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Abstract—Saliency prediction is a well studied problem in
computer vision. Early saliency models were based on low-level
hand-crafted feature derived from insights gained in neuroscience
and psychophysics. In the wake of deep learning breakthrough,
a new cohort of models were proposed based on neural network
architectures, allowing significantly higher gaze prediction than
previous shallow models, on all metrics. However, most models
treat the saliency prediction as a regression problem, and accurate
regression of high-dimensional data is known to be a hard
problem. Furthermore, it is unclear that intermediate levels of
saliency (ie, neither very high, nor very low) are meaningful:
Something is either salient, or it is not. Drawing from those two
observations, we reformulate the saliency prediction problem as
a salient region segmentation problem. We demonstrate that the
reformulation allows for faster convergence than the classical
regression problem, while performance is comparable to state-
of-the-art. We also visualise the general features learned by the
model, which are showed to be consistent with insights from
psychophysics.

I. INTRODUCTION

The human visual system receives about 108 to 10° bits of
information per second [1]]. In order to process such a large
quantity of information efficiently, the visual system relies on
dynamic attention: selectively focusing cognitive resources on
parts of the scene. This process has been extensively studied
by psychologists, some have proposed computational models
to mimic this clever mechanism and predict where a human
witness would look in a given. The most widespread model
is based on Triesman’s feature integration theory [2] and the
concept of centre-surround difference: regions which have
features different from their surroundings are likely to attract a
viewer’s attention. Such regions, which attract a viewer’s gaze,
are called salient, and thus computational models predicting
such regions are called saliency models. Features commonly
used to explain saliency include, eg, colour, intensity and
orientation [3]], and additional features (eg, depth, contour) can
improve the saliency models’ predictiveness but it is not fully
understood which features are salient. The fast development
and success of deep learning approaches in computer vision,
together with the availability of large scale datasets in visual
attention has allowed to try and learn salient features from
scratch by trying to predict human viewers’ gaze [4], [5],
[6], [7]. These data-driven approaches have demonstrated the
potential to predict viewers’ gaze with significantly higher
accuracy than previous, hand-crafted saliency models.

One challenge when using a data-driven approach to learn
saliency from human gaze, is the difficulty of regressing a

(a) Original image

(b) Saliency Map (SM)

(c) Salient Region Map (SRM)

Fig. 1: Example of original image, saliency map and salient
region map (three saliency levels).

complete, high-dimensional saliency map: accurate regression
of high-dimensional data is known to be a hard problem. More
importantly, although it is clear what is signified by a high or
low saliency, it is less clear how meaningful is the accurate
saliency scoring of intermediate regions (can something be
‘somewhat more salient’ than another?). Arguably, the regres-
sion problem to be solved is much harder than strictly nec-
essary from the problem definition: estimating accurately the
relative saliency level of all pixels is intrinsically ambiguous,
whereas we are only really interested in the salient regions
of the image. In this work, instead of predicting a pixel-
wise saliency value, we predict salient regions based on three
saliency levels (high, medium and low). This simplification
of the problem allows us to adopt an image segmentation
approach based on an encoder-decoder network such that the
network’s output is of the same size as its input, avoiding the
need to rescale the output. We demonstrate that although our
approach involves a major reformulation and simplification of
the problem, we can predict viewers’ gaze with an accuracy
comparable to state-of-the-art approaches.

II. RELATED WORK

Existing saliency prediction methods can be divided into
two groups based on whether the features used in saliency
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prediction are hand-crafted or learned from the data. We will
discuss those two categories in turn.

A. Models based on hand-crafted features

Most hand-crafted feature-based models originate from the
Treisman’s feature integration theory [2], and make use of
hand-crafted features based on what has been shown to attract
visual attention by Psychologists. Itti & Koch [8], [3] were the
first to propose a computational model for saliency prediction
based on the feature integration theory and central surround
difference. Their model uses a topological architecture at
multiple scale to get a conspicuity map for each feature, and
then use a combination scheme to combine conspicuity maps
for all the features used in saliency prediction to get the final
saliency map. Their model uses three common features: colour,
intensity and orientation. Later variants on this model [9]] also
integrate the depth feature into the saliency prediction model.
However, many other features could attract our attention;
for detailed survey of hand-crafted feature based saliency
prediction model, we refer to [IL].

