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Abstract

Various approaches have been developed to upper bound the generalization error of
a supervised learning algorithm. However, existing bounds are often loose and lack
of guarantees. As a result, they may fail to characterize the exact generalization
ability of a learning algorithm. Our main contribution is an exact characterization of
the expected generalization error of the well-known Gibbs algorithm (a.k.a. Gibbs
posterior) using symmetrized KL information between the input training samples
and the output hypothesis. Our result can be applied to tighten existing expected
generalization error and PAC-Bayesian bounds. Our approach is versatile, as it also
characterizes the generalization error of the Gibbs algorithm with data-dependent
regularizer and that of the Gibbs algorithm in the asymptotic regime, where it
converges to the empirical risk minimization algorithm. Of particular relevance,
our results highlight the role the symmetrized KL information plays in controlling
the generalization error of the Gibbs algorithm.

1 Introduction

Evaluating the generalization error of a learning algorithm is one of the most important challenges in
statistical learning theory. Various approaches have been developed [55], including VC dimension-
based bounds [66], algorithmic stability-based bounds [16], algorithmic robustness-based bounds
[72], PAC-Bayesian bounds [45], and information-theoretic bounds [71].

However, upper bounds on generalization error may not entirely capture the generalization ability of a
learning algorithm. One apparent reason is the tightness issue, some upper bounds [9] can be far away
from the true generalization error or even vacuous when evaluated in practice. More importantly,
existing upper bounds do not fully characterize all the aspects that could influence the generalization
error of a supervised learning problem. For example, VC dimension-based bounds depend only
on the hypothesis class, and algorithmic stability-based bounds only exploit the properties of the
learning algorithm. As a consequence, both methods fail to capture the fact that generalization
error depends strongly on the interplay between the hypothesis class, learning algorithm, and the
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underlying data-generating distribution, as discussed in [71, 73]. This paper overcomes the above
limitations by deriving an exact characterization of the generalization error for a specific supervised
learning algorithm, namely the Gibbs algorithm.

1.1 Problem Formulation

Let S = {Zi}ni=1 be the training set, where each Zi is defined on the same alphabet Z . Note that Zi
is not required to be i.i.d generated from the same data-generating distribution PZ , and we denote the
joint distribution of all the training samples as PS . We denote the hypotheses by w ∈ W , whereW is
a hypothesis class. The performance of the hypothesis is measured by a non-negative loss function
` : W ×Z → R+

0 , and we can define the empirical risk and the population risk associated with a
given hypothesis w as

LE(w, s) ,
1

n

n∑
i=1

`(w, zi), and LP (w,PS) , EPS [LE(w, S)], (1)

respectively. A learning algorithm can be modeled as a randomized mapping from the training set
S onto an hypothesis W ∈ W according to the conditional distribution PW |S . Thus, the expected
generalization error quantifying the degree of over-fitting can be written as

gen(PW |S , PS) , EPW,S [LP (W,PS)− LE(W,S)], (2)

where the expectation is taken over the joint distribution PW,S = PW |S ⊗ PS .

In this paper we focus on the generalization error of the Gibbs algorithm (a.k.a. Gibbs posterior [21]).
The (α, π(w), f(w, s))-Gibbs distribution, which was first proposed by [28] in statistical mechanics
and further investigated by [35] in information theory, is defined as:

PαW |S(w|s) , π(w)e−αf(w,s)

V (s, α)
, α ≥ 0, (3)

where α is the inverse temperature, π(w) is an arbitrary prior distribution of W , f(w, s) is energy
function, and V (s, α) ,

∫
π(w)e−αf(w,s)dw is the partition function.

If P and Q are probability measures over space X , and P is absolutely continuous with respect to Q,
the Kullback-Leibler (KL) divergence between P and Q is given by D(P‖Q) ,

∫
X log

(
dP
dQ

)
dP .

If Q is also absolutely continuous with respect to P , then the symmetrized KL divergence (a.k.a.
Jeffrey’s divergence [36]) is

DSKL(P‖Q) , D(P‖Q) +D(Q‖P ). (4)

The mutual information between two random variables X and Y is defined as the KL divergence
between the joint distribution and product-of-marginal distribution I(X;Y ) , D(PX,Y ‖PX ⊗
PY ), or equivalently, the conditional KL divergence between PY |X and PY averaged over PX ,
D(PY |X‖PY |PX) ,

∫
X D(PY |X=x‖PY )dPX(x). By swapping the role of PX,Y and PX ⊗ PY

in mutual information, we get the lautum information introduced by [49], L(X;Y ) , D(PX ⊗
PY ‖PX,Y ). Finally, the symmetrized KL information between X and Y is given by [6]:

ISKL(X;Y ) , DSKL(PX,Y ‖PX ⊗ PY ) = I(X;Y ) + L(X;Y ). (5)

Throughout the paper, upper-case letters denote random variables (e.g., Z), lower-case letters denote
the realizations of random variables (e.g., z), and calligraphic letters denote sets (e.g., Z). All the
logarithms are the natural ones, and all the information measure units are nats. N (µ,Σ) denotes the
Gaussian distribution with mean µ and covariance matrix Σ.

1.2 Contributions

The core contribution of this paper (see Theorem 1) is an exact characterization of the expected
generalization error for the Gibbs algorithm in terms of the symmetrized KL information between the
input training samples S and the output hypothesis W , as follows:

gen(PαW |S , PS) =
ISKL(W ;S)

α
.
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This result highlights the fundamental role of such an information quantity in learning theory that
does not appear to have been recognized before. We also discuss some general properties of the
symmetrized KL information, which could be used to prove the non-negativity and concavity of the
expected generalization error for the Gibbs algorithm.

Building upon this result, we further expand our contributions in various directions:

• In Section 3, we tighten existing expected generalization error bound (see Theorem 2) and
PAC-Bayesian bound (see Theorem 3) for Gibbs algorithm under i.i.d and sub-Gaussian
assumptions by combining our symmetrized KL information characterization with the
existing bounding techniques.

• In Section 4 (Proposition 1 and 2), we show how to use our method to characterize the
asymptotic behavior of the generalization error for Gibbs algorithm under large inverse tem-
perature limit α→∞, where Gibbs algorithm converges to the empirical risk minimization
algorithm. Note that existing bounds, such as [39, 52, 71], become vacuous in this regime.

• In Section 5, we characterize the generalization error of the Gibbs algorithm with data-
dependent regularizer using symmetrized KL information, which provides some insights on
how to reduce the generalization error using regularization.

1.3 Motivations for the Gibbs Algorithm

As we discuss below, the choice of Gibbs algorithm is not arbitrary since it arises naturally in many
different applications and is sufficiently general to model many learning algorithms used in practice:

Empirical Risk Minimization: The (α, π(w), LE(w, s))-Gibbs algorithm can be viewed as a ran-
domized version of the empirical risk minimization (ERM) algorithm if we specify the energy
function f(w, s) = LE(w, s). As the inverse temperature α → ∞, the prior distribution π(w)
becomes negligible, and the Gibbs algorithm converges to the standard ERM algorithm.

Information Risk Minimization: The Gibbs algorithm also arises when conditional KL-divergence
is used as a regularizer to penalize over-fitting in the information risk minimization framework. In
particular, it is shown in [71, 75, 76] that the solution to the following regularized ERM problem

P ?W |S = arg inf
PW |S

(
EPW,S [LE(W,S)] +

1

α
D(PW |S‖π(W )|PS)

)
, (6)

corresponds to the (α, π(w), LE(w, s))-Gibbs distribution. The inverse temperature α controls the
regularization term and balances between over-fitting and generalization.

PAC-Bayesian Bound: The following upper bound on population risk from [63] holds with proba-
bility at least 1− δ for 0 < δ < 1, and 0 < λ < 2 under distribution PS ,

EPW |S=s
[LP (W,PS)] ≤

EPW |S=s
[LE(W, s)]

1− λ
2

+
D(PW |S=s‖π(W )) + log( 2

√
n
δ )

λ(1− λ
2 )n

. (7)

If we fix λ, π(w) and optimize over PW |S=s, the distribution that minimizes the PAC-Bayes bound
in (7) would be the (nλ, π(w), LE(w, s))-Gibbs distribution. Similar bounds are proposed in [21,
Theorem 1.2.1] and [65, Lemma 10], where optimizing over posterior distribution would result in a
Gibbs distribution.

SGLD Algorithm: The Stochastic Gradient Langevin Dynamics (SGLD) can be viewed as the
discrete version of the continuous-time Langevin diffusion, and it is defined as follows:

Wk+1 = Wk − β∇LE(Wk, s) +

√
2β

α
ζk, k = 0, 1, · · · , (8)

where ζk is a standard Gaussian random vector and β > 0 is the step size. In [51], it is proved that un-
der some conditions on loss function, the conditional distribution PWk|S induced by SGLD algorithm
is close to (α, π(W0), LE(wk, s))-Gibbs distribution in 2-Wasserstein distance for sufficiently large
k. Under some conditions on the loss function `(w, z), [22, 42] shows that in the continuous-time
Langevin diffusion, the stationary distribution of hypothesis W is the Gibbs distribution.
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1.4 Other Related Work

Information-theoretic generalization error bounds: Recently, [58, 71] propose to use the mutual
information between the input training set and the output hypothesis to upper bound the expected
generalization error. However, those bounds are known not to be tight, and multiple approaches
have been proposed to tighten the mutual information-based bound. [19] provides tighter bounds
by considering the individual sample mutual information, [10, 11] propose using chaining mutual
information, and [30, 31, 62] advocate the conditioning and processing techniques. Information-
theoretic generalization error bounds using other information quantities are also studied, such as,
f -divergence [37], α-Rényi divergence and maximal leakage [25, 34], Jensen-Shannon divergence [7]
and Wasserstein distance [41, 56, 69]. Using rate-distortion theory, [17, 18, 43] provide information-
theoretic generalization error upper bounds for model misspecification and model compression.

PAC-Bayesian generalization error bounds: First proposed by [44, 45, 60], PAC-Bayesian analysis
provides high probability bounds on the generalization error in terms of KL divergence between the
data-dependent posterior induced by the learning algorithm and a data-free prior that can be chosen
arbitrarily. There are multiple ways to generalize the standard PAC-Bayesian bounds, including using
different information measures other than the KL divergence [3, 8, 14, 32, 48] and considering data-
dependent priors (prior depends on the training data) [5, 13, 21, 23, 24, 53] or distribution-dependent
priors (prior depends on data-generating distribution) [20, 40, 50, 54]. In [27], a more general PAC-
Bayesian framework is proposed, which provides a high probability bound on the convex function of
the expected population and empirical risk with respect to the posterior distribution, whereas in [26]
the connection between Bayesian inference and PAC-Bayesian theorem is explored by considering
Gibbs posterior and negative log loss function.

