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ABSTRACT

In the recent years, numerous disciplines including telecommunications, medical imaging, com-

putational biology, and neuroscience benefited from increasing applications of high dimensional

datasets. This calls for efficient ways of data capturing and data processing. Compressive sens-

ing (CS), which is introduced as an efficient sampling (data capturing) method, is addressing this

need. It is well-known that the signals, which belong to an ambient high-dimensional space, have

much smaller dimensionality in an appropriate domain. CS taps into this principle and dramati-

cally reduces the number of samples that is required to be captured to avoid any distortion in the

information content of the data. This reduction in the required number of samples enables many

new applications that were previously infeasible using classical sampling techniques.

Most CS-based approaches take advantage of the inherent low-dimensionality in many datasets.

They try to determine a sparse representation of the data, in an appropriately chosen basis using

only a few significant elements. These approaches make no extra assumptions regarding possible

relationships among the significant elements of that basis. In this dissertation, different ways of

incorporating the knowledge about such relationships are integrated into the data sampling and the

processing schemes.

We first consider the recovery of temporally correlated sparse signals and show that using the time

correlation model. The recovery performance can be significantly improved. Next, we modify the

sampling process of sparse signals to incorporate the signal structure in a more efficient way. In

the image processing application, we show that exploiting the structure information in both signal

sampling and signal recovery improves the efficiency of the algorithm. In addition, we show that

region-of-interest information can be included in the CS sampling and recovery steps to provide a

much better quality for the region-of-interest area compared the rest of the image or video.
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In spectrum sensing applications, CS can dramatically improve the sensing efficiency by facilitat-

ing the coordination among spectrum sensors. A cluster-based spectrum sensing with coordination

among spectrum sensors is proposed for geographically disperse cognitive radio networks. Fur-

ther, CS has been exploited in this problem for simultaneous sensing and localization. Having

access to this information dramatically facilitates the implementation of advanced communication

technologies as required by 5G communication networks.
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CHAPTER 1: INTRODUCTION

In the year 2013, over 4.4 zettabytes (4.4 trillion GB) of data was created, copied, and transferred

[6]. At 40% annual growth rate, this data is estimated to grow to 44 zettabytes by 2020. In the

same year, there will be nearly as many digital bits as there are stars in the universe. This volume

of data, if stored on 128GB iPad Airs, will require 6.6 stacks of iPads (7.5 mm each) stretching

from the Earth to the Moon. This dramatic growth in the size of the data calls for dramatic changes

in data acquisition devices and strategies, processing and storage algorithms, and data security.

In many systems such as MRI imaging or hyper spectral imaging, a big portion of the imple-

mentation cost is associated with the data acquisition process. For instance in MRI imaging the

lengthy process of sample acquisition limits the number of patients that the healthcare provider

can serve per day. Likewise the high hardware cost in hyper spectral imagers is a limiting factor.

Despite the relatively high cost of sample acquisition in many applications, currently most of the

raw data gets compressed almost immediately after acquisition. The more efficient way would

be to compress during sampling process. Therefore the redundant information will be avoided at

the first place while sampling. In other words, in many real-world problems, we are dealing with

high-dimensional data structures such as images (containing many millions of pixels) and there is

a high demand to reduce the required measurements for data acquisition.

In what follows, we highlight three research problems that comprise the focus of this dissertation.

The first two problems align with the traditional CS focus of sparse signal recovery, while the final

problem drifts apart from the domain of typical signal processing problems and applies CS to the

localization problem in communication networks. Several common themes can be found across

our work on these problems.
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Time-Correlated Compressed Sensing

In addition to sparsity, many of the real-world signals have signal components which vary slowly

in time. An interesting example is sensor networks in which the signal of interest represents data

from temperature sensors that are collected during a time interval T with unit time steps. Such

readings have both spatial correlation due to closeness of sensors and time correlation due to the

smooth variations in the temperature. Such a time correlation can further help us to reconstruct

the signal at each time step using the estimated signal from the previous time step. In Chapter

3, we propose TC-CSBP, which is a CS recovery algorithm for sparse signals that are also time-

correlated. TC-CSBP is based on CS recovery using belief propagation (CSBP) by Baron et al

[7]. CSBP serves as the underlying recovery scheme. However, we modify it such that the priori

knowledge about the signals coefficients’ time correlation is included in the algorithm. Our results

show a considerable improvement over conventional CSBP and other related work. Moreover, our

results show that TC-CSBP is robust to the error in time-correlation model parameters to a great

extent and it can maintain its supremacy in the presence of model mismatch.

Non-Uniform Compressed Sensing

In conventional CS, all signal entries are sampled and recovered uniformly. It means that all entries

of the signal x have the same probability of recovery. However, in many real world applications,

non-uniform acquisition and recovery is desired. For instance, in applications such as medical

imaging, computer vision, and geographical information systems (GIS) a particular subset of data

may be of more interest relative to the rest of the data. Such subsets are generally known as region

of interest (ROI). One might be interested in the recovery of entries associated with ROI with more

accuracy. Accordingly, it is very desirable to be able to recover the signal entries non-uniformly.
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Such capability is lacking in the conventional CS schemes.

In Chapter 4, we address this problem. We propose NCS for non-uniform sampling of sparse

signals. To realize NCS, we employ a non-uniformly sparse measurement matrix such that more

important coefficients are captured by a relatively larger number of measurements. We analyze the

measurement matrix of NCS and show that it satisfies a weaker form of restricted isometry property

(RIP). NCS can also be integrated with a recovery algorithm that exploits the non-uniform sparsity

of signals [1, 3] for further performance improvement.

Non-Uniform Sampling and Recovery of Natural Images Using the Hidden Markov Tree

Structure of Wavelet Coefficients

In Chapter 5, some of the ideas from previous two chapters are combined and are applied to the

problem of sampling and recovery of natural images. We modify two Bayesian CS recovery al-

gorithms to incorporate the signal structure (i.e. the Hidden Markov Tree structure of the wavelet

coefficients). In addition, based the underlying structure, we propose a measurement matrix that is

designed to incorporate the signal structure. Accordingly, we develop a model-based CS nonuni-

form sampling and recovery scheme (uHMT-NCS) for natural images. We show, not only the signal

model can be utilized to optimize the initial priors for Bayesian CS recovery algorithms, but it can

also be employed in the design of new CS measurement matrices. The results of our numerical

experiments suggest a significant performance gain compared to the state-of-the-art model-based

CS algorithms.
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Coordinated Spectrum Sensnig in Cognitive Radio Networks

Cognitive radio (CR) is a promising solution to alleviate today’s spectrum deficiency caused by an

increased demand for the wireless technologies [8]. The CR paradigm allows a new type of users

called unlicensed users or secondary users (SUs) to coexist with the licensed users or primary users

(PUs). The SUs are allowed to access the spectrum provided that they do not interfere with the

PUs. The under-utilized spectrum bands that can be used by the SUs are called spectrum holes [9].