B. Models based on machine learning method

Although psychological research has provided elements
of answer, what visual features are salient is still an open
question, hence there is an interest to use machine learning to
learn salient features from data. Kienzle et al. [[10] first tried to
learn features from eye fixation data, and found confirmation
that visual patterns similar to central surround difference
attract viewers’ attention. Since 2014, the development of deep
learning approaches and their successes in many computer
vision problems, along with the availability of large scale
datasets in visual attention, lead to the rise of deep learning
approaches in saliency prediction.

Vig et al. [[L1] were the first to use a deep neural network for
saliency prediction, although many other approaches followed.
They use an optimisation algorithm to search the best features
in a deep model created for face recognition. After that,
most deep models for saliency prediction use transfer learning
method and fine-tuning on a deep network pre-trained for
image classification with some modification, removing the
fully connected layer and building a regressor above the
convolutional part of the network. The final step is to rescale
the network’s output to the input image’s size. The main
difference between those deep models is the loss function used
for training: [12]] directly use Euclidean loss function to train
their model; [13] use the Kullback-Leibler divergence as the
loss function, as it is one of the evaluation metric for saliency
model; [6] compares different loss functions and found that
the Bhattacharyya distance is the best loss function; and [5]]
use the maximum likelihood method to train their model.

The approach proposed in this article is also based on deep
learning, but in contrast to those who treat saliency prediction
as a regression problem, we reformulate the problem as
a segmentation problem, and we use the encoder-decoder
architecture to achieve pixel-wise prediction rather than the
coarse prediction provided by other deep networks.

III. SALIENT REGION SEGMENTATION

Before introducing our method, we first introduce three
terms that will be used in the later parts (example in Figure [T).

Fixation map (FM): A fixation map is a binary map, which
records the human eye fixation locations using eye tracker
when generating the dataset for saliency prediction.

Saliency map (SM): A saliency map is derived from
fixation maps by convolving a Gaussian filter with the fixation
map. It is the ground truth for all of the saliency prediction
model at the moment.

Salient region map (SRM): A salient region map is derived
by quantizing a saliency map into several saliency levels. It is
the ground truth in our method. See Figure [I]

All existing saliency prediction models work by trying to
predict saliency levels at every pixel. However, estimating
intermediate saliency values accurately increases significantly
the complexity of the learning problem, with little benefit.
Therefore, we propose to reformulate the problem as a seg-
mentation problem to separate regions of high saliency from
regions of low saliency, rather than regressing a pixel-wise
saliency map.

A. Salient Region Thresholding

The saliency map is a continuous map while the salient
region map is a discrete map. The salient region map is derived
directly from the saliency map by assigning each pixel a
saliency level according to their saliency value. The higher
the saliency value of a pixel, the higher its saliency level:

0 if 0 < S(z) <22 x1
255 if 255 x 1 < S(w) < BB x 2
R(CL’) _ K-1 . K K
255 if frac255Kx(K-D)< S(X) < 28 x K
)

where R(z) is the saliency level of salient region map at pixel
x , S(x) is the saliency value of saliency map at pixel x, and
K is the number of saliency levels. The resulting salient region
map will be used as ground truth in the training stage.

