13 research outputs found

    Automatic Design of Neural Architectures for Recommendation and Ranking Tasks

    Get PDF
    Designing the right neural network architecture for a given machine-learning task is critical for performance. For example, the most appropriate neural networks for tasks such as image classification, speech recognition, click-through-rate prediction, etc. are different from each other. This disclosure describes a framework for conducting searches for neural architectures that perform recommendation and ranking tasks

    Carbon-Efficient Neural Architecture Search

    Full text link
    This work presents a novel approach to neural architecture search (NAS) that aims to reduce energy costs and increase carbon efficiency during the model design process. The proposed framework, called carbon-efficient NAS (CE-NAS), consists of NAS evaluation algorithms with different energy requirements, a multi-objective optimizer, and a heuristic GPU allocation strategy. CE-NAS dynamically balances energy-efficient sampling and energy-consuming evaluation tasks based on current carbon emissions. Using a recent NAS benchmark dataset and two carbon traces, our trace-driven simulations demonstrate that CE-NAS achieves better carbon and search efficiency than the three baselines

    Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction

    Full text link
    Click-Through Rate (CTR) prediction is one of the most important machine learning tasks in recommender systems, driving personalized experience for billions of consumers. Neural architecture search (NAS), as an emerging field, has demonstrated its capabilities in discovering powerful neural network architectures, which motivates us to explore its potential for CTR predictions. Due to 1) diverse unstructured feature interactions, 2) heterogeneous feature space, and 3) high data volume and intrinsic data randomness, it is challenging to construct, search, and compare different architectures effectively for recommendation models. To address these challenges, we propose an automated interaction architecture discovering framework for CTR prediction named AutoCTR. Via modularizing simple yet representative interactions as virtual building blocks and wiring them into a space of direct acyclic graphs, AutoCTR performs evolutionary architecture exploration with learning-to-rank guidance at the architecture level and achieves acceleration using low-fidelity model. Empirical analysis demonstrates the effectiveness of AutoCTR on different datasets comparing to human-crafted architectures. The discovered architecture also enjoys generalizability and transferability among different datasets

    BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search

    Full text link
    Over the past half-decade, many methods have been considered for neural architecture search (NAS). Bayesian optimization (BO), which has long had success in hyperparameter optimization, has recently emerged as a very promising strategy for NAS when it is coupled with a neural predictor. Recent work has proposed different instantiations of this framework, for example, using Bayesian neural networks or graph convolutional networks as the predictive model within BO. However, the analyses in these papers often focus on the full-fledged NAS algorithm, so it is difficult to tell which individual components of the framework lead to the best performance. In this work, we give a thorough analysis of the "BO + neural predictor" framework by identifying five main components: the architecture encoding, neural predictor, uncertainty calibration method, acquisition function, and acquisition optimization strategy. We test several different methods for each component and also develop a novel path-based encoding scheme for neural architectures, which we show theoretically and empirically scales better than other encodings. Using all of our analyses, we develop a final algorithm called BANANAS, which achieves state-of-the-art performance on NAS search spaces. We adhere to the NAS research checklist (Lindauer and Hutter 2019) to facilitate best practices, and our code is available at https://github.com/naszilla/naszilla
    corecore