Generalization error of Gibbs algorithm: Both information-theoretic and PAC-Bayesian ap-
proaches have been used to bound the generalization error of the Gibbs algorithm. An information-
theoretic upper bound with a convergence rate ofO (α/n) is provided in [52] for the Gibbs algorithm
with bounded loss function, and PAC-Bayesian bounds using a variational approximation of Gibbs
posteriors are studied in [4]. [11, Appendix D] provides an upper bound on the excess risk of
the Gibbs algorithm under sub-Gaussian assumption. [39] focuses on the excess risk of the Gibbs
algorithm and a similar generalization bound with rate of O (α/n) is provided under sub-Gaussian
assumption. Although these bounds are tight in terms of the sample complexity n, they become
vacuous when the inverse temperature α → ∞, hence are unable to capture the behaviour of the
ERM algorithm.

Our work differs from this body of research in the sense that we provide an exact characterization
of generalization error of the Gibbs algorithm in terms of the symmetrized KL information. Our
work also further leverages this characterization to tighten the existing expected and PAC-Bayesian
generalization error bounds in literature.

2 Generalization Error of Gibbs Algorithm

Our main result, which characterizes the exact expected generalization error of the Gibbs algorithm
with prior distribution π(w), is as follows:
Theorem 1. For (α, π(w), LE(w, s))-Gibbs algorithm,

PαW |S(w|s) =
π(w)e−αLE(w,s)

V (s, α)
, α > 0, (9)

the expected generalization error is given by

gen(PαW |S , PS) =
ISKL(W ;S)

α
. (10)

Sketch of Proof: It can be shown that the symmetrized KL information can be written as

ISKL(W ;S) = EPW,S [log(PαW |S)]− EPW⊗PS [log(PαW |S)]. (11)

Just like the generalization error, the above expression is the difference between the expectations
of the same function evaluated under the joint distribution and the product-of-marginal distribution.
Note that PW,S and PW ⊗ PS share the same marginal distribution, we have EPW,S [log π(W )] =
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EPW [log π(W )], and EPW,S [log V (S, α)] = EPS [log V (S, α)]. Then, combining (9) with (11)
completes the proof. More details together with the full proof are provided in Appendix B.1.

To the best of our knowledge, this is the first exact characterization of the expected generalization
error for the Gibbs algorithm. Note that Theorem 1 only assumes that the loss function is non-negative,
and it holds even for non-i.i.d training samples.

In Section 2.1, we discuss some general properties of the expected generalization error that can be
learned directly from the properties of symmetrized KL information. In Section 2.2, we provide a
mean estimation example to show that the symmetrized KL information can be computed exactly for
squared loss with Gaussian prior.

2.1 General Properties

By Theorem 1, some basic properties of the expected generalization error, including non-negativity
and concavity, can be proved directly from the properties of symmetrized KL information.

The non-negativity of the expected generalization error, i.e., gen(PαW |S , PS) ≥ 0, follows by the
non-negativity of the symmetrized KL information. Note that the non-negativity result could also be
proved using [39, Appendix A.2] under much more stringent assumptions, including i.i.d samples
and a sub-Gaussian loss function.

It is shown in [6] that the symmetrized KL information ISKL(X;Y ) is a concave function of PX for
fixed PY |X , and a convex function of PY |X for fixed PX . Thus, we have the following corollary.
Corollary 1. For a fixed (α, π(w), LE(w, s))-Gibbs algorithm PαW |S , the expected generalization
error gen(PαW |S , PS) is a concave function of PS .

The concavity of the generalization error for the Gibbs algorithm PαW |S can be immediately used
to explain why training a model by mixing multiple datasets from different domains leads to poor
generalization. Suppose that the data-generating distribution is domain-dependent, i.e., there exists
a random variable D, such that D ↔ S ↔ W holds. Then, PS = EPD [PS|D] can be viewed as
the mixture of the data-generating distribution across all domains. From Corollary 1 and Jensen’s
inequality, we have

gen(PαW |S , PS) ≥ EPD
[
gen(PαW |S , PS|D)

]
, (12)

which shows that the generalization error of Gibbs algorithm achieved with the mixture distribution
PS is larger than the averaged generalization error for each PS|D.

More discussions about other properties of symmetrized KL divergence, including data processing
inequality ( symmetrized KL divergence is an f -divergence), variational representation, chain rule,
and their implications in learning problems are provided in Appendix B.2.

2.2 Example: Mean Estimation

We now consider a simple learning problem, where the symmetrized KL information can be computed
exactly, to demonstrate the usefulness of Theorem 1. All details are provided in Appendix B.3.

Consider the problem of learning the meanµ ∈ Rd of a random vectorZ using n i.i.d training samples
S = {Zi}ni=1. We assume that the covariance matrix ofZ satisfies ΣZ = σ2

ZId with unknown σ2
Z . We

adopt the mean-squared loss `(w, z) = ‖z−w‖22, and assume a Gaussian prior for the mean π(w) =
N (µ0, σ

2
0Id). If we set inverse-temperature α = n

2σ2 , then the ( n
2σ2 ,N (µ0, σ

2
0Id), LE(w, s))-Gibbs

algorithm is given by the following posterior distribution [47],

PαW |S(w|Zn) ∼ N
(σ2

1

σ2
0

µ0 +
σ2

1

σ2

n∑
i=1

Zi, σ
2
1Id

)
, with σ2

1 =
σ2

0σ
2

nσ2
0 + σ2

. (13)

Since PαW |S is Gaussian, the mutual information and lautum information are given by

I(S;W ) =
ndσ2

0σ
2
Z

2(nσ2
0 + σ2)σ2

−D
(
PW ‖N (µW , σ

2
1Id)

)
, (14)

L(S;W ) =
ndσ2

0σ
2
Z

2(nσ2
0 + σ2)σ2

+D
(
PW ‖N (µW , σ

2
1Id)), with µW =

σ2
1

σ2
0

µ0 +
nσ2

1

σ2
µ. (15)
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For additive Gaussian channel PW |S , it is well known that Gaussian input distribution (which also
gives a Gaussian output distribution PW ) maximizes the mutual information under a second-order
moment constraint. As we can see from the above expressions, the opposite is true for lautum
information. In addition, symmetrized KL information ISKL(W ;S) is independent of the distribution
of PZ , as long as ΣZ = σ2

ZId.

From Theorem 1, the generalization error of this algorithm can be computed exactly as:

gen(PαW |S , PS) =
ISKL(W ;S)

α
=

2dσ2
0σ

2
Z

nσ2
0 + σ2

=
2dσ2

0σ
2
Z

n(σ2
0 + 1

2α )
, (16)

which has the decay rate of O (1/n). As a comparison, the individual sample mutual information
(ISMI) bound from [19], which is shown to be tighter than the mutual information-based bound in
[71, Theorem 1], gives a sub-optimal bound with order O (1/

√
n), as n→∞, (see Appendix B.4).

3 Tighter Generalization Error Upper Bounds

In this section, we show that by combining Theorem 1 with existing information-theoretic and
PAC-Bayesian approaches, we can provide tighter generalization error upper bounds for the Gibbs
algorithm. These bounds quantify how the generalization error of the Gibbs algorithm depends on
the number of samples n, and are useful when directly evaluating the symmetrized KL information is
hard.

3.1 Expected Generalization Error Upper Bound

The following upper bound on the expected generalization error for the Gibbs algorithm can be
obtained by combining our Theorem 1 with the information-theoretic bound proposed in [71] under
i.i.d and sub-Gaussian assumptions.
Theorem 2. (proved in Appendix C.1) Suppose that the training samples S = {Zi}ni=1 are i.i.d
generated from the distribution PZ , and the non-negative loss function `(w,Z) is σ-sub-Gaussian
on the left-tail ∗ under distribution PZ for all w ∈ W . If we further assume CE ≤ L(W ;S)

I(W ;S) for some
CE ≥ 0, then for the (α, π(w), LE(w, s))-Gibbs algorithm, we have

0 ≤ gen(PαW |S , PS) ≤ 2σ2α

(1 + CE)n
. (17)

Theorem 2 establishes the convergence rate O(α/n) of the generalization error of Gibbs algorithm
with i.i.d training samples, and suggests that a smaller inverse temperature α leads to a tighter upper
bound. Note that all the σ-sub-Gaussian loss functions are also σ-sub-Gaussian on the left-tail under
the same distribution (loss function in Section 2.2 is sub-Gaussian on the left-tail under PZ , but not
sub-Gaussian). Therefore, our result also applies to any bounded loss function ` :W ×Z → [a, b],
since bounded functions are ( b−a2 )-sub-Gaussian.
Remark 1 (Previous Results). Using the fact that Gibbs algorithm is differentially private [46] for
bounded loss functions ` ∈ [0, 1], directly applying [71, Theorem 1] gives a sub-optimal bound
|gen(PαW |S , PS)| ≤

√
α
n . By further exploring the bounded loss assumption using Hoeffding’s lemma,

a tighter upper bound |gen(PαW |S , PS)| ≤ α
2n is obtained in [52], which has the similar decay rate

order of O (α/n). In [39, Theorem 1], the upper bound gen(PαW |S , PS) ≤ 4σ2α
n is derived with a

different assumption, i.e., `(W, z) is σ-sub-Gaussian under Gibbs algorithm PαW |S . In Theorem 2,
we assume the loss function is σ-sub-Gaussian on left-tail under data-generating distribution PZ for
all w ∈ W , which is more general as we discussed above. Our upper bound is also improved by a
factor of 1

2(1+CE) compared to the result in [39].

Remark 2 (Choice of CE). Since L(W ;S) > 0 when I(W ;S) > 0, setting CE = 0 is always valid
in Theorem 2, which gives gen(PαW |S , PS) ≤ 2σ2α

n . As shown in [49, Theorem 15], L(S;W ) ≥

∗A random variable X is σ-sub-Gaussian if logE[eλ(X−EX)] ≤ σ2λ2

2
, ∀λ ∈ R, and X is σ-sub-Gaussian

on the left-tail if logE[eλ(X−EX)] ≤ σ2λ2

2
, ∀λ ≤ 0.
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I(S;W ) holds for any Gaussian channel PW |S . In addition, it is discussed in [49, Example 1],
if either the entropy of training S or the hypothesis W is small, I(S;W ) would be smaller than
L(S;W ) (as it is not upper-bounded by the entropy), which implies that the lautum information term
is not negligible in general.

We extend Theorem 2 by considering other types of tail behavior including sub-Gamma and sub-
Exponential on left-tail in Appendix C.2.