B. Encoder-Decoder Segmentation

The classical Convolutional Neural Network is an encoder
plus a classifier or a regressor. The size of such a network’s
output is very small compared to the input image due to the
successive pooling layers, therefore preventing pixel-wise clas-
sification in this architecture. Recently, the encoder-decoder
architecture has achieved great performance in semantic seg-
mentation task; and therefore this is the architecture we adopt
for salient region segmentation in this paper. There are mainly
two different encoder-decoder architectures: the FCN (Fully
Convolutional Networks) [14] and SegNet [15]. The main
difference between these two approaches is the upsampling
process used in the decoder. In FCN, they learn an upsampling
filter to do deconvolution against the corresponding pooling
layer such that the output size is equal to the input size. In
contrast, SegNet uses indices in the pooling stage, and do
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(a) input
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Fig. 2: Model architecture: this is a fully convolutional network without fully connected layer. The last red layer is the softmax
with cross entropy loss layer in the training stage (it is replaced by the argmax function in the inference stage).

unpooling to get a sparse feature map at first in the decoder
(this method is also used in CNN feature visualisation of [16]),
then learn a filter to get a dense feature map. As the SegNet
architecture has a higher classification accuracy than FCN for
semantic segmentation, we adopt this architecture for salient
region segmentation.

C. Median Frequency Balancing

For training our network, we use a softmax with cross
entropy loss function. However, the dataset is highly unbal-
anced: low saliency regions occupies a much larger proportion
of the whole map than high saliency regions do (see Figure
[[). Therefore, we use Eigen and Fergus’s median frequency
balancing method [[17] to weight the loss caused by each class:

K
E(@) = 3 Wi (g:(x) Inpy() + (1 — gu(w)) In(1 = pi(2))
=1
2

where E(x) is the loss caused by pixel = during training, K is
the number of saliency levels, W; is the weight of i saliency
level determined by median frequency balancing method, p;
is the prediction probability that the saliency level of pixel x
is ¢, and g; is the ground truth that the saliency level of pixel
T is 4.

The whole model architecture is in Figure [

D. Region Restriction

To make the salient region more selective, we use the output
of a binary (salient/non-salient) model to restrict the regions of
the output with more quantization levels, such that the pixels
that are non-salient in the binary model’s output are inhibited
in the quantized model’s output (example in Figure [3)).

E. Training The Model

We trained two models, one model with three saliency
levels and one model with two saliency levels. We use the
second model’s output to restrict the first model’s output. The
parameters of the encoder part are initialized from the VGG-
16 network [18]]. The filters in the decoder are initialized
by MSRA method in Caffe [19]]. During the training stage,
all layers are learnt with an initial learning rate of 0.01, we

decrease the learning rate using the step learning policy with
a step size of 500. All training is based on the SALICON
dataset [20]. We only use the training dataset (10K images) in
SALICON to train our model, and we use the first 500 images
in the validation dataset of SALICON as validation. It takes
almost 22 hours to train each model on a K40 GPU.

IV. EVALUATION

In this section, we first describe the datasets and the
evaluation metrics for saliency prediction models, followed by
a comparison and discussion of the quantitative and qualitative
aspects of the result.

A. Datasets

SALICON [20]: This is the largest dataset publicly avail-
able with fixation map and saliency map in visual attention
domain. It consists of 20,000 images taken from the MSCOCO
dataset, 10,000 in the training dataset, 5,000 in the validation
dataset, and 5,000 in the testing dataset. The eye fixation data
is recorded by mouse-click instead of eye-tracking system.
We use the training dataset for training the model, and the
first 500 data in the validation dataset for validation and all
the validation data for testing the classification accuracy.

MIT1003 [21]: This dataset contains 1,003 images with
fixation and saliency map. The fixation map comes from 15
viewers when free viewing the original image for 3 seconds
recorded by the eye-tracking system. We use this dataset to
evaluate the loss in several saliency evaluation metrics com-
pared to the traditional pixel-wise saliency value prediction
methods.

MIT300 [22]: This dataset contains 300 images and it is
the MIT saliency benchmark. The fixation map (not publicly
available) of this dataset recorded the fixation locations of 39
people. We use this dataset to compare the performance of our
model with other state-of-the-art saliency prediction models
over several evaluation metrics.

