX 35 0.10350* 0.05293 0.43241 0.21501
PSI 20 0.11263** 0.11805 0.44909 0.27746

S&P 500 0.13329** 0.04088 0.48374 0.16745

Table 10: Average mutual information, global correlation coe@cient (\), normal
mutual information and linear correlation (r) coe€cient of weekly data relative
to 3 lags.

The correlation coe@cients arrangement evidences the changes that occur
for the CAC 40 and S&P 500 indexes:

TFTSE100 < TCAC40 < TS&P500 < TDAX30 < TASE < TIBEX35 < T'PSI20,
Arrse100 < Apax3zo < Aase < Acacao < A1BEx35 < Apsi20 < As&P500.

For instance, rcacao < rase and Aasg < Acacao, Meaning that the ASE
index presents a linear correlation stronger than CAC 40 index, which does not
happen at a global level. Globally, the CAC 40 index presents a higher value of
dependence relative to the three ..rst lags (t — 1, t — 2, ¢ — 3) than ASE index,
for instance.

In a similar way, the series were ..Itered as in the daily data analysis, in order
to capture exclusively nonlinear dependence. To this end, the ..Itered series were
calculated through an ARM A(3,0) process having been applied the Ljung-Box
test, whose values are presented in Table 11.

ASE CAC40 DAX30 FTSE 100 IBEX35 PSI20 S&P 500

LBQ(0) 7,580 9,913 11,582 10,443 11,350 14,388 14,436

P1 0,004 0,005 0,002 -0,001 -0,013 0,004 -0,001

P2 -0,043 -0,029  -0,003 0,010 0,053 -0,006 0,001

Ps3 0,034 0,041 -0,002 -0,022 -0,014  -0,037 0,030

Table 11: Ljung-Box test for the ..Itered weekly series.

The linear autocorrelation coeCcients are not signi..cantly dizerent of zero;
therefore there is no evidence of linear dependence for the indexes faced to
the lags. We also applied a BDS test (see Appendix B) which leads us to
reject the null hypothesis of independence for almost all indexes, except for the
FTSE 100 and IBEX 35, which present contict results. In order to clarify the
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possible existence of nonlinear dependence in the ..Itered series, we computed
the measures of information theory (Table 12).

Mutual Inf. NMI A r
lag: 1
ASE 0.00183 0.00001 0.06039 0.00472
CAC 40 0.00101 0.00001 0.04482 0.00510

DAX 30 0.01105* 0.00000 0.14786 0.00200
FTSE 100 0.00289 0.00000 0.07595 0.00100
IBEX 35 0.00000 0.00009 0.00195 0.01353

PSI 20 0.01961** 0.00001 0.19612 0.00387
S&P 500 0.00828* 0.00000 0.12816 0.00000

Table 12: Average mutual information, global correlation coe@cient (\), normal
mutual information and linear correlation () coe€cient for ..Itered daily data.

In Table 12 the linear correlation coe@cient presents very low values, as well
as the mutual information based on the normal distribution (/M N). There is
also a sharp decline in the global correlation coe@cients. Although, the values
of the global correlation coe®cient are much higher than those presented by
the linear correlation coeccient, indicating the possible presence of nonlinear
dependence in the analyzed time series. The arrangement of the measures shows
us the existence of many discrepancies. The linear correlation coe€cient can be
disposed in the following way:

TS&P500 < TFTSE100 < TDAX30 < TPS120 < TASE < TCAC40 < TIBEX35,

while the global correlation coecient presents the following arrangement:

ArBEX35 < Acacao < Aase < ArTsE100 < As&Ps500 < ADAX30 < APSI20-

The IBEX 35 index is the one presenting the major levels of linear correlation
and also the minor value for global correlation, which leads us to conclude that
there is no nonlinear dependence, while the S&P 500 index presents a practically
null linear correlation but a high global correlation with a value of 0.12816. The
FTSE 100 index does not lead us to a similar conclusion because A = 0.07595.

Although the global correlation coe@cient presents high values of dependence
faced to lags 1, 2 and 3, as Tables 8,9 and 10 con..rm, there is a high probability
that this global correlation is supported by the linear correlation, since the
values for the global correlation coedcient of the ..Itered series are not too
high. That does not happen in the DAX 30, PSI 20 and S&P 500 indexes,
which evidence the presence of a nonlinear dependence. This fact can not be
explained by market characteristics (namely dimension and liquidity) of the
indexes, respectively, since they are indexes from very dicerent markets.
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3.3 Monthly data analysis

In the monthly data analysis we considered the averages monthly rate of return
of the indexes under study, which gave about 119 observations. In this analysis
the sample is relatively small, especially for estimation of entropy and mutual
information.