3.2 PAC-Bayesian Upper Bound

As discussed in Section 1.4, the prior distribution used in PAC-Bayesian bounds is different from the
prior in Gibbs algorithm, since the former priors can be chosen arbitrarily to tighten the generalization
error bound. In this section, we provide a tighter PAC-Bayesian bound based on the symmetrized KL
divergence, which is inspired by the distribution-dependent PAC-Bayesian bound proposed in [40]
using (α, π(w), LP (w,PS))-Gibbs distribution as the PAC-Bayesian prior.

As the data-generating distribution PS is unknown in practice, we consider the
(α, π(w), LP (w,PS′))-Gibbs distribution in the following discussion, where PS′ is an arbi-
trary data-generating distribution. Since (α, π(w), LP (w,PS′))-Gibbs distribution is independent of
the samples S and only depends on the population risk LP (w,PS′), we can denote it as Pα,L

′
P

W .

By exploiting the connection between the symmetrized KL divergence DSKL

(
PαW |S=s

∥∥Pα,L′PW

)
and

the KL divergence term D
(
PαW |S=s

∥∥Pα,L′PW

)
in the PAC-Bayesian bound from [40], the following

PAC-Bayesian bound can be obtained under i.i.d and sub-Gaussian assumptions.
Theorem 3. (proved in Appendix D) Suppose that the training samples S = {Zi}ni=1 are i.i.d
generated from the distribution PZ , and the non-negative loss function `(w,Z) is σ-sub-Gaussian
under data-generating distribution PZ for all w ∈ W . If we use the (α, π(w), LP (w,PS′))-Gibbs
distribution as the PAC-Bayesian prior, where PS′ is an arbitrary chosen (and known) distribution,
the following upper bound holds for the generalization error of (α, π(w), LE(w, s))-Gibbs algorithm
with probability at least 1− 2δ, 0 < δ < 1

2 under distribution PS ,∣∣∣EPα
W |S=s

[LP (W,PS)− LE(W, s)]
∣∣∣ ≤ 2σ2α

(1 + CP (s))n
+ 2

√
σ2α

(1 + CP (s))n

(
4
√

2σ2D(PZ′‖PZ) + ε
)

+ ε2,

where ε , 4

√
2σ2 log(1/δ)

n , and CP (s) ≤
D
(
P
α,L′P
W

∥∥PαW |S=s

)
D
(
Pα
W |S=s

∥∥Pα,L′P
W

) for some CP (s) ≥ 0.

Remark 3 (Previous Result). We could recover the distribution-dependent bound in [40, Theorem 6]
by setting PZ′ = PZ , choosing a bounded loss function in [0, 1] and CP (s) = 0 in our Theorem 3.
Note that multiple terms in our upper bound in Theorem 3 are tightened by a factor of 1/(1 +CP (s)),
and we also consider σ-sub-Gaussian loss functions.
Remark 4 (Choice of CP (s)). Since the distribution PZ′ can be set arbitrarily, the prior distribution
P
α,L′P
W is accessible. Then, we can set CP (s) = D

(
P
α,L′P
W

∥∥PαW |S=s)/D(PαW |S=s∥∥Pα,L′PW

)
to tighten

the bound, as it can be computed exactly using the training set.

4 Asymptotic Behavior of Generalization Error for Gibbs Algorithm

In this section, we consider the asymptotic behavior of the generalization error for Gibbs algorithm as
the inverse temperature α→∞. Note that the upper bounds obtained in the previous section, as well
as the ones in the literature, have the orderO(αn ), which becomes vacuous in this regime. However, it
is known that the Gibbs algorithm will converge to ERM as α→∞, which has finite generalization
error with bounded loss function. To resolve this issue, we provide an exact characterization of the
generalization error in this regime using Theorem 1.

It is shown in [12, 33] that the asymptotic behavior of the Gibbs algorithm depends on the number
of minimizers for the empirical risk, so we consider the single-well case and multiple-well case
separately.

Single-well case: In this case, there exists a unique W ∗(S) that minimizes the empirical risk, i.e.,
W ∗(S) = arg min

w∈W
LE(w, S). (18)
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It is shown in [33] that if H∗(S) , ∇2
wLE(w, S)

∣∣
w=W∗(S)

is not singular, then PαW |S →
N (W ∗(S), 1

α
H∗(S)−1) in distribution. Thus, the symmetrized KL information in Theorem 1 can be

evaluated using this Gaussian approximation, which gives the following result.
Proposition 1. (proved in Appendix E.1) In the single-well case, if the Hessian matrix H∗(S) is not
singular, then the generalization error of the (∞, π(w), LE(w, s))-Gibbs algorithm is

gen(P∞W |S , PS) = E∆W,S

[1
2
W>H∗(S)W

]
(19)

+ EPS
[
(W ∗(S)− E[W ∗(S)])>(H∗(S)W ∗(S)− E[H∗(S)W ∗(S)])

]
,

where E∆W,S
[f(W,S)] , EPW⊗PS [f(W,S)]− EPW,S [f(W,S)].

Proposition 1 shows that the generalization error of the Gibbs algorithm in the limiting regime
α→∞ highly depends on the landscape of the empirical risk function.

As an example, we use Proposition 1 to obtain the generalization error of the maximum likelihood
estimates (MLE) in the asymptotic regime n→∞. More specifically, suppose that we have n i.i.d.
training samples generated from the distribution PZ , and we want to fit the training data with a
parametric distribution family {f(zi|w)}ni=1, where w ∈ W ⊂ Rd denotes the parameter. Here,
the true data-generating distribution may not belong to the parametric family, i.e., PZ 6= f(·|w)
for w ∈ W . If we use the log-loss `(w, z) = − log f(z|w) in the Gibbs algorithm, as α → ∞, it
converges to the ERM algorithm, which is equivalent to MLE, i.e.,

W ∗(S) = ŴML , arg max
w∈W

n∑
i=1

log f(Zi|w). (20)

As n→∞, under regularization conditions (details in Appendix E.2) which guarantee that W ∗(S)

is unique, the asymptotic normality of the MLE [64] states that the distribution of ŴML converges to

N (w∗,
1

n
J(w∗)−1I(w∗)J(w∗)−1), with w∗ , arg min

w∈W
D(PZ‖f(·|w)),

J(w) , EZ
[
−∇2

w log f(Z|w)
]

and I(w) , EZ
[
∇w log f(Z|w)∇w log f(Z|w)>

]
.

In addition, the Hessian matrix H∗(S)→ J(w∗) as n→∞, which is independent of the training
samples S. Thus, E∆W,S

[ 1
2W

>H∗(S)W ] = 0, and Proposition 1 gives

gen(P∞W |S , PS) =
tr(I(w∗)J(w∗)−1)

n
. (21)

When the true model is in the parametric family PZ = f(·|w∗), we have I(w∗) = J(w∗) and the
above expression reduces to gen(P∞W |S , PZ) = d

n , which corresponds to the well-known Akaike
information criterion (AIC) [2] used in MLE model selection.

Multiple-well case: In this case, there exist M distinct W ∗u (S) such that
W ∗u (S) ∈ arg min

w∈W
LE(w, S), u ∈ {1, · · · ,M}, (22)

where M is a fixed constant, and all the minimizers W ∗u (S) are isolated, meaning that a sufficiently
small neighborhood of each W ∗u (S) contains a unique minimum.

In this multiple-well case, it is shown in [12] that the the Gibbs algorithm can be approximated
by a Gaussian mixture, as long as H∗u(S) , ∇2

wLE(w, S)
∣∣
w=W∗u (S)

is not singular for all u ∈
{1, · · · ,M}. However, there is no closed form for the symmetrized KL information for Gaussian
mixtures. Thus, we provide the following upper bound of the generalization error by evaluating
Theorem 1 under the assumption that π(W ) is a uniform distribution overW .
Proposition 2. (proved in Appendix E.1) If we assume that π(W ) is a uniform distribution overW ,
and the Hessian matrices H∗u(S) are not singular for all u ∈ {1, · · · ,M}, then the generalization
error of the (∞, π(w), LE(w, s))-Gibbs algorithm in the multiple-well case can be bounded as

gen(P∞W |S , PS) ≤ 1

M

M∑
u=1

[
E∆Wu,S

[1
2
W>u H

∗
u(S)Wu

]
+ EPS

[
(W ∗u (S)− E[W ∗u (S)])>Hu(W ∗u (S)− E[W ∗u (S)])

]]
. (23)
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Comparing with Proposition 1, Proposition 2 shows that the global generalization error in the multiple-
well case can be upper bounded by the mean of the generalization errors achieved by each local
minimizer.
Remark 5. In [39], a similar Gaussian approximation technique is used to bound the excess risk
of Gibbs algorithm in both single-well and multiple-well cases. However, their result is based on a
loose generalization error bound with the order O(αn ). Thus, our method can also be used to obtain
a tighter characterization of the excess risk for the Gibbs algorithm.

In Appendix E.3, we consider a slightly different asymptotic regime, where the Gibbs algorithm
converges to the Bayesian posterior instead of ERM. A similar result as in (21) can be obtained from
Bernstein–von–Mises theorem [38] and the asymptotic normality of the MLE.

5 Regularized Gibbs Algorithm

In this section, we show how regularization will influence the generalization error of the Gibbs
algorithm. Our definition of the regularizer is more general compared to the standard data-independent
regularizer, as it may also depend on the training samples. There are many applications of such
data-dependent regularization in the literature—e.g., data-dependent spectral norm regularization is
proposed in [57], `1 regularizer over data-dependent hypothesis space is studied in [70] and dropout
is modeled as data-dependent `2 regularization in [68].

In the following proposition, we consider the Gibbs algorithm with a regularization term R :W ×
Zn → R+

0 and characterize the generalization error of this (α, π(w), LE(w, s) + λR(w, s))-Gibbs
algorithm, which is the solution of the following regularized ERM problem:

P ?W |S = arg inf
PW |S

(
EPW,S [LE(W,S) + λR(W,S)] +

1

α
D(PW |S‖π(W )|PS)

)
, (24)

where λ ≥ 0 controls the regularization term.
Proposition 3. (proved in Appendix F.1) For (α, π(w), LE(w, s) + λR(w, s))-Gibbs algorithm, its
expected generalization error is given by

gen(PαW |S , PS) =
ISKL(W ;S)

α
− λE∆W,S

[R(W,S)], (25)

where E∆W,S
[R(W,S)] = EPW⊗PS [R(W,S)]− EPW,S [R(W,S)].

Proposition 3 holds for non-i.i.d samples and any non-negative loss function, and it shows that to
improve the generalization ability of the Gibbs algorithm, the data-dependent regularizer needs to 1)
minimize the symmetrized KL information ISKL(W ;S) and 2) maximize the E∆W,S

[R(W,S)] term
which corresponds to a “generalization error” defined with the regularization term R(W,S).
Remark 6. If the regularizer is independent of the data, i.e., R(w, s) = R(w), we have
E∆W,S

[R(W,S)] = 0, and Proposition 3 gives gen(PαW |S , PS) = ISKL(W ;S)
α , which implies that the

data-independent regularizer needs to improve the generalization ability of learning algorithm by
reducing the symmetrized KL information ISKL(W ;S).