The availability of spectrum holes varies in both time and space since the PUs’ activity is dispersed

in both temporal and spatial domains. An ideal CR is able to efficiently detect and utilize all

spectrum holes. Due to the dynamic behavior of PUs, SUs should constantly be aware of the

occupancy status of multiple narrow bands or channels of spectrum (a.k.a., wideband spectrum

sensing). However, implementing wideband spectrum sensing requires considerable amount of

time [10] or complex hardware [11] to obtain a fairly good estimate of the entire spectrum. This

lengthy estimation will significantly reduce SUs opportunity to transmit their own data [12].

The problem that we are trying to tackle in Chapter 6 is to develop an spectrum sensing assignment

policy that maximizes discovery ratio of spectrum holes while the overhead spectrum sensing time

is minimized by sensing only one channel per SU at a time. We propose cluster-based coordinated

multiband spectrum sensing (Cluster-CMSS). In this problem SUs are mobile and can commu-

nicate with a central node or base station (BS). This is a very complex problem with numerous

challenges. The main challenges are limited ability of SUs in sensing the spectrum, geographi-

cally dispersed SU distribution, dynamic PU activity and inaccurate sensing.
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Application of Structured Sparse Compressed Sensing in Cognitive Radio Spectrum Sensing

A key factor in success of CR networks is environmental awareness. Radio environment map

(REM) is a promising tool that provides the environmental awareness for the cognitive radio net-

works. REM encapsulates multi-domain information from spectrum sensors, geolocation databases,

terrain information, and underlying propagation models, and regulatory policies to generate a com-

prehensive map of the entire spectrum in CR networks [13–15]. REM construction is not an easy

task. SUs have to scan a huge swath of spectrum (wideband spectrum sensing) and the PU signal

often should be detected in low SNR regime. However to implement the REM, the power spectral

density (PSD) information of every point in space at each frequency must be available in real-time.

Building on the spectrum sensing problem that is introduced in this chapter, we will introduce a

CS-based spectrum sensing and source localization problem. The localization problem in wireless

networks is a well-addressed one [16–18]. However in recent years, with the emergence of cog-

nitive radio networks, has been revisited. Moreover, the application CS-based approaches in PU

localization has shown some promises recently [19–21].

5



CHAPTER 2: BACKGROUND

In this chapter, we briefly present the necessary background on which the dissertation is based. We

begin by introducing the compressed sensing. Then, we focus on structured sparsity and the range

of problems that show such properties. Finally, we provide background on Bayesian CS recovery.

Compressed Sensing

Emerging compressed sensing (a.k.a compressive sensing) (CS) techniques [22, 23] provide means

to recover a compressible signal from its undersampled random projections also called measure-

ments. Let us define a discrete-time signal of length n as x = [x1, x2, . . . , xn]. The signal x is

said to be k-sparse if it has at most k � n non-zero entries in the canonical basis (or in general, k

nonzero coefficients in some basis Ψ). The sparsity rate of signal x is defined as k
n

.

CS paradigm suggests that instead of sampling all the n coefficients of x, we can recover x from

only m � n random measurements [22]. In general, any CS scheme includes the two following

key steps:

Signal Sampling: The random projections (measurements) are generated by y = Φx, where

Φ = [ϕi,j] ∈ Rm×n (with m� n) is a well-chosen random matrix called the measurement matrix,

and y ∈ Rm is the measurement vector. We can see that the ith measurement is obtained by

yi =
∑n

j=1 ϕi,jxj .

Sparse Signal Recovery: The sparse signal is recovered by obtaining the estimate x̂ from the

system of linear equations y = Φx. This is an under-determined system with infinitely many

solutions. However, the knowledge of x being sparse allows us to successfully recover (find a
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unique solution) with a high probability from m = O(k log n/k) measurements by solving the `1

minimization problem (a.k.a. basis pursuit (BP) [24]) given by [22, 24–26]

x̂ = arg min ‖x‖1, s.t. y = Φx. (2.1)

It has been shown that x̂ recovers x exactly provided that the measurement matrix Φ satisfies a

condition known as the restricted isometry property (RIP), which is defined as follows,

Definition 1. [23] A measurement matrix is said to satisfy symmetric form RIP of order S with

constant δS if δS is the smallest number that

(1− δS)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δS)‖x‖2
2, (2.2)

holds for every S-sparse x (i.e. x contains at most S nonzero entries).

Based on this definition several guarantees are proposed in terms of δ2S , δ3S and δ4S in [27]. In

[28] an asymmetric form of Definition 1 is introduced in order to more precisely quantify the RIP.

Definition 2. [28] For a measurement matrix the asymmetric RIP constants δLS and δUS are defined

as,

δLS = min
c>0

(1− c)‖x‖2
2 ≤ ‖Φx‖2

2,

δUS = min
c>0

(1 + c)‖x‖2
2 ≥ ‖Φx‖2

2.

(2.3)

Remark 1. [28] Although both the smallest and largest singular values of ΦΦT affect the stability

of the reconstruction algorithms, the smaller eigenvalue is dominant for compressed sensing in that

it allows distinguishing between sparse vectors from their measurements by Φ.

Let x be a k-sparse in orthonormal basis Ψ = [ψ1,ψ2, . . . ,ψn] meaning θ = ΨTx has at most
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k � n non-zero coefficients. The random measurements are generated by y = Ξx = ΦΨTx,

where Φ = ΞΨ = [ϕi,j]. Signal recovery solves x̂ = arg min ‖ΨTx‖1 such that y = Ξx.

Structured Sparsity

Conventional CS schemes are oblivious to the distribution of nonzero coefficients in the sparse

signal x. Now the question that may arise is how we design a new CS scheme with improved per-

formance for the cases in which we have the side information about the signal model. In this dis-

sertation, we are mostly interested in signals with non-uniform sparsity similar to the non-uniform

model considered in [1]. In Chapter 3 the time correlation structure between signal coefficient are

considered. In Chapters 4 and 5 the structure of the wavelet transform coefficients in the images

are considered. In Chapter 6 the spectrum sensing problem in cognitive radio networks are being

introduced.

While many studies incorporated the signal model or structure at the recovery phase [1, 3, 29–

31], only a few papers have looked at the problem from the sampling side [32–35]. It has been

shown that structured sparsity (also referred to as non-uniform sparsity throughout this dissertation

interchangably) can efficiently be employed in many CS applications such as sensor networks, and

image sampling and recovery. As a part of this study in Chapter 4, we show how to incorporate the

non-uniform sparsity model into the CS sampling phase.

Non-uniform sparsity can be seen in many practical applications, such as images and videos [36].

Figure 2.1 shows the sparsity pattern of 2D wavelet transform coefficients of a database of 367

images [37] used in the 3rd edition of Digital image processing book by Gonzalez and Woods [38].

A wide range of images with different sizes are compiled in the book including natural, facial,

medical, industrial, and textural images. In Figure 2.1, we have grouped the wavelet coefficients
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into 20 bins and have determined the percentage of significant coefficients that lie within each

group by a color code. It can clearly be seen from Figure 2.1 that in almost all images the two

initial bins contain a great portion of significant coefficients. Therefore the sparsity pattern of

almost all images in that database, as it can be seen in Figure 2.1, is non-uniform (i.e. significant

coefficients are mostly located at the beginning of the sparse signal and only a few significant

coefficients are found at the end of the signal). This non-uniform sparsity can be treated as extra

information about the signal.

