8 research outputs found

    EFFICIENT LOSSY IMAGE COMPRESSION TECHNIQUE BASED ON SEAM IDENTIFICATION AND SPIHT CODING

    Get PDF
    ABSTRACT The project proposes the seam based efficient image compression using integer wavelet transform and Lossy encoding techniques. In mobile multimedia communications, image retargeting is generally required at the user end. However, content-based image retargeting is with high computational complexity and is not suitable for mobile devices with limited computing power. The work presented in this paper addresses the increasing demand of visual signal delivery to terminals with arbitrary resolutions, without heavy computational burden to the receiving end. In this paper, the principle of seam carving is incorporated into a wavelet codec (i.e., SPIHT). For each input image, block-based seam energy map is generated in the pixel domain and the integer wavelet transform (IWT) is performed for the retargeted image. Different from the conventional wavelet-based coding schemes, IWT coefficients here are grouped and encoded according to the resultant seam energy map. The bit stream is then transmitted in energy descending order. At the decoder side, the end user has the ultimate choice for the spatial scalability without the need to examine the visual content; an image with arbitrary aspect ratio can be reconstructed. Experimental results show that, for the end users, the received images with an arbitrary resolution preserve important content while achieving high coding efficiency for transmission

    Multi-Channel Deep Networks for Block-Based Image Compressive Sensing

    Full text link
    Incorporating deep neural networks in image compressive sensing (CS) receives intensive attentions recently. As deep network approaches learn the inverse mapping directly from the CS measurements, a number of models have to be trained, each of which corresponds to a sampling rate. This may potentially degrade the performance of image CS, especially when multiple sampling rates are assigned to different blocks within an image. In this paper, we develop a multi-channel deep network for block-based image CS with performance significantly exceeding the current state-of-the-art methods. The significant performance improvement of the model is attributed to block-based sampling rates allocation and model-level removal of blocking artifacts. Specifically, the image blocks with a variety of sampling rates can be reconstructed in a single model by exploiting inter-block correlation. At the same time, the initially reconstructed blocks are reassembled into a full image to remove blocking artifacts within the network by unrolling a hand-designed block-based CS algorithm. Experimental results demonstrate that the proposed method outperforms the state-of-the-art CS methods by a large margin in terms of objective metrics, PSNR, SSIM, and subjective visual quality.Comment: 12 pages, 8 figure

    Data-guided statistical sparse measurements modeling for compressive sensing

    Get PDF
    Digital image acquisition can be a time consuming process for situations where high spatial resolution is required. As such, optimizing the acquisition mechanism is of high importance for many measurement applications. Acquiring such data through a dynamically small subset of measurement locations can address this problem. In such a case, the measured information can be regarded as incomplete, which necessitates the application of special reconstruction tools to recover the original data set. The reconstruction can be performed based on the concept of sparse signal representation. Recovering signals and images from their sub-Nyquist measurements forms the core idea of compressive sensing (CS). In this work, a CS-based data-guided statistical sparse measurements method is presented, implemented and evaluated. This method significantly improves image reconstruction from sparse measurements. In the data-guided statistical sparse measurements approach, signal sampling distribution is optimized for improving image reconstruction performance. The sampling distribution is based on underlying data rather than the commonly used uniform random distribution. The optimal sampling pattern probability is accomplished by learning process through two methods - direct and indirect. The direct method is implemented for learning a nonparametric probability density function directly from the dataset. The indirect learning method is implemented for cases where a mapping between extracted features and the probability density function is required. The unified model is implemented for different representation domains, including frequency domain and spatial domain. Experiments were performed for multiple applications such as optical coherence tomography, bridge structure vibration, robotic vision, 3D laser range measurements and fluorescence microscopy. Results show that the data-guided statistical sparse measurements method significantly outperforms the conventional CS reconstruction performance. Data-guided statistical sparse measurements method achieves much higher reconstruction signal-to-noise ratio for the same compression rate as the conventional CS. Alternatively, Data-guided statistical sparse measurements method achieves similar reconstruction signal-to-noise ratio as the conventional CS with significantly fewer samples

    Leveraging Signal Transfer Characteristics and Parasitics of Spintronic Circuits for Area and Energy-Optimized Hybrid Digital and Analog Arithmetic