Inspired by the data-dependent regularizer proposed in [61] for support vector machines, we consider
a similar data-dependent `2-regularizer in the following proposition.
Proposition 4. (proved in Appendix F.1) Suppose that we adopt the `2-regularizer R(w, s) =
‖w − T (s)‖22, where T (·) is an arbitrary deterministic function T : Zn →W . Then, the expected
generalization error of (α, π(w), LE(w, s) + λR(w, s))-Gibbs algorithm is

gen(PαW |S , PS) =
ISKL(W ;S)

α
− λtr

(
Cov[W,T (S)]

)
, (26)

where Cov[W,T (S)] denotes the covariance matrix between W and T (S).

Our result suggests that to reduce the generalization error with data-dependent `2-regularizer, the
function T (S) should be chosen in a way, such that the term tr(Cov[W,T (S)]) is maximized. One
way is to leave a part of the training set and learn the T (S) function. Note that similar idea has been
explored in the development of PAC-Bayesian bound with data-dependent prior [5]. More discussions
and results about data-dependent regularizer are provided in Appendix F.2.
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6 Conclusion

We provide an exact characterization of the generalization error for the Gibbs algorithm using sym-
metrized KL information. We demonstrate the power and versatility of our approach in multiple
applications, including tightening expected generalization error and PAC-Bayesian bounds, character-
izing the behaviors of the Gibbs algorithm with large inverse temperature and the regularized Gibbs
algorithm.

This work motivates further investigation of the Gibbs algorithm in a variety of settings, including
extending our results to characterize the generalization ability of an over-parameterized Gibbs
algorithm, which could potentially provide more understanding of the generalization ability for deep
learning.
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A Preliminaries

In this section, we introduce the notion of cumulant generating function, which characterizes different
tail behaviors of random variables.

Definition 1. The cumulant generating function (CGF) of a random variable X is defined as

ΛX(λ) , logE[eλ(X−EX)]. (27)

Assuming ΛX(λ) exists, it can be verified that ΛX(0) = Λ′X(0) = 0, and that it is convex.

Definition 2. For a convex function ψ defined on the interval [0, b), where 0 < b ≤ ∞, its Legendre
dual ψ? is defined as

ψ?(x) , sup
λ∈[0,b)

(
λx− ψ(λ)

)
. (28)

The following lemma characterizes a useful property of the Legendre dual and its inverse function.

Lemma 1. [15, Lemma 2.4] Assume that ψ(0) = ψ′(0) = 0. Then ψ?(x) defined above is a
non-negative convex and non-decreasing function on [0,∞) with ψ?(0) = 0. Moreover, its inverse
function ψ?−1(y) = inf{x ≥ 0 : ψ?(x) ≥ y} is concave, and can be written as

ψ?−1(y) = inf
λ∈[0,b)

(y + ψ(λ)

λ

)
, b > 0. (29)

We consider the distributions with the following tail behaviors in the appendices:

• Sub-Gaussian: A random variable X is σ-sub-Gaussian, if ψ(λ) = σ2λ2

2 is an upper bound
on ΛX(λ), for λ ∈ R. Then by Lemma 1,

ψ?−1(y) =
√

2σ2y.
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• Sub-Exponential: A random variable X is (σ2
e , b)-sub-Exponential, if ψ(λ) =

σ2
eλ

2

2 is an
upper bound on ΛX(λ), for 0 ≤ |λ| ≤ 1

b and b > 0. Using Lemma 1, we have

ψ?−1(y) =

{ √
2σ2

ey, if y ≤ σ2
e

2b ;

by +
σ2
e

2b , otherwise.

• Sub-Gamma: A random variable X is Γ(σ2
s , cs)-sub-Gamma [74], if ψ(λ) =

λ2σ2
s

2(1−cs|λ|) is
an upper bound on ΛX(λ), for 0 < |λ| < 1

cs
and cs > 0. Using Lemma 1, we have

ψ?−1(y) =
√

2σ2
sy + csy.

Sub-Exponential condition is a slightly milder compared with sub-Gaussian condition. All the
definition above can be generalized by considering only the left (λ < 0) or right (λ > 0) tails, e.g.,
σ-sub-Gaussian in the left tail as in Theorem 2.

B Generalization Error of Gibbs Algorithm

B.1 Theorem 1 Details

We start with the following two Lemmas:
Lemma 2. We define the following JE(w, S) function as a proxy for the empirical risk, i.e.,
JE(w, S) , α

n

∑n
i=1 `(w,Zi) + g(w) + h(S), where α ∈ R+

0 , g : W → R, h : Zn → R,
and the function JP (w, µ) , EPS [JE(w, S)] as a proxy for the population risk. Then,

EPW,S [JP (W,µ)− JE(W,S)] = α · gen(PW |S , PS). (30)

Proof.
EPW,S [JP (W,µ)− JE(W,S)]

= EPW,S
[
EPZn [

α

n

n∑
i=1

`(W,Zi)]−
α

n

n∑
i=1

`(W,Zi)
]

+ EPW
[
g(W ) + EPS [h(S)]

]
− EPW,S

[
g(W ) + h(S)

]
(31)

= α · EPW,S [LP (W,µ)− LE(W,S)]

= α · gen(PW |S , PS).

Lemma 3. Consider a learning algorithm PW |S , if we set the proxy function JE(w, zn) =
− logPW |S(w|s), then

EPW,S [JP (W,µ)− JE(W,S)] = ISKL(W ;S). (32)

Proof.
I(W ;S) + L(W ;S)

= EPW,S
[

log
PW |S(W |S)

PW (W )

]
+ EPW⊗PS

[
log

PW (W )

PW |S(W |S)

]
= EPW,S

[
logPW |S(W |S)

]
− EPW⊗PS

[
logPW |S(W |S)

]
(33)

= EPW,S [−EPS [logPW |S(W |S)] + logPW |S(W |S)]

= EPW,S [JP (W,µ)− JE(W,S)].

Theorem 1. (restated) For (α, π(w), LE(w, s))-Gibbs algorithm,

PαW |S(w|s) =
π(w)e−αLE(w,s)

V (s, α)
, α > 0,

its expected generalization error is given by

gen(PαW |S , PS) =
ISKL(W ;S)

α
.
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Proof. Considering Lemma 2 and Lemma 3, we just need to verify that JE(w, s) = − logPW |S(w|s)
can be decomposed into JE(w, s) = α

n

∑n
i=1 `(w, zi) + g(w) + h(s), for α > 0. Note that

JE(w, s) = − logPαW |S(w|s) = αLE(w, s)− log π(w) + log V (s, α), (34)

then we have:

ISKL(W ;S) = EPW,S [JP (W,PS)− JE(W,S)] (35)

= α · gen(PαW |S , PS).

Using Theorem 1, we can also derive the following lower bound on the expected generalization error
in terms of total variation distance. As a comparison, an upper bound on the generalization error of a
learning algorithm in terms of total variation distance is provided in [52].
Corollary 2. For (α, π(w), LE(w, s))-Gibbs algorithm, the following lower bound on the general-
ization error of the Gibbs algorithm holds:

gen(PαW |S , PS) ≥ TV 2(PW,S , PW ⊗ PS)

α
, (36)

where
TV (PW,S , PW ⊗ PS) ,

∫ ∫ ∣∣∣PW,S(w, s)− PW (w)PS(s)
∣∣∣dwds (37)

denotes total variation distance.

Proof. This can be proved immediately by combining Theorem 1 with the well-known Pinsker’s
inequality [49],

TV (PW,S , PW ⊗ PS) ≤
√

2 min(I(W ;S), L(W ;S)). (38)

Note that the lower bound in Corollary 2 is bounded in [0, 4
α ].

B.2 General Properties

In this section, we provide more discussions about other properties of the symmetrized KL divergence,
including data processing inequality, variational representation, chain rule, and their implications in
learning problems.

Data Processing Inequality: As shown in [59], symmetrized KL divergence is an f -divergence.
Thus, the data processing inequality holds, i.e., for Markov chain S ↔W ↔W ′,

ISKL(S;W ) ≥ ISKL(S;W ′). (39)

Using the data processing inequality for mutual information, [17, 71] show that pre/post-processing
improves generalization, since these techniques give tighter mutual information-based generalization
error bounds. However, our Theorem 1 only holds for Gibbs algorithm, which cannot characterize the
generalization error for all conditional distributions PW ′|S induced by the post-processing PW ′|W
in the Markov chain. Thus, it is hard to conclude that the pre/post-processing will reduce the exact
generalization error for Gibbs algorithm by directly applying the data processing inequality.

Variational Representation: It is well-known that the mutual information has the following varia-
tional characterization

I(W ;S) = inf
QW

D(PW |S‖QW |PS) = inf
QW ,QS

D(PW,S‖QW ⊗QS), (40)

which implies that the product-of-marginal distribution minimizes the KL divergence for a given joint
distribution. One may think that the counterpart for lautum information would be infQW D(PS ⊗
QW ‖PW,S), but it is not true as shown in [49]. In general, the product-of-marginal distribution
does not minimize D(QW ⊗QS‖PW,S), and lautum information satisfies the following variational
characterization

L(W ;S) = inf
QS

D(PW ⊗ PS‖PW |S ⊗QS). (41)

Thus, the product-of-marginal distribution PS ⊗ PW does not minimize the symmetrized KL diver-
gence DSKL(PW,S‖QW ⊗QS).
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Chain Rule: As shown in [17], using the chain rule of mutual information, i.e., I(W ;S) =∑n
i=1 I(W ;Zi|Zi−1) and the fact that I(W ;Zi|Zi−1) ≥ I(W ;Zi) for i.i.d. samples, the mu-

tual information based generalization bound can be tightened by considering the individual sample
mutual information I(W ;Zi).

However, lautum information does not satisfy the same chain rule as mutual information in general,
and it is hard to characterize the generalization error of Gibbs algorithm using individual terms
ISKL(W ;Zi). To see this, we have the following example to show that the joint symmetrized KL in-
formation ISKL(W ;S) can be either larger or smaller than the sum of individual terms ISKL(W ;Zi).

Example 1. Consider the following joint distribution for binary random variables W,Z1, Z2 ∈
{0, 1},

PW,Z1,Z2
(w, z1, z2) =


1
8 , if (z1, z2) = (0, 0),
1
4 − ε, if w = 1, and (z1, z2) 6= (0, 0),

ε, otherwise.
(42)

It can be verified thatZ1 andZ2 are mutually independent Bernoulli random variable with p = 1
2 , and

the conditional distribution is symmetric in the sense that PW |Z1,Z2
(w|0, 1) = PW |Z1,Z2

(w|1, 0).