B. Metrics

The ground truth for our model is the salient region map,
not the saliency map. Therefore, we evaluate our model using
the classification accuracy and the evaluation metrics based on
the fixation map.
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Fig. 3: Region Restriction: the output of two saliency levels model, the output of three saliency levels model and the output

after region restriction.

Class Accuracy

all class 84.21%
saliency level 1 86.6%
saliency level 2 68.11%
saliency level 3 65.11%

TABLE I: The overall classification accuracy (all class in the
table), saliency level 1, 2 and 3 classification accuracy for 3
saliency levels model.

Classification accuracy: This is the evaluation used in
semantic segmentation tasks, we test the overall classification
accuracy (the accuracy for all saliency levels), per class
accuracy (the accuracy for each saliency level).

AUC-Judd: This metric is proposed by Judd in [23]. The
model prediction is treated as a binary classifier to separate
positive from negative samples at various thresholds, and the
ROC curve is calculated from true positive (TP) and false
positive (FP) rates. The final score is the area under the ROC
curve, where larger AUC signify better detection.

SAUC: This metric is introduced in [24]] at 2008. It is
the same as AUC-Borji but removed the central-bias (when
photographing the image, people like to place the interesting
objects in the central part of the image).

NSS [23]: This metric is the normalised scanpath saliency
between the model’s prediction and the fixation map. It is mea-
sured as the mean value of the normalised model prediction
at fixation locations.

C. Evaluation results

1) Classification accuracy: Table [I] records the proposed
model’s classification accuracy on the SALICON dataset,
overall and for each saliency level, showing that classification
accuracy is lower for higher saliency levels. In contrast to clas-
sical semantic segmentation, an object can belong to multiple
classes in salient region segmentation: the high saliency level
region is generally surrounded by a low saliency level region.
It makes it difficult to distinguish them with higher accuracy,
as they easily overlap (in particular, the low saliency region
covers the high saliency region).

Ground truth AUC-Judd | AUC-shuffled NSS
saliency map 0.9700 0.8899 4.0543

salient region map (3 levels) 0.7830 0.7507 3.7385
quantization loss 19.28% 15.64% 7.79%

TABLE II: The performance decline from saliency map to the
salient region map, this is evaluated on the MIT1003 dataset.

Models AUC-Judd | AUC-shuffled NSS

SALGAN 0.773 2.589

PDP 0.880 0.783 2419
ours (no region restriction) 0.7485 0.6724 1.5923
ours (with region restriction) 0.7008 0.6463 1.7950
loss compared to state-of-the-art 20.36% 12.63% 30.67%

TABLE III: Comparison with the state-of-the-art models, all
results are tested on SALICON validation dataset, the decline
is computed based on the map after region restriction.

2) Saliency evaluation metrics: Due to the quantization
step, it is expected that even a true salient region map would
yield a somewhat lower gaze prediction performance on most
metrics compared to the original (continuous) saliency map.
This loss is measured one the MIT1003 dataset and recorded in
Table [l In this table, we can also see that the estimated loss is
larger for AUC metric than for NSS, supporting our hypothesis
that quantized regions encode most saliency information. We
evaluated our model on the SALICON validation dataset
(Table and the MIT300 official test set (Table [[V).

Models AUC-Judd | AUC-shuffled NSS
human baseline 0.92 0.81 3.29
Deep Gaze ii 0.88 0.72 1.29
Deep Gaze i 0.84 0.66 1.22
SALGAN 0.86 0.72 2.04
PDP 0.85 0.73 2.05
ours (3 levels) 0.76 0.68 1.32
loss compared to state-of-the-art 13.64% 6.85% 35.61%

TABLE IV: Comparison with the state-of-the-art models, all
results are tested on the MIT300 saliency benchmark based
on the map without region restriction [25]].
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Fig. 4: NSS decline explanation, the red spots are human eye fixations recorded when generating the dataset.