Wavelet coefficient bins
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Figure 2.1: The non-uniform sparsity of wavelet coefficient of 367 images taken from the 3rd edition of

Digital image processing book by Gonzalez and Woods. The wavelet coefficients are divided into 20 bins

and the percentage of significant coefficients that lie in each bin are distinguished by the color code.

Bayesian CS Recovery

Sparse signal recovery algorithms are divided into three groups. First, those that employ opti-

mization methods such as linear programming [24, 25]. These algorithms usually have a high
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computational complexity and might not be practical when n is large. Second, greedy recovery

algorithms [39–41], which have lower computational complexities yet require a larger number of

measurements to recover the signal compared to the first group. Third, those that are based on

Bayesian formulation [7, 42]. Although Bayesian CS recovery is NP complex, it can be efficiently

approximated using message passing algorithms [7, 43–46]. Specifically Bayesian compressive

sensing via belief propagation (CSBP) [7] and approximate message passing (AMP) [43] are two

of the most efficient CS recovery algorithms that employ message passing. CSBP requires a sparse

measurement matrix to perform efficiently, and AMP can work with the sparse measurement ma-

trices without imposing any penalty on the number of measurements [2]. This is an important

property because as we will see in Chapter 5 the measurement matrix itself needs to be sparse.

While every method has advantages and disadvantages in different applications, Bayesian ap-

proaches represent the most promising potential for the development of structured sparse recovery

algorithms. In the literature several publications claimed that Bayesian approaches have a better

performance (w.r.t. mean square error (MSE)) compared to non-Bayesian ones [2, 47–49]. The

performance of Bayesian approaches greatly depends on how well its signal model is matched to

the true signal. Similarly non-Bayesian approaches are sensitive to the statistics of the true signal.

In fact, Bayesian methods are more robust to model mismatch compared to non-Bayesian coun-

terparts. Unlike other structured sparsity models [50] where the structure is rigidly enforced and

cannot be accommodated all the time, the Bayesian approaches treat the model mismatch as pos-

sible but unlikely events. Another advantage of Bayesian approaches is the ability to incorporate

graphical models. Graphical model can describe complex signal structures in a transparent way.

Graphical models offer ways to capture qualitative description of the signal structure into a rigor-

ous mathematical form. Often Bayesian structured sparsity algorithms relay on a set of parameters.

The model parameters can automatically be learned from the data [48].

A major shortcoming of Bayesian approaches is the higher computational cost compared to non-
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Bayesian approaches. Typically among greedy algorithms, convex relaxations, and Bayesian ap-

proaches, the best performance and slowest running time belong to Bayesian approaches [51]. The

high computational cost comes from the inversion of large covariance matrices and/or high num-

ber of samples that are needed to approximate the posterior distributions in case of Monte Carlo

Markov chain (MCMC) approaches [7]. Our research is motivated by the need for developing

accurate and computationally efficient Bayesian algorithms.
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CHAPTER 3: TC-CSBP: COMPRESSED SENSING FOR

TIME-CORRELATED DATA BASED ON BELIEF PROPAGATION

Existing compressive sensing techniques mostly consider the sparsity of signals in one dimension.

However, a very important case that has rarely been studied is when the signal of interest is time

varying and signal coefficients have correlation in time. Our proposed algorithm in this chapter is a

structure-aware version of the compressive sensing reconstruction via belief propagation proposed

by Baron et al. that exploits the time correlation between the signal components and provides the

belief propagation algorithm with more accurate initial priors. Numerical simulations show that

the belief propagation-based compressive sensing algorithm is able to utilize the side information

about signal’s time correlation and results in enhanced reconstruction performances.

Introduction

In many signal processing applications, such as image processing and wideband signal processing,

an intelligent inspection of signal components reveals that these components are sparse or can

be sparsely expressed in a proper basis, e.g. wavelet domain. This observation motivates us to

exploit the sparsity of such compressible signals to save sampling, communication, processing,

and memory resources. These efforts have opened a new area of research known as compressive

(compressed) sensing (CS) [22, 52, 53]. The underdetermined problem of reconstructing a sparse

signal with length n, from its compressed sensed measurement vector with lengthm, wherem < n,

is possible by using existing CS algorithms [7, 25, 39, 54–57].

In recent years, a considerable amount of research has been conducted to take advantage of the

prior knowledge in the reconstruction algorithms [1, 3, 30, 58–64]. The reconstruction algorithms
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are mostly the modifications of `1 reconstruction, except [3, 30, 64] which modify Orthogonal

Matching Pursuit [39]. In a recent study [62], CS for the time-correlated signals is considered.

However, the proposed scheme requires the collection of all measurements over interval T to

reconstruct the coefficients of signals in T . In [1, 58] a weighting strategy is applied to include

the prior information into the support of the sparse signal. In other words, the extra information is

modulated in terms of different weights for the different parts of the signal support. In [63, 64] the

reconstruction of jointly sparse signals in both spatial and temporal domains is considered, and the

correlation in spatial domain is employed. In [63], it is assumed that the supports of all correlated

signals share an equal common part plus a unique sparse innovation part. In [64], the support is

fixed and there is spatial and temporal correlation between signals of the different sources. In this

chapter, we assume a different model for the signal than [63, 64].

In [59–61], the authors have developed a novel algorithm that calculates the least-square residuals

of the signal supports in two consecutive time steps instead of directly estimating the signal sup-

port. In [61] a Kalman filter-based algorithm is introduced to dynamically estimate the residuals.

Time-Correlated Data Reconstruction

In this section, we first introduce our time correlation model of signal xt. Next, we briefly review

the CSBP algorithm [7]. Then, we elaborate our approach on incorporating the time correlation in

CSBP algorithm.

Time-Varying Signal Model

As mentioned, sensor readings in sensor networks represent correlation in both space and time.

For example, using the data provided in [65], we depict Fig. 3.1, which shows the correlation of
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temperature readings of many thermal sensors in space and time. In Fig. 3.1(a), the readings of 54

sensors at t = 1 shows a sparse behavior in wavelet domain (correlation in space). On the other

hand, the generated signal from each sensor in time is sparse in wavelet domain (Fig. 3.1(b)) due

to time correlation among the sensor readings.
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(a) Wavelet coefficients of sensor readings signals (t = 1)
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(b) Wavelet coefficients of sensor readings in time (Sensor ID= 1)

Figure 3.1: Real temperature sensor readings from UC-Berkeley Intel lab. The readings of 54 temperature

sensors are considered for 256 consecutive time steps (i.e., every 30 secs). The correlation of the sensor

readings in both spatial domain and the time domain can be seen.

