885 research outputs found

    Saliency guided local and global descriptors for effective action recognition

    Get PDF
    This paper presents a novel framework for human action recognition based on salient object detection and a new combination of local and global descriptors. We first detect salient objects in video frames and only extract features for such objects. We then use a simple strategy to identify and process only those video frames that contain salient objects. Processing salient objects instead of all frames not only makes the algorithm more efficient, but more importantly also suppresses the interference of background pixels. We combine this approach with a new combination of local and global descriptors, namely 3D-SIFT and histograms of oriented optical flow (HOOF), respectively. The resulting saliency guided 3D-SIFT–HOOF (SGSH) feature is used along with a multi-class support vector machine (SVM) classifier for human action recognition. Experiments conducted on the standard KTH and UCF-Sports action benchmarks show that our new method outperforms the competing state-of-the-art spatiotemporal feature-based human action recognition metho

    Deep learning investigation for chess player attention prediction using eye-tracking and game data

    Get PDF
    This article reports on an investigation of the use of convolutional neural networks to predict the visual attention of chess players. The visual attention model described in this article has been created to generate saliency maps that capture hierarchical and spatial features of chessboard, in order to predict the probability fixation for individual pixels Using a skip-layer architecture of an autoencoder, with a unified decoder, we are able to use multiscale features to predict saliency of part of the board at different scales, showing multiple relations between pieces. We have used scan path and fixation data from players engaged in solving chess problems, to compute 6600 saliency maps associated to the corresponding chess piece configurations. This corpus is completed with synthetically generated data from actual games gathered from an online chess platform. Experiments realized using both scan-paths from chess players and the CAT2000 saliency dataset of natural images, highlights several results. Deep features, pretrained on natural images, were found to be helpful in training visual attention prediction for chess. The proposed neural network architecture is able to generate meaningful saliency maps on unseen chess configurations with good scores on standard metrics. This work provides a baseline for future work on visual attention prediction in similar contexts

    STEP: Spatial Temporal Graph Convolutional Networks for Emotion Perception from Gaits

    Full text link
    We present a novel classifier network called STEP, to classify perceived human emotion from gaits, based on a Spatial Temporal Graph Convolutional Network (ST-GCN) architecture. Given an RGB video of an individual walking, our formulation implicitly exploits the gait features to classify the emotional state of the human into one of four emotions: happy, sad, angry, or neutral. We use hundreds of annotated real-world gait videos and augment them with thousands of annotated synthetic gaits generated using a novel generative network called STEP-Gen, built on an ST-GCN based Conditional Variational Autoencoder (CVAE). We incorporate a novel push-pull regularization loss in the CVAE formulation of STEP-Gen to generate realistic gaits and improve the classification accuracy of STEP. We also release a novel dataset (E-Gait), which consists of 2,1772,177 human gaits annotated with perceived emotions along with thousands of synthetic gaits. In practice, STEP can learn the affective features and exhibits classification accuracy of 89% on E-Gait, which is 14 - 30% more accurate over prior methods

    Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual Recognition

    Full text link
    Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature addresses this challenge by employing local-based representation approaches, which may not sufficiently facilitate meaningful object-specific semantic understanding, leading to a reliance on apparent background correlations. Moreover, they primarily rely on high-dimensional local descriptors to construct complex embedding space, potentially limiting the generalization. To address the above challenges, this article proposes a novel model called RSaG for few-shot fine-grained visual recognition. RSaG introduces additional saliency-aware supervision via saliency detection to guide the model toward focusing on the intrinsic discriminative regions. Specifically, RSaG utilizes the saliency detection model to emphasize the critical regions of each sub-category, providing additional object-specific information for fine-grained prediction. RSaG transfers such information with two symmetric branches in a mutual learning paradigm. Furthermore, RSaG exploits inter-regional relationships to enhance the informativeness of the representation and subsequently summarize the highlighted details into contextual embeddings to facilitate the effective transfer, enabling quick generalization to novel sub-categories. The proposed approach is empirically evaluated on three widely used benchmarks, demonstrating its superior performance.Comment: Under Revie

    Ecological active vision: four bio-inspired principles to integrate bottom-up and adaptive top-down attention tested with a simple camera-arm robot