Case I: When ε = 0.0001, we can compute the mutual information as

I(W ;Z1) = I(W ;Z2) = 0.0943, I(W ;Z1, Z2) = 0.2014,

which satisfies the bound I(W ;Z1, Z2) ≥ I(W ;Z1) + I(W ;Z2) when Z1 ⊥ Z2. However, for
lautum information

L(W ;Z1) = L(W ;Z2) = 0.3257, L(W ;Z1, Z2) = 0.5315,

L(W ;Z1) + L(W ;Z2) > L(W ;Z1, Z2), and

ISKL(W ;Z1) = ISKL(W ;Z2) = 0.4200, ISKL(W ;Z1, Z2) = 0.7329,

ISKL(W ;Z1) + ISKL(W ;Z2) > ISKL(W ;Z1, Z2).

Case II: When ε = 0.01, it can be verified that

ISKL(W ;Z1) = ISKL(W ;Z2) = 0.1255, ISKL(W ;Z1, Z2) = 0.2741,

ISKL(W ;Z1) + ISKL(W ;Z2) < ISKL(W ;Z1, Z2).

Thus, individual sample symmetrized KL information cannot be used to characterize the behavior of
ISKL(W ;S) in general.

B.3 Example Details: Mean Estimation

B.3.1 Generalization Error

We first evaluate the generalization error of the learning algorithm in (13) directly. Note that the
output W can be written as

W =
σ2

1

σ2
0

µ0 +
σ2

1

σ2

n∑
i=1

Zi +N, with σ2
1 =

σ2
0σ

2

nσ2
0 + σ2

(43)
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where N ∼ N (0, σ2
1Id) is independent from the training samples S = {Zi}ni=1. Thus,

gen(PW |S , PS)

= EPW,S [LP (W,µ)− LE(W,S)]

= EPW,S
[
EPZ̃

[
‖W − Z̃‖22

]
− 1

n

n∑
i=1

‖W − Zi‖22
]

(a)
= EPW,Zi⊗PZ̃

[
(2W − Z̃ − Zi)>(Zi − Z̃)

]
= E

[
2(
σ2

1

σ2
0

µ0 +
σ2

1

σ2

n∑
i=1

Zi +N)>(Zi − Z̃)− (Zi + Z̃)>(Zi − Z̃)
]

(b)
=

2σ2
1

σ2
E
[
Z>i (Zi − Z̃)

]
=

2dσ2
1σ

2
Z

σ2
=

2dσ2
0σ

2
Z

nσ2
0 + σ2

, (44)

where Z̃ ∼ N (µ, σ2
ZId) denotes an independent copy of the training sample, (a) follows due to the

fact that Zn are i.i.d, and (b) follows from the fact that Zi− Z̃ has zero mean, and it is only correlated
with Zi.

B.3.2 Symmetrized KL Divergence

The following lemma from [49] characterizes the mutual and lautum information for the Gaussian
channel.

Lemma 4. [49, Theorem 14] Consider the following model

Y = AX +NG, (45)

where X ∈ RdX denotes the input random vector with zero mean (not necessarily Gaussian),
A ∈ RdY ×dX denotes the linear transformation undergone by the input, Y ∈ RdY is the output
vector, and NG ∈ RdY is a Gaussian noise vector independent of X . The input and the noise
covariance matrices are given by Σ and ΣNG

. Then, we have

I(X;Y ) =
1

2
tr
(
Σ−1
NG
AΣA>

)
−D

(
PY ‖PNG

)
, (46)

L(X;Y ) =
1

2
tr
(
Σ−1
NG
AΣA>

)
+D

(
PY ‖PNG

). (47)

In our example, the output W can be written as

W =
σ2

1

σ2
0

µ0 +
σ2

1

σ2

n∑
i=1

Zi +N =
σ2

1

σ2

n∑
i=1

(Zi − µ) +
σ2

1

σ2
0

µ0 +
nσ2

1

σ2
µ+N, (48)

where N ∼ N (0, σ2
1Id). Setting PNG

∼ N (
σ2
1

σ2
0
µ0 +

nσ2
1

σ2 µ, σ
2
1Id) and Σ = σ2

ZInd in Lemma 4
gives

tr
(
Σ−1
NG
AΣA>

)
= tr

(σ2
Z

σ2
1

AA>
)
, (49)

and noticing thatAA> =
nσ4

1

σ4 Id completes the proof.

B.4 ISMI Bound

In this subsection, we evaluate the following individual sample mutual information (ISMI) bound
from [19, Theorem 2] for the example discussed in Section 2.2 with i.i.d. samples generated from
Gaussian distribution PZ ∼ N (µ, σ2

ZId).
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Lemma 5. [19, Theorem 2] Suppose `(W̃ , Z̃) satisfies Λ
`(W̃ ,Z̃)

(λ) ≤ ψ+(λ) for λ ∈ [0, b+),
and Λ

`(W̃ ,Z̃)
(λ) ≤ ψ−(−λ) for λ ∈ (b−, 0] under P

Z̃,W̃
= PZ ⊗ PW , where 0 < b+ ≤ ∞ and

−∞ ≤ b− < 0. Then,

gen(PW |S , PS) ≤ 1

n

n∑
i=1

ψ∗−1
−
(
I(W ;Zi)

)
, (50)

−gen(PW |S , PS) ≤ 1

n

n∑
i=1

ψ∗−1
+

(
I(W ;Zi)

)
. (51)

We need to compute the mutual information between each individual sample and the output hypothesis
I(W ;Zi), and the CGF of `(W̃ , Z̃), where W̃ , Z̃ are independent copies of W and Z with the same
marginal distribution, respectively.

Since W and Zi are Gaussian, I(W ;Zi) can be computed exactly using covariance matrix:

Cov[Zi,W ] =

(
σ2
ZId

σ2
1

σ2σ
2
ZId

σ2
1

σ2σ
2
ZId

(nσ4
1

σ4 σ
2
Z + σ2

1

)
Id

)
, (52)

then, we have

I(W ;Zi) =
d

2
log

nσ4
1

σ4 σ
2
Z + σ2

1

(n−1)σ4
1

σ4 σ2
Z + σ2

1

=
d

2
log
(

1 +
σ2

1σ
2
Z

(n− 1)σ2
1σ

2
Z + σ4

)
=
d

2
log
(

1 +
σ2

0σ
2
Z

(n− 1)σ2
0σ

2
Z + nσ2

0σ
2 + σ4

)
, (53)

for i = 1, · · · , n, n ≥ 2. In addition, since

W ∼ N
(σ2

1

σ2
0

µ0 +
nσ2

1

σ2
µ,
(nσ4

1

σ4
σ2
Z + σ2

1

)
Id

)
, (54)

it can be shown that `(W̃ , Z̃) = ‖Z̃ − W̃‖2 is a scaled non-central chi-square distribution with d
degrees of freedom, where the scaling factor σ2

` , (
nσ4

1

σ4 +1)σ2
Z +σ2

1 and its non-centrality parameter
η , σ2

nσ2
0+σ2 ‖µ0 − µ‖22.

Note that the expectation of chi-square distribution with non-centrality parameter η and d degrees
of freedom is d+ η and its moment generating function is exp( ηλ

1−2λ )(1− 2λ)−d/2. Therefore, the

CGF of `(W̃ , Z̃) is given by

Λ
`(W̃ ,Z̃)

(λ) = −(dσ2
` + η)λ+

ηλ

1− 2σ2
`λ
− d

2
log(1− 2σ2

`λ), (55)

for λ ∈ (−∞, 1
2σ2
`
). Since gen(PW |S , PZ) ≥ 0, we only need to consider the case λ < 0. It can be

shown that:

Λ
`(W̃ ,Z̃)

(λ) = −dσ2
`λ−

d

2
log(1− 2σ2

`λ) +
2σ2

` ηλ
2

1− 2σ2
`λ

=
d

2
(−u− log(1− u)) +

2σ2
` ηλ

2

1− 2σ2
`λ
, (56)

where u , 2σ2
`λ. Further note that

−u− log(1− u) ≤ u2

2
, u < 0, (57)

2σ2
` ηλ

2

1− 2σ2
`λ
≤ 2σ2

` ηλ
2, λ < 0. (58)
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We have the following upper bound on the CGF of `(W̃ , Z̃):

Λ
`(W̃ ,Z̃)

(λ) ≤ (dσ4
` + 2σ2

` η)λ2, λ < 0, (59)

which means that `(W̃ , Z̃) is
√
dσ4

` + 2σ2
` η-sub-Gaussian for λ < 0. Combining the results in (53),

Lemma 5 gives the following bound

gen(PW |S , PS) ≤

√
d2σ4

` + 2dσ2
` η

2
log(1 +

σ2
0σ

2
Z

(n− 1)σ2
0σ

2
Z + nσ2

0σ
2 + σ4

). (60)

If σ2 = n
2α is a constant, i.e., α = O(n), then as n → ∞, σ2

1 = O
(

1
n

)
and σ2

` = O(1), and the

above bound is O
(

1√
n

)
.

C Expected Generalization Error Upper Bound

C.1 Proof of Theorem 2

We prove a slightly more general form of Theorem 2 as follows:
Theorem 4. Suppose that the training samples S = {Zi}ni=1 are i.i.d generated from the distribution
PZ and the loss function `(w,Z) satisfies Λ`(w,Z)(λ) ≤ ψ(−λ), for λ ∈ (−b, 0) and 0 < b under
data-generating distribution PZ for all w ∈ W . Let us assume ∃ CE ∈ R+

0 such that L(W ;S)
I(W ;S) ≥ CE ,

and we further assume:

∃ 0 < κ <∞, s.t. ψ?−1(
κ

n
)− (1 + CE)κ

α
= 0. (61)

Then, the following upper bound holds for the expected generalization error of (α, π(w), LE(w, s))-
Gibbs algorithm:

0 ≤ gen(PαW |S , PS) ≤ (1 + CE)κ

α
. (62)

Proof. It is shown in [19, Proposition 2] that the following generalization error bound holds,

gen(PαW |S , PS) ≤ ψ?−1
(I(W ;S)

n

)
. (63)

By Theorem 1 and the assumption on CE , we have

gen(PαW |S , PS) =
I(W ;S) + L(W ;S)

α
≥ (1 + CE)I(W ;S)

α
. (64)

Therefore,
(1 + CE)I(W ;S)

α
≤ ψ?−1

(I(W ;S)

n

)
. (65)

Consider the function F (u) , ψ?−1(un ) − (1+CE)u
α , which is concave and satisfies F (0) = 0 by

Lemma 1. If there exists 0 < κ <∞, such that F (κ) = 0, then F (I(W ;S)) ≥ 0 implies that

0 ≤ I(W ;S) ≤ κ.