Darbellay and Vadja (1999) alert for the possibility of underestimating the
mutual information when we use small samples (less than 500 observations). In
this context, the same authors advise to use a higher value for the 5 parameter
used to evaluate if the subpartition must or not be realized. The authors [Dar-
bellay et al., (1999)] consider 5 = 4, being G the number of subpartitions in the
space.

Once more, we applied a Ljung-Box test to evaluate linear dependence in
the data concerning to its lagged values (Table 13). The test results reveal the
existence of serial linear dependence in a signi..cant way just for the PSI 20
index, and in a weaker way, to ASE and DAX 30 indexes. In this case, can we
expect that the indexes are independent and identically distributed? Obviously
that such conclusion will only be true if and only if the nonlinear dependence is
not statistically signi..cant.

ASE CAC 40 DAX 30 FTSE IBEX PSI20 S&P
100 35 500
LBQ(0) 17,429  6,7866  9,2902 15,745 14,848 17,634 19,652
P1 0,232* 0,155 0,229* 0,149 0,208*  0,324** 0,200*
P 0,009 0,022 0,073* 0,029 -0,117*  0,019** 0,024
Ps3 0,043 0,034 -0,026 0,065 -0,023 - 0,087
0,009**

Table 13: Ljung-Box test and autocorrelation coe®cients for monthly observa-
tions.

>From Figure 3 we can see that there is a serial dependence of the monthly
observations. In a general way, the global correlation tends to decrease for time
lag increases, such as veri..ed for the daily and weekly observations. ASE, DAX
30 and PSI 20 indexes present the highest global correlations value, that, in a
certain way, does not refute our previous conclusions.

We calculated the average mutual information, the normal mutual informa-
tion, the coeccient of linear correlation (r) and the coedcient of global cor-
relation (\) for lags considered in a joint way (Table 14). From Table 14 we
can see that the PSI 20 index presents the highest levels of linear and nonlinear
correlation, and FTSE 100 index presents the least linear correlation.

The correlation coe€cients arrangement is the following::

TFTSE100 < TCAC40 < TS&P500 < TIBEX35 < I'DAX30 < TASE < T'PSI20
A1BEx35 < ArFTsE100 < Acacao < As&Ps00 < AasE < Apax3o < Apsr20.

Besides the arrangement of the global and linear correlation coeCcients, the
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Figure 3: Global correlation coe@cient for serial dependence in the stock market
indexes monthly returns, for lags k = 1, ..., 10.
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Mutual Inf. NMI A r

lag: 1
ASE 0.01168 0.02829 0.15195 0.23456
CAC 40 0.00705 0.01226  0.11833 0.15566

DAX 30 0.05494* 0.02715 0.32258 0.22988
FTSE 100 0.00705 0.01158 0.11833 0.15128
IBEX 35 0.00360 0.02215 0.0864 0.20816

PSI 20 0.10401** 0.05749 0.43338 0.32958
S&P 500 0.00705 0.02051 0.11836 0.20047

Table 14: Average mutual information, global correlation coedcient (), normal
mutual information and linear correlation () coe@cient of monthly data relative
to 1 lag.

analysis of Table 14 allows us to verify that for the majority of the indexes the
normal mutual information presents highest values than those of the empirical
mutual information. This situation is illustrated in the Figure 4.

These results seems to refute the theory, since the empirical mutual infor-
mation will always be higher than the normal mutual information. An identical
conclusion can be taken for the comparative analysis between the linear and
global correlation coeCcients. We presumed that such discrepancies are related
with the small number of observations (119 observations) which leads to the
undervaluation of the mutual information. >From the joint analysis of Tables
14, 15 and 16 we verify that PSI 20 index has maintained in a relatively constant
way the values for the linear correlation coe@cient as for the global correlation
coe€cient. Only in the case on which we analyze the global dependence relative
to the ..rst three lags, the empirical mutual information presents higher values
than normal mutual information, as well as the global correlation coedcient
presents much higher values than linear correlation coeGcient. In addition to
the enumerated property (/M > IMN), the additivity property is not also
respected by the DAX 30 index, since IM; = 0.05494; IM;» = 0.16112 and
IM; 2,3 = 0.05101.

We ..Itered the time series in study in order to eliminate the linear depen-
dence, by the following processes ARM A(1,0) for ASE, DAX 30, IBEX 35 and
S&P 500 indexes and ARM A(3,0) for PSI 20 index. We didn’t apply any
of those processes to the CAC 40 and FTSE 100 indexes, since none of this
presented a statistically signi..cant linear autocorrelation. Ljung-Box test was
applied to the ..Itered time series, which con..rms the inexistence of any type of
serial linear dependence (Table 17).