    Get PDF
    Vision gives primates a wealth of information useful to manipulate the environment, but at the same time it can easily overwhelm their computational resources. Active vision is a key solution found by nature to solve this problem: a limited fovea actively displaced in space to collect only relevant information. Here we highlight that in ecological conditions this solution encounters four problems: 1) the agent needs to learn where to look based on its goals; 2) manipulation causes learning feedback in areas of space possibly outside the attention focus; 3) good visual actions are needed to guide manipulation actions, but only these can generate learning feedback; and 4) a limited fovea causes aliasing problems. We then propose a computational architecture ("BITPIC") to overcome the four problems, integrating four bioinspired key ingredients: 1) reinforcement-learning fovea-based top-down attention; 2) a strong vision-manipulation coupling; 3) bottom-up periphery-based attention; and 4) a novel action-oriented memory. The system is tested with a simple simulated camera-arm robot solving a class of search-and-reach tasks involving color-blob "objects." The results show that the architecture solves the problems, and hence the tasks, very ef?ciently, and highlight how the architecture principles can contribute to a full exploitation of the advantages of active vision in ecological conditions

    Recognition, Analysis, and Assessments of Human Skills using Wearable Sensors

    Get PDF
    One of the biggest social issues in mature societies such as Europe and Japan is the aging population and declining birth rate. These societies have a serious problem with the retirement of the expert workers, doctors, and engineers etc. Especially in the sectors that require long time to make experts in fields like medicine and industry; the retirement and injuries of the experts, is a serious problem. The technology to support the training and assessment of skilled workers (like doctors, manufacturing workers) is strongly required for the society. Although there are some solutions for this problem, most of them are video-based which violates the privacy of the subjects. Furthermore, they are not easy to deploy due to the need for large training data. This thesis provides a novel framework to recognize, analyze, and assess human skills with minimum customization cost. The presented framework tackles this problem in two different domains, industrial setup and medical operations of catheter-based cardiovascular interventions (CBCVI). In particular, the contributions of this thesis are four-fold. First, it proposes an easy-to-deploy framework for human activity recognition based on zero-shot learning approach, which is based on learning basic actions and objects. The model recognizes unseen activities by combinations of basic actions learned in a preliminary way and involved objects. Therefore, it is completely configurable by the user and can be used to detect completely new activities. Second, a novel gaze-estimation model for attention driven object detection task is presented. The key features of the model are: (i) usage of the deformable convolutional layers to better incorporate spatial dependencies of different shapes of objects and backgrounds, (ii) formulation of the gaze-estimation problem in two different way, as a classification as well as a regression problem. We combine both formulations using a joint loss that incorporates both the cross-entropy as well as the mean-squared error in order to train our model. This enhanced the accuracy of the model from 6.8 by using only the cross-entropy loss to 6.4 for the joint loss. The third contribution of this thesis targets the area of quantification of quality of i actions using wearable sensor. To address the variety of scenarios, we have targeted two possibilities: a) both expert and novice data is available , b) only expert data is available, a quite common case in safety critical scenarios. Both of the developed methods from these scenarios are deep learning based. In the first one, we use autoencoders with OneClass SVM, and in the second one we use the Siamese Networks. These methods allow us to encode the expert’s expertise and to learn the differences between novice and expert workers. This enables quantification of the performance of the novice in comparison to the expert worker. The fourth contribution, explicitly targets medical practitioners and provides a methodology for novel gaze-based temporal spatial analysis of CBCVI data. The developed methodology allows continuous registration and analysis of gaze data for analysis of the visual X-ray image processing (XRIP) strategies of expert operators in live-cases scenarios and may assist in transferring experts’ reading skills to novices

    Real-Time Action Recognition Using Multi-level Action Descriptor and DNN

    Get PDF
    This work presents a novel approach to the problem of real-time human action recognition in intelligent video surveillance. For more efficient and precise labeling of an action, this work proposes a multilevel action descriptor, which delivers complete information of human actions. The action descriptor consists of three levels: posture, locomotion, and gesture level; each of which corresponds to a different group of subactions describing a single human action, for example, smoking while walking. The proposed action recognition method is able to localize and recognize simultaneously the actions of multiple individuals using appearance-based temporal features with multiple convolutional neural networks (CNN). Although appearance cues have been successfully exploited for visual recognition problems, appearance, motion history, and their combined cues with multi-CNNs have not yet been explored. Additionally, the first systematic estimation of several hyperparameters for shape and motion history cues is investigated. The proposed approach achieves a mean average precision (mAP) of 73.2% in the frame-based evaluation over the newly collected large-scale ICVL video dataset. The action recognition model can run at around 25 frames per second, which is suitable for real-time surveillance applications
    • …
    corecore