Since ψ?−1(·) is non-decreasing, we have

gen(PαW |S , PS) ≤ ψ?−1
(κ
n

)
=

(1 + CE)κ

α
.

In the following, we specify the different forms of ψ(λ) function in Theorem 4 to capture different
tail behaviors of the loss function. We first consider the σ-sub-Gaussian assumption.
Theorem 2. (restated) Suppose that the training samples S = {Zi}ni=1 are i.i.d generated from the
distribution PZ , and the non-negative loss function `(w,Z) is σ-sub-Gaussian on the left-tail under
distribution PZ for all w ∈ W . We further assume CE ≤ L(W ;S)

I(W ;S) for some CE ≥ 0. Then, for the
(α, π(w), LE(w, s))-Gibbs algorithm, we have

0 ≤ gen(PαW |S , PS) ≤ 2σ2α

(1 + CE)n
.
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Proof. If the loss function is σ-sub-Gaussian on the left-tail we have ψ?−1(y) =
√

2σ2y. Using
Theorem 4 we have √

2σ2
κ

n
− (1 + CE)κ

α
= 0, (66)

and the solution is κ = 2σ2

n
α2

(1+CE)2 . Therefore,

gen(PαW |S , PS) ≤ (1 + CE)κ

α
=

2σ2α

n(1 + CE)
.

C.2 Other Tail Distributions

In this section, we consider the sub-Exponential and sub-Gamma assumptions for the loss function
and it is shown that the rates of convergence in these two cases are the same as that of the sub-Gaussian
assumption, i.e., O(1/n).

We first consider the sub-Exponential case.
Corollary 3. Suppose that the training samples S = {Zi}ni=1 are i.i.d generated from the distribution
PZ , and the non-negative loss function `(w,Z) is (σ2

e , b)-sub-Exponential on the left-tail ∗ under
distribution PZ for all w ∈ W . We further assume CE ≤ L(W ;S)

I(W ;S) for some CE ≥ 0. Then, for the
(α, π(w), LE(w, s))-Gibbs algorithm, we have

gen(PαW |S , PS) ≤


2σ2
eα

n(1+CE) , if n ≥ 2bI(W ;S)
σ2
e

;
σ2
e

2b

(
αb

(n(1+CE)−αb) + 1
)
, if d αb

1+CE
e < n < 2bI(W ;S)

σ2
e

.
(67)

Proof. If the loss function is sub-Exponential on the left-tail we have

ψ?−1(y) =

{ √
2σ2

ey, if y ≤ σ2
e

2b ;

by +
σ2
e

2b , otherwise.

If I(W ;S)
n ≤ σ2

e

2b , by Theorem 4, we have

(1 + CE)I(W ;S)

α
≤
√

2σ2
e

I(W ;S)

n
, (68)

then the following upper bound holds,

I(W ;S) ≤ 2σ2
eα

2

(1 + CE)2n
, (69)

which gives

gen(PαW |S , PS) ≤ 2σ2
eα

n(1 + CE)
. (70)

If I(W ;S)
n >

σ2
e

2b , we have

I(W ;S)(1 + CE)

α
≤ bI(W ;S)

n
+
σ2
e

2b
, (71)

then the following upper bound holds when n > αb
1+CE

,

I(W ;S) ≤ αnσ2
e

2b(n(1 + CE)− αb)
, (72)

which gives

gen(PαW |S , PS) ≤ σ2
e

2b

( αb

(n(1 + CE)− αb)
+ 1
)
.

∗A random variableX is (σ2
e , b)-sub-Exponential on the left-tail if logE[eλ(X−EX)] ≤ σ2

eλ
2

2
,− 1

b
≤ λ ≤ 0.
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Note that all the sub-Exponential loss functions are also sub-Exponential on the left-tail under the
same distribution (the converse statement is not true).

The authors in [48, 58] also consider the sub-Exponential assumption for general learning algorithms
and provide PAC-Bayesian upper bounds. The result in Corollary 3 is an upper bound on the expected
generalization error for Gibbs algorithm under sub-Exponential assumption, which establishes the
O(1/n) convergence rate.

Next, we provide an upper bound under sub-Gamma assumption.

Corollary 4. Suppose that the training samples S = {Zi}ni=1 are i.i.d generated from the distribution
PZ , and the non-negative loss function `(w,Z) is Γ(σ2

s , cs)-sub-Gamma on the left-tail ∗ under
distribution PZ for all w ∈ W . We further assume CE ≤ L(W ;S)

I(W ;S) for some CE ≥ 0. Then, for the
(α, π(w), LE(w, s))-Gibbs algorithm, if n > csα

(1+CE) , we have

gen(PαW |S , PS) ≤ 2σ2
sα

(1 + CE)n− αcs

(
1 +

αcs
(1 + CE)n− αcs

)
. (73)

Proof. By considering ψ?−1(y) =
√

2σ2
sy + cy in Theorem 4, we have

(1 + CE)I(W ;S)

α
≤
√

2σ2
s

I(W ;S)

n
+ cs

I(W ;S)

n
. (74)

Then the following upper bound holds when n > csα
(1+CE) ,

I(W ;S) ≤
( α

(1 + CE)n− αcs

)2

2nσ2
s , (75)

which gives

gen(PαW |S , PS) ≤ 2σ2
sα(1 + CE)n(

(1 + CE)n− αcs
)2 .

The sub-Gamma assumption is also considered in [1, 26] and PAC-Bayesian upper bounds are
provided. Our Corollary 4 provides an upper bound on the expected generalization error for Gibbs
algorithm under sub-Gamma assumption, which establishes the O(1/n) convergence rate.

D PAC-Bayesian Upper Bound

Since the (α, π(w), LP (w,PS′))-Gibbs distribution only depends on the population risk LP (w,PS′)

and is independent of the samples S, we can denote it as Pα,L
′
P

W . The following lemma provides an
operational interpretation of the symmetrized KL divergence between the Gibbs posterior PαW |S and

the prior distribution Pα,L
′
P

W .

Lemma 6. Let us denote the (α, π(w), LE(w, s))-Gibbs algorithm as PαW |S and the

(α, π(w), LP (w,PS′))-Gibbs algorithm as Pα,L
′
P

W . Then, the following equality holds for these
two Gibbs distributions with the same inverse temperature and prior distribution

E
∆(Pα

W |S=s
,P
α,L′

P
W )

[LP (W,PS′)− LE(W, s)] =
DSKL(PαW |S=s‖P

α,L′P
W )

α
, (76)

where E
∆(Pα

W |S=s
,P
α,L′

P
W )

[f(W )] = EPα
W |S=s

[f(W )]− E
P
α,L′

P
W

[f(W )].

∗A random variable X is Γ(σ2
s , cs)-sub-Gamma on the left-tail if logE[eλ(X−EX)] ≤ λ2σ2

s
2(1−c|λ|) , for − 1

cs
<

λ < 0.
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Proof.

DSKL(PαW |S=s‖P
α,L′P
W )

= EPα
W |S=s

[
log

PαW |S=s

P
α,L′P
W

]
− E

P
α,L′

P
W

[
log

PαW |S=s

P
α,L′P
W

]
(a)
= E

∆(Pα
W |S=s

,P
α,L′

P
W )

[
log(e−α(LE(W,s)−LP (W,PS′ )))

]
= α E

∆(Pα
W |S=s

,P
α,L′

P
W )

[
LP (W,PS′)− LE(W, s)

]
, (77)

where (a) follows by the fact that partition functions V (s, α) do not depend on W .

Theorem 3. (restated) Suppose that the training samples S = {Zi}ni=1 are i.i.d generated from the
distribution PZ , and the non-negative loss function `(w,Z) is σ-sub-Gaussian under data-generating
distribution PZ for all w ∈ W . If we use the (α, π(w), LP (w,PS′))-Gibbs distribution as the
PAC-Bayesian prior, where PS′ is an arbitrary chosen (and known) distribution, the following upper
bound holds for the generalization error of (α, π(w), LE(w, s))-Gibbs algorithm with probability at
least 1− 2δ, 0 < δ < 1

2 under distribution PS ,∣∣∣EPα
W |S=s

[LP (W,PS)− LE(W, s)]
∣∣∣ ≤ 2σ2α

(1 + CP (s))n
+ ε2

+ 2

√
σ2α

(1 + CP (s))n

(
4
√

2σ2D(PZ′‖PZ) + ε
)
,

where ε , 4

√
2σ2 log(1/δ)

n , and CP (s) ≤ D
(
P
α,L′P
W

∥∥PαW |S=s

)
D
(
Pα
W |S=s

∥∥Pα,L′PW

) for some CP (s) ≥ 0.

Proof. Using Lemma 6, we have

DSKL(PαW |S‖P
α,L′P
W ) = α(EPα

W |S=s
[LP (W,PZ′)]− EPα

W |S=s
[LE(W, s)])

− α(E
P
α,L′

P
W

[LP (W,PZ′)]− E
P
α,L′

P
W

[LE(W, s)])

≤ α
∣∣∣EPα

W |S=s
[LP (W,PZ′)]− EPα

W |S=s
[LE(W, s)]

∣∣∣
+ α

∣∣∣∣(EPα,L′PW

[LP (W,PZ′)]− E
P
α,L′

P
W

[LE(W, s)]

∣∣∣∣
≤ α

∣∣∣EPα
W |S=s

[LP (W,PZ′)]− EPα
W |S=s

[LP (W,PZ)]
∣∣∣

+ α
∣∣∣EPα

W |S=s
[LP (W,PZ)]− EPα

W |S=s
[LE(W, s)]

∣∣∣
+ α

∣∣∣∣EPα,L′PW

[LP (W,PZ′)]− E
P
α,L′

P
W

[LP (W,PZ)]

∣∣∣∣
+ α

∣∣∣∣EPα,L′PW

[LP (W,PZ)]− E
P
α,L′

P
W

[LE(W, s)]

∣∣∣∣ , (78)

and we just need to bound the four terms in the above inequality.