The BDS test results lead us not to reject the null hypothesis of independence
for the majority of the indexes, except the DAX 30 index which to distances
of 0.50, 1o and 1.50 consider that we must reject the null hypothesis with a
signi..cance level of 1%. The information theory measures, applied to the ..Itered
time series, point to the non existence of nonlinear dependence (Table 18), in
accordance with BDS test results.
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Figure 4: Empirical mutual information and normal mutual information to
monthly data relative to lag 1.

We must underline that the ..Itered time series related to the ASE, PSI
20 and S&P 500 indexes, present positive values for the statistics, revealing the
possible presence of nonlinear dependence, although not statistically signi..cant.

4 Conclusions

On the basis of the presented results in this paper, we may conclude that the
mutual information and the global correlation coe€cient are e¢cient measures
for testing and evaluating serial dependence, since they capture not only the
linear dependence, but also the nonlinear dependence and this allows us to
study with some detail nonlinear systems.

The estimation of mutual information for empirical data, with unknown
theoretical probability distribution, must be based on one of the two enunciated
algorithms in order to obtain an adequate space partition. Only a partition that
allows for a uniform distribution (algorithm A) or local independence (algorithm
B) can provide a correct computation of the mutual information.

According to Maasoumi and Racine (2002) and Granger and Lin (1994), the
mutual information can also be used as a measure of predictability, through the
calculation of the global correlation coedcient (), allowing for the construction
of prediction models.

The empirical evidence presented by Granger and Lin (1994), Granger and
Maasoumi (2000), Granger, Maasoumi and Racine (2002), Maasoumi and Racine
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Mutual Inf. NMI A r

lag: 1e2
ASE 0.02815 0.05020 0.23396 0.24808
CAC 40 0.01976 0.03498 0.19687 0.15775

DAX 30 0.16112* 0.07454 0.52486 0.22906
FTSE 100 0.01681 0.02284 0.18185 0.16616
IBEX 35 0.01774 0.07775 0.18668 0.26678

PSI 20 0.10557 0.09052 0.43627 0.34529
S&P 500 0.01806 0.02005 0.18836 0.20073

Table 15: Average mutual information, global correlation coedcient (), normal
mutual information and linear correlation () coe@cient of monthly data relative
to 2 lags.

Mutual Inf. NMI A r

lag: 1,2¢e3
ASE 0.05103 0.07805 0.31149 0.25184
CAC 40 0.06249 0.05451 0.34275 0.15289
DAX 30 0.05101 0.13315 0.31142 0.23370
FTSE 100 0.04197 0.03562 0.28376 0.17108
IBEX 35 0.06167 0.12165 0.34064 0.27088
PSI 20 0.09175 0.15803 0.40946 0.34683
S&P 500 0.04162 0.03768 0.28261 0.22220

Table 16: Average mutual information, global correlation coe@cient (\), normal
mutual information and linear correlation () coe@cient of monthly data relative
to 3 lags.

(2002), Bernhard and Darbellay (1999), Darbellay (1998a, 1998b, 1998c) and
Darbellay and Wuertz (2000) demonstrates that these measures can capture the
global relation established between the relevant variables, being this a linear or
nonlinear relationship.

The results presented in this paper are in some way consistent with the
results presented by the above mentioned authors, since we made a comparison
between some stock market indexes, not only for serial linear dependence but
also for serial nonlinear dependence.

Generally, we can say that there are certain indexes which present nonlinear
dependence signals, namely the DAX 30, PSI 20 and S&P 500 indexes, for any
periodicity of observations, leading us to conclude that the serial scale does not
arect the conclusions obtained, except for the monthly data which did not allow
us to make many conclusions, since there was a small number of observations
for this type of analysis. In spite of some indexes evidence signi..cant serial
nonlinear dependence, that does not mean that these markets are not e¢cient.

The presence of serial dependence must provide some strategy to generate
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ASE DAX 30 IBEX 35 PSI20 S&P 500
LBQ(10) 8,872 2,168 9,059 2,641 9,681
P1 0,001 0,001 0,008 0,003 0,003
P2 -0,016 0,011 -0,008 -0,001 -0,003
Ps3 0,067 -0,045 0,027 0,034 0,086

Table 17: Ljung-Box test for the ..Itered monthly series.