    Get PDF
    While Internet of Things (IoT) sensors offer numerous benefits in diverse applications, they are limited by stringent constraints in energy, processing area and memory. These constraints are especially challenging within applications such as Compressive Sensing (CS) and Machine Learning (ML) via Deep Neural Networks (DNNs), which require dot product computations on large data sets. A solution to these challenges has been offered by the development of crossbar array architectures, enabled by recent advances in spintronic devices such as Magnetic Tunnel Junctions (MTJs). Crossbar arrays offer a compact, low-energy and in-memory approach to dot product computation in the analog domain by leveraging intrinsic signal-transfer characteristics of the embedded MTJ devices. The first phase of this dissertation research seeks to build on these benefits by optimizing resource allocation within spintronic crossbar arrays. A hardware approach to non-uniform CS is developed, which dynamically configures sampling rates by deriving necessary control signals using circuit parasitics. Next, an alternate approach to non-uniform CS based on adaptive quantization is developed, which reduces circuit area in addition to energy consumption. Adaptive quantization is then applied to DNNs by developing an architecture allowing for layer-wise quantization based on relative robustness levels. The second phase of this research focuses on extension of the analog computation paradigm by development of an operational amplifier-based arithmetic unit for generalized scalar operations. This approach allows for 95% area reduction in scalar multiplications, compared to the state-of-the-art digital alternative. Moreover, analog computation of enhanced activation functions allows for significant improvement in DNN accuracy, which can be harnessed through triple modular redundancy to yield 81.2% reduction in power at the cost of only 4% accuracy loss, compared to a larger network. Together these results substantiate promising approaches to several challenges facing the design of future IoT sensors within the targeted applications of CS and ML

    Compressive Sensing and Recovery of Structured Sparse Signals

    Get PDF
    In the recent years, numerous disciplines including telecommunications, medical imaging, computational biology, and neuroscience benefited from increasing applications of high dimensional datasets. This calls for efficient ways of data capturing and data processing. Compressive sensing (CS), which is introduced as an efficient sampling (data capturing) method, is addressing this need. It is well-known that the signals, which belong to an ambient high-dimensional space, have much smaller dimensionality in an appropriate domain. CS taps into this principle and dramatically reduces the number of samples that is required to be captured to avoid any distortion in the information content of the data. This reduction in the required number of samples enables many new applications that were previously infeasible using classical sampling techniques. Most CS-based approaches take advantage of the inherent low-dimensionality in many datasets. They try to determine a sparse representation of the data, in an appropriately chosen basis using only a few significant elements. These approaches make no extra assumptions regarding possible relationships among the significant elements of that basis. In this dissertation, different ways of incorporating the knowledge about such relationships are integrated into the data sampling and the processing schemes. We first consider the recovery of temporally correlated sparse signals and show that using the time correlation model. The recovery performance can be significantly improved. Next, we modify the sampling process of sparse signals to incorporate the signal structure in a more efficient way. In the image processing application, we show that exploiting the structure information in both signal sampling and signal recovery improves the efficiency of the algorithm. In addition, we show that region-of-interest information can be included in the CS sampling and recovery steps to provide a much better quality for the region-of-interest area compared the rest of the image or video. In spectrum sensing applications, CS can dramatically improve the sensing efficiency by facilitating the coordination among spectrum sensors. A cluster-based spectrum sensing with coordination among spectrum sensors is proposed for geographically disperse cognitive radio networks. Further, CS has been exploited in this problem for simultaneous sensing and localization. Having access to this information dramatically facilitates the implementation of advanced communication technologies as required by 5G communication networks

    Structured Learning with Parsimony in Measurements and Computations: Theory, Algorithms, and Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. July 2018. Major: Electrical Engineering. Advisor: Jarvis Haupt. 1 computer file (PDF); xvi, 289 pages.In modern ``Big Data'' applications, structured learning is the most widely employed methodology. Within this paradigm, the fundamental challenge lies in developing practical, effective algorithmic inference methods. Often (e.g., deep learning) successful heuristic-based approaches exist but theoretical studies are far behind, limiting understanding and potential improvements. In other settings (e.g., recommender systems) provably effective algorithmic methods exist, but the sheer sizes of datasets can limit their applicability. This twofold challenge motivates this work on developing new analytical and algorithmic methods for structured learning, with a particular focus on parsimony in measurements and computation, i.e., those requiring low storage and computational costs. Toward this end, we make efforts to investigate the theoretical properties of models and algorithms that present significant improvement in measurement and computation requirement. In particular, we first develop randomized approaches for dimensionality reduction on matrix and tensor data, which allow accurate estimation and inference procedures using significantly smaller data sizes that only depend on the intrinsic dimension (e.g., the rank of matrix/tensor) rather than the ambient ones. Our next effort is to study iterative algorithms for solving high dimensional learning problems, including both convex and nonconvex optimization. Using contemporary analysis techniques, we demonstrate guarantees of iteration complexities that are analogous to the low dimensional cases. In addition, we explore the landscape of nonconvex optimizations that exhibit computational advantages over their convex counterparts and characterize their properties from a general point of view in theory
    corecore