We define xt = [x1,t, x2,t, . . . , xn,t] and y
t

= φtxt as the signal and CS measurement vectors in

time t, respectively. We have xi,t is the value of ith signal coefficient at time t and φt is the CS
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projection matrix at time t. Let x̂t denote the estimate of xt employing a CS recovery scheme. Our

goal is to find x̂t exploiting both x̂t−1 and y
t
. The information x̂t−1 is used as a priori information

in a proper CS decoder to enable the recovery of x̂t with fewer number of measurements as it is

shown in Fig 3.2. Only a few of the existing CS algorithms are capable of taking advantage of a

priori information about the signal. Among them, we are choosing the state-of-the-art CSBP [7, 57]

to implement our proposed ideas.

Figure 3.2: Reconstructed signal at the previous step is fed as a priori knowledge to the decoder.

Let X t = [X1,t, X2,t, . . . , Xn,t] be a random vector and consider xt as an outcome of Xt. We know

X t and X t−1 are not independent. Hence, in order to build a mathematical model, we can exploit

the correlation between their coefficients (i.e. Xi,t−1 and Xi,t for i = 1, . . . , n) in the time domain.

We assume xt has only k distinguishable coefficients from the noise level, where k � n (k-sparse

signal). k
n

is defined as the sparsity rate and the value of k can be derived using the history of the

signal.

We model variations of each coefficient’s value in time by a Markov model (MM) with the state

transition matrix A =

 ass asl

als all

 as shown in Fig. 3.3. According to this model, each element
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of vector X can be in one of the two states large (L) and small (S) that represent whether or not its

magnitude is distinguishable from the noise level.

S B

ss
a

sl
a

ls
a

ll
a

Figure 3.3: Markov model for transition from Xi,t−1 to Xi,t.

Initially (at t = 0) and similar to [7], the signal coefficients are generated according to the following

mixture Gaussian distribution

f(Xi,0) = (
k

n
)N (0, σ1

2) + (1− k

n
)N (0, σ0

2), (3.1)

where σ1 � σ0 and f(.) is the probability density function (pdf). This assumption implies that

a fraction k
n

of the coefficients of the vector X0 are distributed normally according to N (0, σ1
2)

and the remaining coefficients are distributed according to N (0, σ0
2). Given (3.1), we define a

threshold as th = 3σ0 (almost all of the small coefficients lie inside this range), which means that

if x̂i,t > th then x̂i,t is in the state L, otherwise it is in the state S.

We assume an element in any state at time t − 1 is more likely to take its new value in the same

state at time step t. This is important knowledge about the variations of the signal in time, which

implies that the signal is slowly varying. We model this assumption such that every element in

state S takes a Gaussian distributed value with mean zero and small variance σ2
0 at each time step,

while the coefficients in state L take a Gaussian distributed value with mean x̂i,t−1 and variance

σ2
0 .
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In order to maintain a fixed sparsity rate during all of the time steps, asl = k
n−kals should hold. In

other words, at each time step on average, the total number of coefficients transiting from S to L is

equal to the number of coefficients transiting from L to S. Otherwise, the signal sparsity changes

in time. In the rest of this chapter, we assume that signal sparsity is preserved.

We ignore the effect of noisy measurements on the validity of the model for now. Later, the effect

of noisy measurements with standard deviation σz is considered. In case of noisy measurements,

y = φx+ ν where ν = [ν1, . . . , νn] is an outcome of random vector N and νi ∼ N (0, σ2
z).

CSBP: Compressed Sensing Recovery Using Belief Propagation

The key concept in belief propagation (BP) algorithms is the exchange of beliefs back-and-forth

between factor nodes and variable nodes of a factor graph. A factor graph is a bipartite graph in

which any vertex from one side of the graph is only connected to the vertices on the other side of

the graph [66]. The variable nodes of a factor graph represent the coefficients of xt, and the factor

nodes represent randomly generated CS measurements, y
t
. Moreover, the connecting edges rep-

resent which coefficients of the signal vector xt contribute in generating different measurements.

The problem is finding the best estimate of each variable node’s value using the observations of

the factor nodes employing the BP algorithm. CSBP [57] considers the conditional pdf of each

element of signal vector x as a belief [57]. and is especially very interesting since we can employ

the prior knowledge of the signal model in terms of a pdf in the reconstruction algorithm.

TC-CSBP: Time-Correlated CS Algorithm Based on Belief Propagation

If we assume the coefficients of vector xt do not show any correlation in time, the only knowledge

about the signal is its sparsity in space. Thus, the prior belief about the value of each variable node
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at the decoder is in the form of (3.1). Now we consider the case where time-correlation model is

added as extra information about the signal to the BP decoding. According to the signal model

introduced in system model, we have

f (Xi,t|S (x̂i,t−1) = L)

= allN (x̂i,t−1, σ0
2) + alsN (0, σ0

2),

(3.2a)

f (Xi,t|S (x̂i,t−1) = S)

= assN (0, σ0
2) + aslN (0, σ1

2),

(3.2b)

for i ∈ {1, 2, · · · , n} and S(.) represents the state of the signal that can be either large (L) or small

(S). The proposed TC-CSBP algorithm is different from the original CSBP algorithm [7, 57] in the

following key points. First, unlike the conventional CSBP, every variable node receives a unique

a priori belief according to its previous value (x̂i,t−1). Adding this information to the model, the

variability of the random vector X t decreases (the first term in RHS of (3.2a) has variance σ2
0

instead of σ2
1). Second, in TC-CSBP the time correlation modeling precision is in tradeoff with the

number of required measurements. In other words, the more accurate our time correlation model

is, the fewer number of measurements is required to achieve a specific reconstruction quality.

However, CSBP algorithm’s performance only depends on the number of measurements.

Although considering a time correlation model for xt can help the decoder to reconstruct the signal

more accurately and with fewer number of measurements, it could also be a source of further errors

if the model is not accurate enough. Hence, we need to analyze the robustness of the proposed

algorithm to model mismatch and parameter variations. We model these anomalies with random

matrix ∆t that adds up to the state transition probabilities at time step t. Therefore, we face a

non-ideal state transition matrix,
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A∆ = A+ ∆t =

 ass + ∆t
s asl −∆t

s

als −∆t
l all + ∆t

l

 , (3.3)

where ∆t =

 +∆t
s −∆t

s

−∆t
l +∆t

l

 is the anomaly matrix at time t, and ∆t
s and ∆t

l are deviations

in transition probabilities of states S and L, respectively. We consider a time-invariant anomaly

matrix (i.e., ∆t
l = ∆l and ∆t

s = ∆s); however, extension to the time variant case is straightforward.

By substituting A with A∆ in (3.2), we obtain

f (Xi,t|S (x̂i,t−1) = L)

= (all + ∆l)N (x̂i,t−1, σ0
2) + (als −∆l)N (0, σ0

2),

f (Xi,t|S (x̂i,t−1) = S)

= (ass + ∆s)N (0, σ0
2) + (asl −∆s)N (0, σ1

2).