Mutual Inf. NMI A r

lag: 1

ASE 0.00238 0.00000 0.06891 0.00100
DAX 30 0.00000 0.00000 0.00000 0.00100
IBEX 35 0.00000 0.00003 0.00000 0.00768
PSI 20 0.00004 0.00000 0.00877 0.00316
S&P 500 0.00033 0.00000 0.02571 0.00316

Table 18: Average mutual information, global correlation coedcient (\), normal
mutual information and linear correlation () coe®cient of ..Itered monthly data.

systematic pro..ts, for that market can be considered not eCcient. In this case,
the investors must found which function is behind the global and nonlinear de-
pendence to use that to take decisions and make pro..ts. Even if the investors
found the function, that would not be meaning of direct pro..t, because trans-
action costs could simply eliminate those pro..ts.

The IBEX 35, CAC 40 and FTSE 100 indexes present small signi..cant levels
of nonlinear dependence in all serial scales analyzed. The ASE index presented
the highest discrepancy on the serial nonlinear dependence levels. For the daily
data this was one of the indexes that presented the highest levels of nonlinear
and global dependence, while for the weekly periodicity the values of the mutual
information were nor statistically signi..cant for the ..Itered time series.

The weekly observations present a slightly higher levels of dependence than
the daily observations. That might be explained by the fact that those observa-
tions are weekly and monthly averages and not isolated values of a day in a week
or month, and also because the daily movement can contain some bias resulting
from slow dilutions of information in the markets. In what refers to monthly
analysis, the results were inconclusive because the number of observations was
not enough to apply mutual information in a conclusive way.

In spite of this, much of the global correlation in the weekly observations
is supported by the linear correlation observed, which seems to indicate that
periodicity is not the cause of the major or minor level of nonlinear dependence.
Moreover, it is also apparent that the structure of the statistical dependence
in the global level, as well as its degree, are not related to any speci..c market
characteristics.

In the end, we can say that the main advantage of the application of the
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mutual information in ..nancial time series is the fact that this measure cap-
tures the global serial dependence (linear and nonlinear) without any request
about some theoretical probability distribution or speci..c model of dependency.
Even if this dependence can not to refute the eCcient market hypothesis, it is
important to the investor to know that the rate of returns are not independent
and identically distributed.
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5 Appendix A

Critical values tables for testing serial independence through mutual information
fot NV (0,1) data. 5000 replications were computed.

N=100 N=200

Percentiles Percentiles

Lag 90 95 99 Lag 90 95 99
0.0185 0.0323 0.0679 1 0.0092 0.0214 0.0361
0.1029 0.1232 0.1933 2 0.0561 0.0701 0.1080
0.1059 0.1260 0.1722 3 0.0591 0.0918 0.1318

W N -
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N=500 N=1000

Percentiles Percentiles

Lag 90 95 99 Lag 90 95 99

1 0.0037  0.0070 0.0144 1 0.0019 0.0045 0.0071
2 0.0222  0.0369 0.0501 2 0.0133 0.0191 0.0311
3 0.06799 0.0788 0.1128 3 0.0340 0.0399 0.0568
N=1500 N=2000

Percentiles Percentiles

Lag 90 95 99 Lag 90 95 99

1 0.0013 0.0026 0.0045 1 0.0009 0.0019 0.0033
2 0.0101 0.0133 0.0224 2 0.0061 0.0094 0.0147
3 0.0222 0.0267 0.0369 3 0.0169 0.0203 0.0278
N=2500

Percentiles

Lag 90 95 99

0.0008 0.0015 0.0030
0.0054 0.0078 0.0129
0.0134 0.0171 0.0251

w N

6 Appendix B
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Index m FE
0.5¢0 lo 1.50 20

ASE 2 | 9.410** 9.480** 9.098** 8.292**
3 | 12.087** 11.752** 10.880**  9.615**
4 | 14.609** 13.910** 12.742** 11.689**
5 | 17.963**  15.629**  13.845** 12.402**
CAC 40 2 | 4.200** 4.974** 6.707** 8.595**
3 | 5.940*%* 7.384** 9.753**  11.887**
4 | 7.325*%* 9.067**  11.570** 14.092**
5 | 8.398**  10.247** 12.704**  15.327**
Dax 30 2 | 8.692**  10.104** 10.848** 11.257**
3 | 12.440** 14.008** 14.825** 14.950**
4 | 15.183** 16.710** 17.327** 17.180**
5 | 18.322** 19.712** 19.267** 19.079**
FTSE 100 | 2 | 5.998** 7.177** 8.297** 8.866**
3 | 8.371** 9.722**  11.018**  11.845**
4 | 10.120** 11.771** 13.140** 14.028**
5 | 12.052** 13.488** 14.818** 15.844**
IBEX 35 2 | 4.578** 5.520** 6.229** 7.073**
3 | 6.866** 7.163** 8.564** 9.318**
4 | 9.271**  10.165** 10.750** 11.279**
5 | 11.213** 12.103** 12.587** 13.036**
PSI 20 2 | 9.410** 9.480** 9.098** 8.292**
3 | 12.087** 11.752** 10.880**  9.615**
4 | 14.609** 13.910** 12.742** 11.389**
5 | 17.963**  15.629**  13.845** 12.402**
S&P 500 2 | 8.639** 8.698** 9.230**  10.098**
3 | 13.308** 13.232** 13.040** 13.197**
4 | 17.491** 16.272** 15.161** 14.843**
5 | 23.349** 20.011** 17.536** 16.594**

