36,082 research outputs found

    Salient Region Segmentation

    Get PDF
    Saliency prediction is a well studied problem in computer vision. Early saliency models were based on low-level hand-crafted feature derived from insights gained in neuroscience and psychophysics. In the wake of deep learning breakthrough, a new cohort of models were proposed based on neural network architectures, allowing significantly higher gaze prediction than previous shallow models, on all metrics. However, most models treat the saliency prediction as a \textit{regression} problem, and accurate regression of high-dimensional data is known to be a hard problem. Furthermore, it is unclear that intermediate levels of saliency (ie, neither very high, nor very low) are meaningful: Something is either salient, or it is not. Drawing from those two observations, we reformulate the saliency prediction problem as a salient region \textit{segmentation} problem. We demonstrate that the reformulation allows for faster convergence than the classical regression problem, while performance is comparable to state-of-the-art. We also visualise the general features learned by the model, which are showed to be consistent with insights from psychophysics

    Salient Region Segmentation

    Get PDF
    Saliency prediction is a well studied problem in computer vision. Early saliency models were based on low-level hand-crafted feature derived from insights gained in neuroscience and psychophysics. In the wake of deep learning breakthrough, a new cohort of models were proposed based on neural network architectures, allowing significantly higher gaze prediction than previous shallow models, on all metrics. However, most models treat the saliency prediction as a regression problem, and accurate regression of high-dimensional data is known to be a hard problem. Furthermore, it is unclear that intermediate levels of saliency (ie, neither very high, nor very low) are meaningful: Something is either salient, or it is not. Drawing from those two observations, we reformulate the saliency prediction problem as a salient region segmentation problem. We demonstrate that the reformulation allows for faster convergence than the classical regression problem, while performance is comparable to stateof-the-art. We also visualise the general features learned by the model, which are showed to be consistent with insights from psychophysics.Engineering and Physical Sciences Research Council (EPSRC

    Salient Region Segmentation

    Get PDF
    Saliency prediction is a well studied problem in computer vision. Early saliency models were based on low-level hand-crafted feature derived from insights gained in neuroscience and psychophysics. In the wake of deep learning breakthrough, a new cohort of models were proposed based on neural network architectures, allowing significantly higher gaze prediction than previous shallow models, on all metrics. However, most models treat the saliency prediction as a regression problem, and accurate regression of high-dimensional data is known to be a hard problem. Furthermore, it is unclear that intermediate levels of saliency (ie, neither very high, nor very low) are meaningful: Something is either salient, or it is not. Drawing from those two observations, we reformulate the saliency prediction problem as a salient region segmentation problem. We demonstrate that the reformulation allows for faster convergence than the classical regression problem, while performance is comparable to stateof-the-art. We also visualise the general features learned by the model, which are showed to be consistent with insights from psychophysics.Engineering and Physical Sciences Research Council (EPSRC

    Instance-Level Salient Object Segmentation

    Full text link
    Image saliency detection has recently witnessed rapid progress due to deep convolutional neural networks. However, none of the existing methods is able to identify object instances in the detected salient regions. In this paper, we present a salient instance segmentation method that produces a saliency mask with distinct object instance labels for an input image. Our method consists of three steps, estimating saliency map, detecting salient object contours and identifying salient object instances. For the first two steps, we propose a multiscale saliency refinement network, which generates high-quality salient region masks and salient object contours. Once integrated with multiscale combinatorial grouping and a MAP-based subset optimization framework, our method can generate very promising salient object instance segmentation results. To promote further research and evaluation of salient instance segmentation, we also construct a new database of 1000 images and their pixelwise salient instance annotations. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks for salient region detection as well as on our new dataset for salient instance segmentation.Comment: To appear in CVPR201

    An improved image segmentation algorithm for salient object detection

    Get PDF
    Semantic object detection is one of the most important and challenging problems in image analysis. Segmentation is an optimal approach to detect salient objects, but often fails to generate meaningful regions due to over-segmentation. This paper presents an improved semantic segmentation approach which is based on JSEG algorithm and utilizes multiple region merging criteria. The experimental results demonstrate that the proposed algorithm is encouraging and effective in salient object detection

    Salient region detection using contrast-based saliency and watershed segmentation

    Get PDF
    Salient region detection is useful for many applications such as image segmentation, compression, image retrieval, object tracking, and machine vision systems.In this paper, an approach to detect salient regions in a visual scene using contrast-based saliency and watershed segmentation is presented.The approach allows salient objects to be detected and extracted for analysis while preserving the actual boundaries of the salient objects. The approach can be executed in parallel making it efficient for real time applications

    Hierarchical Salient Object Detection for Assisted Grasping

    Full text link
    Visual scene decomposition into semantic entities is one of the major challenges when creating a reliable object grasping system. Recently, we introduced a bottom-up hierarchical clustering approach which is able to segment objects and parts in a scene. In this paper, we introduce a transform from such a segmentation into a corresponding, hierarchical saliency function. In comprehensive experiments we demonstrate its ability to detect salient objects in a scene. Furthermore, this hierarchical saliency defines a most salient corresponding region (scale) for every point in an image. Based on this, an easy-to-use pick and place manipulation system was developed and tested exemplarily.Comment: Accepted for ICRA 201
    • …
    corecore