(3.4)

We define a parameter ξ, which we call model variation to mismatch ratio, as ξj =
∆j

min(ajs,ajl)
for

j ∈ {l, s}. We assume, this parameter is equal for all rows of a transition matrix (i.e. different

states); therefore, expressing the model anomalies using ξ = ξl = ξs.

Online Model Parameters Estimation

The Markov model that is used in previous sections may not be priori known. In this case it is

required to employ a learning process along with the signal reconstruction. In such cases, a train-

ing data set is required to capture the model. Even after training the algorithm, model parameters

mismatch happens in the case of noisy measurements. Measurement noise prevents exact model

parameters prediction using the decoded coefficients. Moreover, for non-stationary signals, model

parameters gradually change in time. Therefore, in order to avoid anomalies, the model parameters

should be periodically estimated using noisy measurements. The offline methods are not of our

interest here because they require all decoded signal values in order to predict the model param-
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eters. Consequently, we apply an online model parameter estimator such as the one introduced

in [67], in our simulations. A sequential expectation maximization (EM) algorithm is adapted to

estimate the parameters of Markov model (i.e. λ = [A, σ0, σ1]) sequentially. These sequential al-

gorithms are derived based on maximizing the Kullback-Leibler (KL) information measure, J(.).

Given the true model is λ0 the KL measure between the true model and any model, λ, is defined

as J(λ) = Eλ0{log f(yt|λ)}, where Eλ0{.} is expectation with respect to the true model. The EM

algorithm can be summarized as follows,

λt = arg max
λ

Eyt,Λt{log f(yt|λ)}, (3.5)

where Λt = [λ1, ..., λt]. Using (3.5) the sequential algorithm which is presented in [67, Equations

3.24, 3.30 and 3.33-3.35] can be obtained. This process is fully described in [67].

We update the model parameters only at the end of CSBP iterations at every time step. According

to this algorithm, the parameters of Markov model are estimated based on the reconstructed signal

coefficient at the previous time steps. Therefore, the algorithm needs to store the previous values

of signal coefficients to use them in model parameter estimation. The online parameter estimator

architecture can be seen in Fig. 3.4. In Fig. 3.4, the results of signal reconstruction is used in

estimating the model parameters A, σ1 and σ0 for the next time step.
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Figure 3.4: Block diagram of the learning phase for model parameter estimation.

Simulation Results

In this section, we evaluate our proposed TC-CSBP method through simulations. The time-

correlation model is fed to the proposed TC-CSBP algorithm with and without model mismatch,

and then the results are compared with a model-ignorant CSBP algorithm. We also provide the

results for comparing the performance of Modified-CS reconstruction algorithm [60] with TC-

CSBP algorithm. The numerical simulation parameters are reported in Table 3.1. The simulations

of CSBP [68] and modified-CS [60] algorithms are performed using the MATLAB code that the

developers provided online. The CSBP algorithm requires a sparse measurement matrix with fixed

number of non-zero coefficients at each row and column of φt. Therefore, we assume a randomly

generated measurement matrix with 20 ones at each row. We also assume the model is known at

time step t = 1 (i.e. the model learning process is finished).

Fig. 6 depicts the `2-reconstruction error (LRE), which is defined as
√∑n

i=1 (xi,t − x̂i,t)2, as a
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Table 3.1: Simulation parameters

Parameter name Value
n: Number of signal samples at each
time step 1000

k: Number of coefficients of xt in state
L 100

σ1: Standard deviation of values in state
L 10

σ0: Standard deviation of values in state
S 1

σz: Standard deviation of observation
noise at decoder 1

A: Markov Model State transition ma-
trix

(
0.989 0.011
0.1 0.9

)

function of the number of collected measurements at each time step for CSBP and TC-CSBP

with different ξ parameters. It can be seen that TC-CSBP outperforms the conventional CSBP

algorithm. For example, for ξ = 0 (no model mismatch) and LRE= 30 TC-CSBP requires 400

measurements while CSBP requires about 590 measurements. This means TC-CSBP results in

32% reduction in the number of required measurements. It can also be seen that the proposed

algorithm is robust to model mismatch to a good extent. As seen, for ξ < 0.5 model parame-

ter variations does not have any destructive effect on the algorithm’s performance. On the other

hand, it reveals that the proposed algorithm is misled by the model mismatch for relatively large

variations in model parameters (i.e., ξ > 0.5). Fig. 3.6 illustrates the LRE versus the number of

measurement with different signal time correlation parameters. For a highly variable signal, a con-

siderable number of coefficients change their state (i.e., from L to S and vice versa) at each time

step. As we can see from Fig. 3.6, by increasing the signal variability (i.e. decreasing all and ass),

the performance of TC-CSBP algorithm degrades. However, even for a highly variable signal that

half of its coefficients at state L change their state at each time step, TC-CSBP is performs better

than conventional CSBP.
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Figure 3.5: Reconstruction LRE versus the number of measurements for TC-CSBP and CSBP
algorithms (effect of model mismatch illustration).

In Fig. 6 and Fig. 3.6, the LRE performances of TC-CSBP and CSBP algorithms are measured at

the time step t = 10.

Figure 3.6: Reconstruction LRE versus the number of measurements for TC-CSBP and CSBP algorithms
at t=10, for different time correlation parameters.

For further comparisons, we have considered a scenario in which the support is only allowed to

change at certain time steps. We observe the algorithm’s performance over a 20 time step period
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and we assume a support change at time step t = 10. This change in support consists of adding new

coefficients to and removing some existing coefficients from the support, totally 10% of support

set changes in t = 10 . In this setup, the signal coefficients in the state S are equal to zero and we

assume noisy measurements. Using these assumptions, we can compare our algorithm with other

studies in the literature [59–61]. Fig. 3.7 shows the reconstruction performances of TC-CSBP and

Modified-CS [60] in time with two different values for the number of measurements. At t = 0,

the reconstruction is performed without using the previously estimated model. The performances

of the mentioned algorithms are compared when m = 75 and m = 100. As we can see, when

the number of measurements is small (m = 75), TC-CSBP shows a considerable performance

improvement, and when an abundance of measurements are available (m = 100), Modified-CS

(which is based on `1-minimization) performs slightly better than TC-CSBP. This is explained by

the fact that `1 reconstruction techniques perform better than CSBP when provided with too many

measurements, which is not the case in many CS applications. Modified-CS is the latest version

in the series of reconstruction algorithms (e.g. KF-CS [61] and LS-CS [59]) with partially known

support.

The robustness of TC-CSBP to error propagation can also be seen from Fig. 3.7. At time step t =

10 the support of the signal changes. Consequently, a priori signal values from the previous time

step are not valid for the changes in support. As we can see, these types of errors are compensated

in a few time steps and do not propagate into the whole algorithm.
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Figure 3.7: Reconstruction LRE in time for the CSBP and Modified-CS algorithms. The signal

support only changes at t = 10 and it is fixed in all other time slots. The results for two different

measurement values (i.e. m = 75 and m = 100) are given. The simulation parameters that are

different than those of Table 3.1 are n = 250, k = 25.