The first and the third term in (78) can be bounded using the Donsker-Varadhan variational character-
ization of KL divergence, note that for all λ ∈ R,

D(PZ′‖PZ) ≥ EPZ′ [λ`(w,Z
′)]− logEPZ [eλ`(w,Z)]

≥ λ(LP (w,PZ′)− LP (w,PZ))− λ2σ2

2
, (79)

where the last step follows from the sub-Gaussian assumption. Since the above inequality holds for
all λ ∈ R, the discriminant must be non-positive, which implies

|LP (w,PZ′)− LP (w,PZ)| ≤
√

2σ2D(PZ′‖PZ), for all w ∈ W. (80)
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We use the PAC-Bayesian bound in [29, Proposition 3] to bound the second and the fourth term in
(78). For any posterior distribution QW |S=s, and prior distribution QW , if `(w,Z) is σ-sub-Gaussian
under PZ for all w ∈ W , the following bound holds with probability 1− δ,

∣∣EQW |S=s
[LP (W,PZ)]− EQW |S=s

[LE(W, s)]
∣∣ ≤

√
2σ2
(
D(QW |S=s‖QW ) + log(1/δ)

)
n

. (81)

If we choose PαW |S as the posterior distribution and Pα,L
′
P

W as the prior distribution, we have

∣∣∣EPα
W |S=s

[LP (W,PZ)]− EPα
W |S=s

[LE(W, s)]
∣∣∣ ≤

√√√√2σ2
(
D(PαW |S=s‖P

α,L′
P

W ) + log(1/δ)
)

n
(82)

holds with probability 1− δ. If we set QW |S=s = QW = P
α,L′P
W , we have∣∣∣∣EPα,L′PW

[LP (W,PZ)]− E
P
α,L′

P
W

[LE(W, s)]

∣∣∣∣ ≤
√

2σ2 (log(1/δ))

n
. (83)

Combining the bounds in (80), (82) and (83) with (78), we have

DSKL(PαW |S‖P
α,L′P
W ) ≤α

√√√√2σ2
(
D(PαW |S=s‖P

α,L′P
W |S ) + log(1/δ)

)
n

(84)

+ α

√
2σ2 (log(1/δ))

n
+ 2α

√
2σ2D(PZ′‖PZ).

Then, using the assumption that (1 +CP (s))D(PαW |S=s‖P
α,L′P
W ) ≤ DSKL(PαW |S‖P

α,LP
W |S ), we have

(1 + CP (s))D(PαW |S=s‖P
α,L′P
W ) ≤ α

√√√√2σ2
(
D(PαW |S=s‖P

α,L′P
W ) + log(1/δ)

)
n

+ α

√
2σ2 (log(1/δ))

n
+ 2α

√
2σ2D(PZ′‖PZ). (85)

Denote α′ , α
(1+CP (s)) , then we have

D(PαW |S=s‖P
α,L′P
W )−

√
2α′2σ2 (log(1/δ))

n
−
√

8α′2σ2D(PZ′‖PZ)

≤

√√√√2α′2σ2
(
D(PαW |S=s‖P

α,L′P
W ) + log(1/δ)

)
n

. (86)

If we have 0 ≤ D(PαW |S=s‖P
α,L′P
W ) ≤

√
2α′2σ2(log(1/δ))

n +
√

8α′2σ2D(PZ′‖PZ), then the above
inequality holds. Otherwise, we could take square over both sides in (86), and denote

A , C +

√
2σ2α′2 log(1/δ)

n
, B ,

√
8α′2σ2D(PZ′‖PZ),

where C , σ2α′2

n , then we have

D2(PαW |S=s‖P
α,L′P
W )− 2D(PαW |S=s‖P

α,L′P
W )(A+B) +B2 + 2(A− C)B ≤ 0. (87)

Solving the above inequality gives:

0 ≤ D(PαW |S=s‖P
α,L′P
W ) ≤

√
A2 + 2BC +A+B. (88)
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As
√
x+ y ≤

√
x+
√
y for positive x, y and A ≥ C, we have

D(PαW |S=s‖P
α,L′P
W ) ≤ 2A+B +

√
2BC ≤ 2A+B +

√
2AB ≤ (

√
2A+

√
B)2. (89)

Now using (89) in (82) and applying the inequality
√
x+ y ≤

√
x+
√
y, we have:∣∣∣EPα

W |S=s
[LP (W,µ)− LE(W, s)]

∣∣∣
≤

√
2σ2(
√

2A+
√
B)2 + 2σ2 log(1/δ)

n

≤
√

4σ2A

n
+

√
2σ2B

n
+

√
2σ2 log(1/δ)

n

≤ 2ασ2

(1 + CP (s))n
+

√
2σ2 (log(1/δ))

n

+ 2

√
ασ2

(1 + CP (s))n

(
4

√
2σ2 log(1/δ)

n
+ 4
√

2σ2D(PZ′‖PZ)

)
.

As both (82) and (83) hold with probability at least 1− δ, the above inequality holds with probability
at least 1− 2δ by the union bound [67].

E Asymptotic Behavior of Generalization Error for Gibbs Algorithm

E.1 Large Inverse Temperature Details

Proposition 1. (restated) In the single-well case, if the Hessian matrix H∗(S) is not singular, then
the generalization error of the (∞, π(w), LE(w, s))-Gibbs algorithm is

gen(P∞W |S , PS) = E∆W,S

[1
2
W>H∗(S)W

]
+ EPS

[
(W ∗(S)− E[W ∗(S)])>(H∗(S)W ∗(S)− E[H∗(S)W ∗(S)])

]
,

where E∆W,S
[f(W,S)] , EPW⊗PS [f(W,S)]− EPW,S [f(W,S)].

Proof. It is shown in [12, 33] that if the following Hessian matrix
H∗(S) = ∇2

wLE(w, S)
∣∣
w=W∗(S)

(90)

is not singular, then as α→∞

PαW |S → N (W ∗(S),
1

α
H∗(S)−1) (91)

in distribution. Then, the mean of the marginal distribution PW equals to the mean of W ∗(S), i.e.,
EPW [W ] = EPS [W ∗(S)]. (92)

To apply Theorem 1, we evaluate the symmetrized KL information using the Gaussian approximation:
I(W ;S) + L(W ;S)

= EPW,S [logPαW |S ]− EPW⊗PS [logPαW |S ]

= EPW,S
[
− α

2
(W −W ∗(S))>H∗(S)(W −W ∗(S))

]
+ EPW⊗PS

[α
2

(W −W ∗(S))>H∗(S)(W −W ∗(S))
]

= EPW⊗PS
[α

2
W>H∗(S)W

]
− EPW,S

[α
2
W>H∗(S)W

]
+ EPS⊗PW

[α
2

(
tr
(
H∗(S)(W ∗(S)W ∗(S)> −WW ∗(S)> −W ∗(S)W>)

))]
− EPS⊗PW |S

[α
2

(
tr
(
H∗(S)(W ∗(S)W ∗(S)> −WW ∗(S)> −W ∗(S)W>)

))]
. (93)
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Note that EPW [W ] = EPS [W ∗(S)] and EPW |S [W ] = W ∗(S), we have

gen(P∞W |S , µ) =
I(W ;S) + L(W ;S)

α

= EPW⊗PS
[1
2
W>H∗(S)W

]
− EPW,S

[1
2
W>H∗(S)W

]
+ EPS

[1

2

(
tr
(
H∗(S)(−E[W ∗(S)]W ∗(S)> −W ∗(S)E[W ∗(S)]>)

))]
− EPS

[1

2

(
tr
(
H∗(S)(−W ∗(S)W ∗(S)> −W ∗(S)W ∗(S)>)

))]
= EPW⊗PS

[1
2
W>H∗(S)W

]
− EPW,S

[1
2
W>H∗(S)W

]
+ EPS

[
(W ∗(S)− E[W ∗(S)])>(H∗(S)W ∗(S)− E[H∗(S)W ∗(S)])

]
.

Proposition 2. (restated) If we assume that π(W ) is a uniform distribution overW , and the Hessian
matrices H∗u(S) are not singular for all u ∈ {1, · · · ,M}, then the generalization error of the
(∞, π(w), LE(w, s))-Gibbs algorithm in the multiple-well case can be bounded as

gen(P∞W |S , PS) ≤ 1

M

M∑
u=1

[
E∆Wu,S

[1
2
W>u H

∗
u(S)Wu

]
+ EPS

[
(W ∗u (S)− E[W ∗u (S)])>Hu(W ∗u (S)− E[W ∗u (S)])

]]
.

Proof. In this multiple-well case, it is shown in [12] that the Gibbs algorithm can be approximated
by the following Gaussian mixture distribution

PαW |S →
1∑M

u=1 π(W ∗u (S))

M∑
u=1

π
(
W ∗u (S)

)
N
(
W ∗u (S),

1

α
H∗u(S)−1

)
, (94)

as long as H∗u(S) , ∇2
wLE(w, S)

∣∣
w=W∗u (S)

is not singular for all u ∈ {1, · · · ,M}.

However, there is no closed form for the symmetrized KL information for Gaussian mixtures. Thus,
we use Theorem 1 to construct an upper bound of the generalization error.

Consider the latent random variable U ∈ {1, · · · ,M} which denotes the index of the Gaussian
component of PαW |S . Then, conditioning on U and S, W is a Gaussian random variable. Moreover,
since π(W ) is a uniform prior, U is a discrete uniform distribution PU (U = u) = 1

M , and U ⊥ S.
Note that for mutual information, we have

I(S;W |U) = I(S;W |U) + I(S;U) = I(S;W,U) = I(S;W ) + I(S;U |W ) ≥ I(S;W ), (95)

and for lautum information

L(W ;S)
(a)

≤ L(W,U ;S)
(b)
= L(U ;S) + L(W ;S|U) = L(W ;S|U), (96)

where (a) is due to the data processing inequality for any f -divergence, and (b) follows by the fact
that the chain rule of lautum information holds when U ⊥ S as shown in [49].

Thus, we can upper bound I(S;W ) and L(S;W ) with I(S;W |U) and L(S;W |U), respectively,

gen(P∞W |S , µ)

= lim
α→∞

I(S;W ) + L(S;W )

α

≤ lim
α→∞

I(S;W |U) + L(S;W |U)

α

= EU
[
EPW |U⊗PS

[1
2
W>H(w∗u(S), S)W

]]
− EU

[
EPW,S|U

[1
2
W>H(w∗U (S), S)W

]]
+ EU

[
EPS

[
(w∗U (S)− E[w∗U (S)])>(H(w∗U (S), S)w∗U (S)− E[H(w∗U (S), S)w∗U (S)])

]]
.
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E.2 Regularity Conditions for MLE

In this section, we present the regularity conditions required by the asymptotic normality [64] of
maximum likelihood estimates.

Assumption 1. Regularity Conditions for MLE:

1. f(z|w) 6= f(z|w′) for w 6= w′.

2. W is an open subset of Rd.

3. The function log f(z|w) is three times continuously differentiable with respect to w.

4. There exist functions F1(z) : Z → R, F2(z) : Z → R and M(z) : Z → R, such that

EZ∼f(z|w)[M(Z)] <∞,

and the following inequalities hold for any w ∈ W ,∣∣∣∣∂ log f(z|w)

∂wi

∣∣∣∣ < F1(z),

∣∣∣∣∂2 log f(z|w)

∂wi∂wj

∣∣∣∣ < F1(z),∣∣∣∣∂3 log f(z|w)

∂wi∂wj∂wk

∣∣∣∣ < M(z), i, j, k = 1, 2, · · · , d.