Table 19: BDS test for the ..Itered daily data. m is the embedding dimension
and E is the distance between points measured in terms of number of standard
deviations of raw data.
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Index m FE
0.50 lo 1.50 20

ASE 2 | 5.284**  5038** 4.740** 3.761**
3 | 6.472%*  6.371** 6.212** 5.162**
4 | 7.961**  7.750**  6.968** 5.609**
5 | 9.339%*  8.904** 7.563** 5.971**
CAC 40 2 | 4517  4.421**  4.543** 4.505**
3 | 4447  4369** 4.678** 4.655**
4 | 5.574**  4.657** 4.844** 4.808**
5 | 6.051**  4.622** 4.866** 4.879**
Dax 30 2 | 3.804**  4.399**  4.983** 5.170**
3 | 6.879**  6.538** 6.678** 6.345**
4 | 11.249**  8.672** 8.162** 7.154**
5 | 15.005** 10.257** 9.147** 7.736**
FTSE 100 | 2 1.491 1.749 2.292*  2.953**
3 1.386 2.271* 2.731*  3.454**
4 1.780 3.020*  3.460** 4.040**
5 | 2.962**  3.621** 4.162** 4.606**
IBEX 35 2 1.426 1.322 1.546 1.547
3 1.650 1.748 1.911 1.920
4 1.841 2.585**  2.697**  2.569*
5 1.857 2.952**  2.843**  2.541*
PSI 20 2 | 5.143**  4.875** 4.060** 3.496**
3 | 5.776*%*  5.781** 4.965** 4.354**
4 | 6.596**  6.916** 5.961** 5.013**
5 | 7.331**  7.937** 6.645** 5.315**
S&P 500 2 | 4.672**%  3.837**  2.848** 2.429**
3 | 6.434*%*  4,919** 3.547** 3.174**
4 | 8553**  6.607** 4.778** 4.066**
5 | 10.645**  7.920**  5.605** 4.664**

Table 20: BDS test for the ..Itered weekly data. m is the embedding dimension
and FE is the distance between points measured in terms of number of standard
deviations of raw data.
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Index m E
0.50 lo 1.50 20

ASE 2 | 2.593** 0.576 0.753 0.178
3 1.856 1.419 1.175 0.381
4 0.593 1.798 1.268 0.386
5 -0.388 1.994* 1.480 0.283
CAC 40 2 0.270 1.548 0.867 0.743
3 -0.503 0.863 0.101  -0.069
4 -0.879 1.204 0.618 0.876
5 -1.647 1.107 0.184  -0.118
Dax 30 2 | 3.939** 4.226** 3.061** 1.531
3 | 4776** 3.511** 2.164** 0.175
4 | 8.332%* 4.666** 2.706** 0.925
5 | 11.711** 6.090** 2.342* -0.265
FTSE 100 | 2 1.807 0.429 0.695 0.641
3 1.567 0.685 1.006 0.510
4 1.435 1.666 1.811 1.089
5 | 2.725**  2.101* 1.625 0.334
IBEX 35 2 2.381* 2.504*  2.426* 2.203*
3 | 3.505** 1.369 1.522 0.430
4 | 3.529*%* 1.937 2.147*  0.853
5 | 4.486**  2.147* 1.833 0.486
PSI 20 2 0.548 0.291 1.125 1.101
3 0.443 -0.011 0.453  -0.433
4 1.117 0.478 0.873 0.182
5 0.793 1.828 1977 1.374
S&P 500 2 1.289 0.866 0.321 0.048
3 2.165* 1.618 0.849  -0.072
4 | 3.706** 3.081**  1.842 0.849
5 | 4.916** 3.280** 1.737 0.765

Table 21: BDS test for the ..Itered monthly data. m is the embedding dimension
and E is the distance between points measured in terms of number of standard
deviations of raw data.
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