The learning phase of the online model parameter estimator is shown in Fig. 3.8. We have depicted

the absolute error in the estimated transition probabilities versus the number of time steps. It can

be inferred from Fig. 3.8 that using the online estimator in 3.5 can compensate the effect of model

parameter mismatch after a few time steps.

An interesting trade-off exists between the computational requirements for model parameter esti-

mation and the number of required CS measurements for reaching a given performance. Different

designs for this problem can be considered by a system engineer according to the limitations on

computation or communication resources. For example, in a multi-hop sensor network, transmit-

ting a symbol over the network is energy-wise more costly than extra computations in one node.

On the other hand, implementing a complex decoding algorithm inside a sensor node requires

employing a more expensive and more energy consuming CPU.
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Figure 3.8: Transition probabilities error versus number of times that TC-CSBP algorithm runs

(ξ = 1).

Conclusion

In this chapter, we have proposed TC-CSBP, which is a compressive sensing reconstruction al-

gorithm for sparse signals that are also time-correlated. TC-CSBP builds upon previous work

on compressive sensing via belief propagation (CSBP) by Baron et al. We considered CSBP as

our underlying reconstruction scheme due to its flexibility to consider signal model as a priori

knowledge. Other CS reconstruction schemes mostly do not have this flexibility. In TC-CSBP, we

consider the time-correlation model of signal as a priori knowledge and our results show a consid-

erable improvement over conventional CSBP and other related work. Moreover, our results show

that TC-CSBP is robust to the error in time-correlation model parameters to a great extent and it

can maintain its supremacy in the presence of model mismatch. Further, an integration of online

model estimation into TC-CSBP was studied for more accurate model estimation.
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CHAPTER 4: NCS: NON-UNIFORM COMPRESSIVE SENSING USING

EXPANDER GRAPHS

In this Chapter, non-uniform compressive sensing (NCS) for recovery of sparse signals with either

non-uniform sparsity or non-uniform recovery requirement at different parts of the signal. To

design NCS, we modify the sampling step of conventional compressive sensing (CS) such that

more important coefficients contribute to each CS measurement with a higher probability than

less important coefficients. We show that by employing NCS, more important coefficients will

be recovered with a lower error rate compared to less important coefficients. To realize NCS, we

employ a non-uniformly sparse measurement matrix. We show that the proposed measurement

matrix satisfies a weaker version of restricted isometry property (RIP) and we find the sufficient

conditions for the existence of such measurement matrices. Next, we perform extensive numerical

simulations and show that by correctly setting NCS parameters, the desired non-uniform recovery

will be achieved. As an interesting application, we show that NCS can be effectively applied to the

burst imaging to provide an enhanced recovery performance for the region of interest (ROI) pixels.

Introduction

Emerging compressive sensing (CS) techniques [22, 23] provide means to recover a compressible

signal from its undersampled random projections also called measurements. A discrete-time signal

x = [x1, x2, . . . , xn], of length n, is said to be k-sparse if it has at most k � n non-zero entries in

the canonical basis (or in general, k non-zero coefficients in some basis B). The sparsity rate of

signal x is defined as k
n

. The CS paradigm suggests that instead of sampling all the n coefficients

of x, we can recover x from only m � n random measurements [22]. The random projections

(measurements) are generated by y = Φx, where Φ = [ϕi,j] ∈ Rm×n (with m � n) is a well-
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chosen random matrix called the measurement matrix, and y ∈ Rm is the measurement vector. We

can see that the ith measurement is obtained by yi =
∑n

j=1 ϕi,jxj . The sparse signal is recovered by

obtaining the estimate x̂ from the system of linear equations y = Φx. This is an under-determined

system with infinitely many solutions. However, the knowledge of x being sparse allows us to

successfully recover (find a unique solution) with a high probability from m = O(k log n/k)

measurements by solving the `1 minimization problem (a.k.a. basis pursuit (BP) [24]) given by

[22, 24–26]

x̂ = arg min ‖x‖1, s.t. y = Φx, (4.1)

where ‖x‖1 =
∑

i |xi|. It has been shown that x̂ recovers x exactly provided that the measurement

matrix Φ satisfies a condition known as the restricted isometry property (RIP).

Contribution of This Chapter

An interesting application for our proposed NCS is in the design of CS-based image sensors.

Among many proposed techniques in the literature, on-chip realizations with single shot image

capture is highly desirable [69]. Employing NCS with these realizations can greatly improve the

performance in applications such as high frame rate video and burst image capture. Figure 4.1

shows high-level implementation of NCS in a CS based image sensor. The analog output of the

image sensor is applied to a programmable Σ∆ ADC such that it incorporates the non-uniform CS.

After this step, the acquired non-uniformly compressed samples are processed to estimate the ROI.

The estimated ROI is applied to the Σ∆ ADC to determine the NCS parameters for the acquisition

of the next image. This idea is depicted in Figure 4.1 for a burst-mode image capture.
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Figure 4.1: The block diagram of the proposed NCS-based image sensor for burst-mode image

acquisition.

Related Work

Many existing CS techniques aim at improving the CS recovery performance by exploiting some

apriori knowledge about the signal structure. Baraniuk et. al. in [3] proposed to exploit a priori

known structure of a signal (for instance the tree structure of signals in wavelet transform) in

the recovery step to improve the quality of the recovered signal. He et. al. in [44] proposed to

feed the known signal structure to a CS recovery algorithm that is based on Bayesian recovery.

Khajehnejad et. al. in [1] proposed weighted `1 recovery algorithm for non-uniformly sparse

signals to improve the recovery performance. The weighted `1 algorithm penalizes the recovery

error of the coefficients in less sparse parts of the signal more than the recovery error in more

sparse parts. Duarte et. al. in [70] designed a reweighted basis pursuit recovery algorithm using

the structure of the sparse signal in wavelet trees. The aforementioned contributions obtain an

improvement by modifying the recovery step based on the available side information about the

signal. In contrast, we modify the sampling step by introducing a novel measurement matrix that

exploits signal structure.
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Our proposed sampling step is based on utilizing sparse measurement matrices. Sparse measure-

ment matrices can be used in lieu of dense matrices to reduce the computational complexity as

well as the memory requirements [71]. Gilbert and Indyk in [72] have surveyed different CS re-

covery algorithms based on the sparse measurement matrices. In [73], the authors have introduced

an efficient and low-complexity sparse recovery algorithm for sparse measurement matrices with

expander property. In addition, the authors provided a complete comparison of several recovery

approaches that use the d-regular expander matrices1 to create CS measurements.