5. The following inequality holds for an arbitrary w ∈ W ,

0 < EZ∼f(z|w)

[
∂ log f(z|w)

∂wi

∂ log f(z|w)

∂wj

]
<∞, i, j = 1, 2, · · · , d.

E.3 Bayesian Learning Algorithm

In this section, we show that the symmetrized KL information can be used to characterize the
generalization error of Gibbs algorithm in a different asymptotic regime, i.e., inverse temperature
α = n, then α and n go to infinity simultaneously. In this regime, the Gibbs algorithm is equivalent
to the Bayesian posterior distribution instead of ERM.

Suppose that we have n i.i.d. training samples S = {Zi}ni=1 generated from the distribution PZ
defined on Z , and we want to fit the training data with a parametric distribution family {f(zi|w)}ni=1,
where w ∈ W ⊂ Rd denotes the parameter and π(w) denotes a pre-selected prior distribution. Here,
the true data-generating distribution may not belong to the parametric family, i.e., PZ 6= f(·|w) for
w ∈ W . The following Bayesian posterior distribution

PW |S(w|zn) =
π(w)

∏n
i f(zi|w)

V (zn)
, with V (zn) =

∫
π(w)

n∏
i

f(zi|w)dw, (97)

is equivalent to the (n, π(w), LE(w, s))-Gibbs algorithm with log-loss `(w, z) = − log f(z|w).
Thus, Theorem 1 can be applied directly, and we just need to evaluate ISKL(W ;S).

We further assume that the parametric family {f(z|w),w ∈ W} and prior π(w) satisfy all the
regularization conditions required for the Bernstein–von-Mises theorem [64] and the asymptotic
Normality of the maximum likelihood estimate (MLE), including Assumption 1 and the condition
that π(w) is continuous and π(w) > 0 for all w ∈ W .

In the asymptotic regime n → ∞, Bernstein–von-Mises theorem under model mismatch [38, 64]
states that we could approximate the Bayesian posterior distribution PW |S in (97) by

N (ŴML,
1

n
J(w∗)−1), where ŴML , arg max

w∈W

n∑
i=1

log f(Zi|w), (98)

denotes the MLE and

J(w) , EZ
[
−∇2

w log f(Z|w)
]

with w∗ , arg min
w∈W

D(PZ‖f(·|w)).
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The asymptotic Normality of the MLE states that the distribution of ŴML will converge to

N (w∗,
1

n
J(w∗)−1I(w∗)J(w∗)−1) with I(w) , EZ

[
∇w log f(Z|w)∇w log f(Z|w)>

]
as n → ∞. Thus, the marginal distribution PW can be approximated by a Gaussian distribution
regardless the choice of prior π(w).

Then, the symmetrized KL information can be computed using Lemma 4. By Theorem 1, we have

gen(PW |S , PZ) =
ISKL(S;W )

n
=

tr(I(w∗)J(w∗)−1)

n
. (99)

When the true model is in the parametric family PZ = f(·|w∗), we have I(w∗) = J(w∗), which
gives the Fisher information matrix and gen(PW |S , PZ) = d

n . This result suggests that the expected
generalization error of MLE and that of the Bayesian posterior distribution are the same under suitable
regularity conditions.

E.4 Behavior of Empirical Risk

As an aside, we show that the empirical risk is a decreasing function of the inverse temperature α. To
see this, we first note that the derivative of PαW |S with respect to α is given by

dPαW |S(w|s)
dα

= PαW |S(w|s)
(
EPα

W |S
[LE(w, S)]− LE(w, S)

)
. (100)

Then, we can compute the derivative of the empirical risk with respect to α as follows:

dEPW,S [LE(W,S)]

dα
= EPS [

dEPα
W |S

[LE(W,S)]

dα
]

= EPS

[∫
W
LE(w, S)

dPαW |S(w|S)

dα
dw

]

= EPS
[∫
W
PαW |S(w|s)

(
LE(w, S)EPα

W |S
[LE(w, S)]− L2

E(w, S)
)
dw

]
= EPS

[
E2
Pα
W |S

[LE(w, S)]− EPα
W |S

[L2
E(w, S)]

]
= −EPS [VarPα

W |S
[LE(W,S)]] ≤ 0 (101)

When α = 0, it can be shown that (0, π(w), LE(w, s))-Gibbs algorithm has zero generalization error.
However, the empirical risk in this case could be large, since the training samples are not used at all.
As α→∞, the empirical risk is decreasing, but the generalization error could be large. Thus, the
inverse temperature α controls the trade-off between the empirical risk and the generalization error.

F Regularized Gibbs Algorithm

F.1 Proofs of Proposition 3 and Proposition 4

Proposition 3. (restated) For (α, π(w), LE(w, s) + λR(w, s))-Gibbs algorithm, its expected gener-
alization error is given by

gen(PαW |S , PS) =
ISKL(W ;S)

α
− λE∆W,S

[R(W,S)],

where E∆W,S
[R(W,S)] = EPW⊗PS [R(W,S)]− EPW,S [R(W,S)].

Proof. For (α, π(w), LE(w, s) + λR(w, s))-Gibbs algorithm, we have

ISKL(W ;S) = EPW,S [log(PαW |S)]− EPW⊗PS [log(PαW |S)]

= α
(
EPW⊗PS [LE(W,S)]− EPW,S [LE(W,S)]

)
+ αλ

(
EPW⊗PS [R(W,S)]− EPW,S [R(W,S)]

)
= αgen(PαW |S , PS) + αλE∆W,S

[R(W,S)].
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Proposition 4. (restated) Suppose that we adopt the `2-regularizer R(w, s) = ‖w − T (s)‖22, where
T (·) is an arbitrary deterministic function T : Zn →W . Then, the expected generalization error of
(α, π(w), LE(w, s) + λR(w, s))-Gibbs algorithm is

gen(PαW |S , PS) =
ISKL(W ;S)

α
− λtr

(
Cov[W,T (S)]

)
,

where Cov[W,T (S)] denotes the covariance matrix between W and T (S).

Proof. We just need to compute E∆W,S
[R(W,S)] by considering R(w, s) = ‖w − T (s)‖22,

EPW⊗PS [R(W,S)]− EPW,S [R(W,S)]

= EPW⊗PS
[
‖W − T (S)‖22

]
− EPW,S

[
‖W − T (S)‖22

]
= EPW,S

[
WTT (S)

]
− EPW⊗PS

[
WTT (S)

]
= tr(Cov(W,T (S))).

F.2 Generalization Error Upper Bounds for Regularized Gibbs Algorithm

For general regularization function R(w, s), we can bound the E∆W,S
[R(W,S)] term using the

mutual information-based generalization error bound in [19, 71].
Proposition 5. Suppose that the regularizer function R(w, s) satisfies ΛR(w,s)(λ) ≤ ψ(λ), for
λ ∈ (−b, b) and b > 0 under data-generating distribution PZ for all w ∈ W . Then the following
lower and upper bounds holds for (α, π(w), LE(w, s) + λR(w, s))-Gibbs algorithm:

ISKL(W ;S)

α
− λψ∗−1(I(W ;S)) ≤ gen(PαW |S , PS) ≤ ISKL(W ;S)

α
+ λψ∗−1(I(W ;S)) (102)

Proof. Using the decoupling lemma from [19, Theorem 1], we have:

|E∆W,S
[R(W,S)]| ≤ ψ∗−1(I(W ;S)), (103)

which means that

− ψ∗−1(I(W ;S)) ≤ E∆W,S
[R(W,S)] ≤ ψ∗−1(I(W ;S)). (104)

The final results (102) follows directly from (104) and Proposition 3.

Note that the bounded CGF assumption is on the regularizer function R(w, s). We could consider
different assumptions on ψ(λ) in Proposition 5 including sub-Gaussian, sub-Exponential and sub-
Gamma. We focus on sub-Gaussian assumption for regularizer function in the following result.
Corollary 5. Suppose that the regularizer function R(w, s) is σ-sub-Gaussian under the distribution
PS for all w ∈ W . Then the following bounds holds for (α, π(w), LE(w, s) + λR(w, s))-Gibbs
algorithm:

ISKL(W ;S)

α
− λ
√

2σ2I(W ;S) ≤ gen(PαW |S , PS) ≤ ISKL(W ;S)

α
+ λ
√

2σ2I(W ;S) (105)

Proof. Considering ψ∗−1(I(W ;S)) =
√

2σ2I(W ;S) in Proposition 5 completes the proof.

By assuming σ-sub-Gaussianity for both loss function and the regularizer, we provide a generalization
error upper bound for regularized Gibbs algorithm in the following proposition.
Proposition 6. Suppose that the training samples S = {Zi}ni=1 are i.i.d generated from the distribu-
tion PZ , and the non-negative loss function `(w,Z) and the regularizer function R(w, s) are σ-sub-
Gaussian under data-generating distribution PZ for all w ∈ W . We further assume CE = L(W ;S)

I(W ;S)

for some CE ≥ 0. Then the following bounds holds for (α, π(w), LE(w, s) + λR(w, s))-Gibbs
algorithm:

gen(PαW |S , PS) ≤


2σ2α

(1+CE)

(
1
n −

λ√
n

)
, if 0≤λ≤ 1√

n
and I(W ;S)≤ 2σ2α2

(1+CE)2

(
1√
n
−λ
)2

;

2σ2α
(1+CE)

(
1
n + λ√

n

)
, otherwise.

(106)
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Proof. Using Proposition 5 and [71, Theorem 1], we have

ISKL(W ;S)

α
− λ
√

2σ2I(W ;S) ≤ min
(√2σ2I(W ;S)

n
,
ISKL(W ;S)

α
+ λ
√

2σ2I(W ;S)
)
.

If
√

2σ2I(W ;S)
n ≤ ISKL(W ;S)

α + λ
√

2σ2I(W ;S), and using CEI(W ;S) = L(W ;S), then we have:

I(W ;S)(1 + CE)

α
− λ
√

2σ2I(W ;S) ≤
√

2σ2I(W ;S)

n
. (107)

Solving (107) gives

I(W ;S) ≤ 2σ2α2

(1 + CE)2

(
1√
n

+ λ

)2

. (108)

If ISKL(W ;S)
α + λ

√
2σ2I(W ;S) <

√
2σ2I(W ;S)

n , and using CEI(W ;S) = L(W ;S), then we have:

I(W ;S) ≤ 2σ2α2

(1 + CE)2

(
1√
n
− λ
)2

, (109)

for 0 ≤ λ ≤ 1√
n

. Combining the (108) and (109) with [71, Theorem 1] completes the proof.

In Proposition 6, if 0 ≤ λ ≤ 1√
n

and I(W ;S)(1+CE)2

2α2σ2 ≤
(

1√
n
− λ

)2

hold, then the upper bound

would be tighter than the upper bound in Theorem 2 with CE = L(W ;S)
I(W ;S) .
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