These results show that although our proposed model does
not quite reach the performance of the latest deep architec-
tures such as SalGAN and PDP, it nonetheless achieves high
performance. Indeed, when considering the official MIT300
benchmark (Table , it is interesting to note that, despite
working on quantized regions, our model’s NSS score clearly
outperforms some previous methods such as Deep Gaze i,
Deep Gaze ii. Moreover, the results on the SALICON dataset
(Table show that the application of the region restriction
mechanism described in section appears to simultane-
ously reduce the AUC scores while at the same time increasing
the NSS score by a significant margin. This result outline that
AUC is in line with recent arguments by [26] and the NSS
score is a better evaluation metric for saliency datasets based
on fixation patterns. The reason for the large NSS loss is due
to our models output has a high standard deviation, which lead
to a pixel value decrease after normalisation when compute the
NSS score. See Figure[d] It would appear at first glance that the
NSS score for our model prediction should be higher than the
salient region map, as it covers more eye fixation locations—
this is not the case. The NSS score for the saliency map is
4.2324, for salient region map is 3.9484, and for our prediction
is 3.1471. As the standard deviation for the saliency map is
0.0329, for salient region map is 0.0777, but for our model
prediction is 0.1923, after normalisation, the max value for the
saliency map is 11.6710, for salient region map is 12.7703, but
for our model prediction is 4.9508, which will lead to a large
decline in the NSS computation.

D. Reformulation Gain

One important advantage of reformulating the problem as
semantic segmentation is that it is a simpler problem to learn.
To demonstrate this we compare the training convergence of
the our segmentation model with a regression model using the
same architecture, same dataset and same learning strategy, but
treating saliency map as the ground truth and using a common
Euclidean loss. The results are illustrated in Figure [5]

In Figures [5a] and [5b] we can see that the proposed method
has a much faster convergence speed: it only requires 2,000
iterations to converge (only two epochs). In contrast, the
regression-based model is slow to converge and oscillates
easily. And in Figures [5c| and [5d} we can see that using the
deconvolution method in the decoder performs better for both
segmentation and regression.
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Fig. 5: Comparison of segmentation versus regression and
unpooling versus deconvolution.

E. General Features Learned by The Network

In recent years, several model for saliency prediction were
proposed using deep learning method, but none of them
visualised what is learned by those models. Therefore, we
adopt the popular deep neural network visualisation technique
in [16]] to analyse our model. There are three main processes in
the visualisation: upsampling, deconvolution, and non-linearity
(usually a ReLU function)—the reverse of the forward pass
when input an image into the deep neural network. However,
in this paper we are more interested in visualising to what
patterns the deep neurons are attuned to rather than features
for individual images. This required a modification of the
upsampling process. The classic upsampling method in feature
visualisation is unpooling, using the pooling indices in the
forward pass to do unpooling. Because pooling indices only
exist when processing an actual image through the network,
these indices are not available when visualising a neuron’s
receptive field in abstraction from any input. Hence, in order
to visualise general individual neuron’s receptive fields, we
set the pooled feature map as a sparse matrix (with only one
non-zero value) and do upsampling by repeating this sparse
matrix. Here, we show the visualisation results of our model:
the features learned by the last layer of the encoder part in our



Fig. 6: Tllustration of the receptive field of the features learnt
by the first 64 neurons of top encoder layer in our architecture.

network, there are 512 neurons. Here, we show the general
feature for the first 64 neurons. From the Figure [f] we can see
that the features learned by our network are very similar to
central-surround patterns, which is consistent with the research
in Psychology [27].

V. CONCLUSION

In this work, we propose to reformulate the saliency pre-
diction problem as an image segmentation problem, according
to different saliency levels rather than the traditional pix-
wise saliency value prediction. We adopt the encoder-decoder
architecture in semantic segmentation to do salient region
segmentation. Our results show that even if we treat it as
a segmentation problem, it can still challenge the state-of-
the-art performance, and the proposed model trains faster and
more reliably than regression-based models. Finally, we also
demonstrated that the learnt deep features are consistent with
the centre-surround hypothesis.
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