Other modifications to the structure of the sparse measurement matrices have been proposed in the

community. For instance, Kung et. al. in [74] proposed to partition lengthy signals into sections

and associated a block of non-zeros in Φ matrix to every section of the signal to reduce the imple-

mentation cost. At the recovery step, the similarities among sections were employed to recover the

whole signal efficiently. Gan in [32] proposed to have blocks of non-zeros in Φ matrix capturing

independent blocks of the signal. However, [32, 74] do not incorporate the knowledge about the

non-uniformity of the signal sparsity in the sampling step. In CS-based image capture, the ap-

plication of block sparse measurement matrices is very common [69], mainly because of reduced

recovery complexity. In fact a large image is divided into several smaller blocks (i.e., 32× 32) and

CS is applied to each block individually. In addition, saliency-based compressive sampling scheme

in [75] divides the pixels into blocks and assigns different number of measurements to each block

based on the number salient pixels in that block. In wireless sensor networks community, a non-

uniform data gathering scheme is proposed in [76], in which sensors are selected for data gathering

according to a non-uniform Bernoulli model. The measurement matrix in [76] is formed by ran-

domly choosing m out of n rows of the n×n identity matrix and indeed there is no combination of

data in forming CS measurements. In [77], the non-uniform structure of sparse signal is employed

to design a block triangular measurement matrix. The structure of measurement matrices in both

1A d-regular expander matrix is an expander matrix with exactly d non-zeros per column.
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[76, 77] is completely different than what we propose here. NCS is mainly inspired by a previous

work by Rahnavard et al. on unequal error protection rateless codes [78].

Non-uniform Compressed Sensing (NCS)

Let x be a non-uniformly sparse signal of length n, partitioned into r uniformly-sparse sec-

tions x1,x2, . . . ,xr (i.e., x = [x1,x2, . . . ,xr]
T ) with sizes α1n, α2n, . . . , αrn, respectively, with∑r

l=1 αl = 1, and decreasing sparsity rates (decreasing importance levels). The number of non-

zero entries in xl is at most kl, for l = 1, 2, . . . , r. We refer to such x as an (α,κ)-sparse signal,

where α = [α1, . . . , αr] and κ = [k1, . . . , kr].

Similar to [7], we may view the coefficients x and the CS measurements y = Φx as vertices

of a bipartite graph G, where all signal coefficients are variable nodes and the measurements are

encoded nodes. The coefficient xj is connected to the measurement yi with an edge of weight ϕi,j

(see Figure 4.2).

y1 y2 ym

x2 x3 xn

L

d

x1

L

d

Figure 4.2: Bipartite graph G corresponding to a measurement matrix Φ. Circles and squares

represent coefficients x and measurements y, respectively, where y = Φx.
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Conventionally, Φ matrices are chosen to be dense with iid Gaussian or Bernoulli entries. How-

ever, employing dense measurement matirces requires high computational complexity and a large

memory. Instead, in applications with restrictions on these resources, it is desirable to use sparse

measurement matrices [71–73]. In all these contributions Φ provides uniform sampling and uni-

form recovery for all coefficients. Figure 4.2 shows G when Φ is a uniformly sparse matrix, where

all coefficients have degrees (the number of edges connected to a node) equal to d and all measure-

ments would have degree L, where dn = Lm.

On the contrary, we design a non-uniformly sparse measurement matrix at the sampling step, and

we propose to incorporate more important signal coefficients in a larger number of measurements,

or equivalently sample them with a higher frequency. This leads to a non-uniform distribution of

edges over variable nodes in G.

The Structure of NCS Measurement Matrices

Our proposed measurement matrix ΦN = [ 1
d1

Φ1| 1
d2

Φ2| . . . | 1
dr

Φr] is composed of r submatrices

Φl of sizes m × αln that are scaled by 1
dl

, for l = 1, 2, . . . , r so that every column of ΦN adds

up to 1. Each column of the submatrix Φl, which corresponds to a signal coefficient in xl, is

designed to have exactly dl ones at random positions. Therefore, using ΦN , a coefficient in xl only

contributes to dl measurements. A higher value of dl maps to a higher density of ones in Φl. We

desire more important coefficients to contribute to a larger number of measurements; therefore, we

set d1 ≥ d2 ≥ . . . ≥ dr. Figure 4.3 shows the structure of ΦN , which enables the non-uninform

sampling. By setting the appropriate values for dl’s, we can adjust the frequency that measurements

capture the coefficients from xl’s.
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Figure 4.3: The structure of ΦN = [ 1
d1

Φ1| 1
d2

Φ2| . . . | 1
dr

Φr] in NCS. There are exactly dl ones

randomly placed in each column of Φl. Here, d1 ≥ d2 ≥ . . . ≥ dr and a darker color corresponds

to a denser matrix.

An ensemble of NCS is specified by parameters n, m, α = {α1, . . . , αr}, and d = {d1, . . . , dr}.

Figure 4.4 depicts the bipartite graph representation of the proposed ΦN .

It is straightforward to show that the number of non-zero entries in a row of ΦN (the degree of a

measurement) is a random variable with mean L = n
m

∑r
l=1 αldl.
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Figure 4.4: The sampling step of NCS. Coefficients in x1 and xr would have the highest and the

lowest presence in the measurements, respectively. The number of variable nodes in section l is

|xl| = αln and the degree of a variable node in section l is dl. The average degree of an encoded

node (measurement node) is L = n
m

∑r
l=1 αldl.

The RIP of NCS Measurement Matrices

The question that arises here is whether employing ΦN satisfies CS requirements similar to a dense

Φ. Originally, it was proven that `1-minimization-based approaches find the unique solution to the

under-determined CS problem, if the measurement matrix satisfies the RIP(2) (see Definition 3)

condition [23]. However, it was later shown that the weaker RIP(p) condition, with p ≥ 1, yields to

an accurate solution as well [71, 72]. Sparse Φ matrices do not satisfy the RIP(2) condition, unless

their number of rows is large [72]. However, it has been shown that if a sparse Φ is the adjacency

matrix of a (k, d, ε)-regular expander graph (see Definition 4), it satisfies RIP(1) condition [72].

Hence, the sparse measurement matrix Φ can be used to efficiently sample k-sparse signals.

Definition 3 ([72]). An m×n matrix Φ is said to satisfy RIP(p, k, δ) (or in short RIP(p)) if for any
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k-sparse vector x,

‖x‖p(1− δ) ≤ ‖Φx‖p ≤ ‖x‖p. (4.2)

Definition 4. A bipartite graph (with n variable nodes and m encoded nodes) is called (k, d, ε)-

regular expander if each variable node has exactly d neighbors in the encoded side and every

subset S of variable nodes with at most k members has at least (1− ε)d|S| neighbors [72], where

|.| represents the cardinality of a set.

In the following, we investigate to see if ΦN = [Φ1

d1
| . . . |Φr

dr
] satisfies RIP property for signals with

non-uniform sparsity (see Definition 5), where dl is the degree of variable nodes in the subgraph

corresponding to Φl (i.e, the column weight of Φl).

Definition 5. An m × n matrix Φ is said to satisfy RIP(p,κ,α, δ) property if any (α,κ)-sparse

vector x = [x1,x2, . . . ,xr]
T satisfies (4.2), where α = [α1, . . . , αr],

∑r
l=1 αl = 1, and κ =

[k1, . . . , kr].

Definition 6. Consider a bipartite graph G(X, Y,E) with |X| = n and |Y | = m. Let us par-

tition the n variable nodes in X into r sets X1, X2, . . . , Xr of sizes α1n, α2n, . . . , αrn such that∑r
l=1 αl = 1. Let each variable node in Xl have exactly dl neighbors in Y for l = 1, 2, . . . , r.

Such a bipartite graph is called a (κ,d,α, ε)-irregular expander graph (κ = [k1, . . . , kr],d =

[d1, . . . , dr],α = [α1, . . . , αr]), if every subset S of variable nodes, with at most kl members cho-

sen from Xl has at least (1 − ε)D neighbors. Here, D is the number of edges in the subgraph

induced by S.

Remark 2. From Definition 6, it can be deduced that Φl (i.e., the section l of matrix ΦN ) is the

adjacency matrix of a (kl, dl, ε)-regular expander graph for l = 1, 2, . . . , r.

Theorem 1. Let ΦN = [Φ1

d1
| . . . |Φr

dr
] be the adjacency matrix of a (κ,d,α, ε)-irregular expander

bipartite graph2 G(X, Y,E) with |X| = n and |Y | = m. Then, ΦN has RIP(1,κ,α, δ) for δ = 2ε.

2The condition under which this is held will be discussed in Lemma 1 and Lemma 2.
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Proof. This theorem is a generalization to the RIP property of the uniformly sparse expanders

given in [72, 79]. The proof generalizes the proof in [79, Appendix D] to the (κ,d,α, ε)-irregular

expander bipartite graphs. Let x be an (α,κ)-sparse signal. The support T of x has the indices

of non-zero entries in x. Let Φ(T ) represent the columns of matrix Φ that are chosen by T .

Similarly, x(T ) is a set of entries in x chosen by T . Therefore, we have ‖x‖1 = ‖x(T )‖1 and

ΦNx = Φ
(T )
N x(T ). On the other hand, given the matrix ΦN is the adjacency matrix of a (κ,d,α, ε)-

irregular expander bipartite graph, a subset X(T ) of variable nodes, chosen by the support set of

x, with at most kl members chosen from Xl, has at least (1 − ε)D(T ) neighbors, where D(T ) is

the number of edges in the subgraph that is induced by X(T ). Therefore, according to the Hall’s

Matching Theorem, there exists a partial matching M such that every variable node in X(T ) ∩Xl

is matched to at least (1− ε)dl unique neighbors in Y for l = 1, 2, . . . , r. Based on this matching,

we decompose Φ
(T )
N as

Φ
(T )
N = ΦM + ΦR, (4.3)

where ΦM only has the edges that participate in the matchingM (see Figure 4.5 for a toy example).

The matrix ΦM is partitioned into r sections (the columns of ΦM in section l correspond to the

columns in Φl) and every column of ΦM in section l has dl(1 − ε) non-zeros for l = 1, 2, . . . , r

(Remark 2). ΦR has the remaining non-zero entries of Φ
(T )
N that do not participate in matching M .

From (4.3) and the triangle inequality, we have

‖Φ(T )
N x(T )‖1 ≥ ‖ΦMx

(T )‖1 − ‖ΦRx
(T )‖1 (4.4)

Since every row of ΦM has at most one non-zero entry and every column in section l of ΦM has

dl(1 − ε) non-zeros, it is easy to see that an entry of x(T ) that corresponds to section l appears

dl(1− ε) times in the ‖ΦMx
(T )‖1. Therefore,

‖ΦMx
(T )‖1 ≥ (1− ε)‖x(T )‖1 (4.5)
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Similarly, ΦR is composed of r sections and each column of ΦR in section l has εdl non-zeros for

l = 1, 2, . . . , r. Hence, using the definition of `1-norm, we have

‖ΦRx
(T )‖1 =

m∑
i=1

|
∑
j∈T

ΦRi,jxj| ≤
m∑
i=1

∑
j∈T

ΦRi,j |xj|

=
∑
j∈T

|xj|
m∑
i=1

ΦRi,j ≤
∑
j∈T

|xj|ε ≤ ε‖x(T )‖1.

(4.6)

Substituting (4.5) and (4.6) in (4.4), we obtain

‖Φ(T )
N x(T )‖1 ≥ (1− 2ε)‖x(T )‖1. (4.7)

In addition, we can easily verify that

‖Φ(T )
N x(T )‖1 =

m∑
i=1

|
∑
j∈T

ΦNi,jxj| ≤
m∑
i=1

∑
j∈T

ΦNi,j |xj|

=
∑
j∈T

|xj|
m∑
i=1

ΦNi,j = ‖x(T )‖1.

(4.8)

Combining (4.7) and (4.8) and substituting ‖x(T )‖1 and Φ
(T )
N x(T ) with ‖x‖1 and ΦNx, respec-

tively, completes the proof.

The bipartite graph and its adjacency matrix are represented for a toy example in Figure 4.5. In

this example, the parameters of the bipartite graph are n = 10, m = 8, r = 2, α1 = α2 = 0.5,

k1 = k2 = 2, d1 = 4, d2 = 2 and ε = 1/2.
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Figure 4.5: The bipartite graph representation of ΦN for a toy example with n = 10,m = 8, r = 2,

α1 = α2 = 0.5, k1 = k2 = 2, d1 = 4, and d2 = 2.

In Figure 4.5, the variables nodes corresponding to the support T are depicted with color. The

edges that are inducted by x(T ) (corresponding to Φ
(T )
N ) are shown in black color (both solid and

dashed lines). Therefore,
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=
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ΦM

+
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0 0 1
2 0

0 1
4 0 0

1
4 0 0 1

2
1
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0 0 0 0

0 0 0 0

0 1
4 0 0


ΦR

.
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Accordingly Φ
(T )
N is written as sum of ΦM and ΦR as shown above. In Figure 4.5, the edges

corresponding to ΦM and ΦR are represented by solid and dashed black lines, respectively.

In the following, we provide Lemma 1 that certifies the conditions in Theorem 1 are satisfied

asymptomatically (i.e., k,m, n → ∞) with probability approaching 1 given the ratio of k/m

is bounded by a given value. Moreover, Lemma 2, for the special case of r = 2, provides

the sufficient condition on dl’s in order to exist a (κ,d,α, ε)-irregular expander graph for non-

asymptomatic scenarios.

Lemma 1. Consider a bipartite graph G(X, Y,E) with |X| = n and |Y | = m. Assume the n

variable nodes in X are partitioned into r sets X1, X2, . . . , Xr of sizes α1n, α2n, . . . , αrn such

that
∑r

l=1 αl = 1. Let each variable node in Xl have exactly dl neighbors in Y for l = 1, 2, . . . , r.

Given
∑r

l=1 kl = k ≤ n
2
, 0 < ε < 1/2, and k

m
< ρb(k,m, n;d, ε), then as k,m, n→∞, we have

Prob(G fails to be a (κ,d,α, ε)-irregular expander)→ 0 (4.9)

where κ = [k1, . . . , kr],d = [d1, . . . , dr],α = [α1, . . . , αr], and ρb(k,m, n;d, ε) is the largest

limiting value of k
m

for which

Ψ(Sκ, n,m, ε) = 0. (4.10)

Ψ(S, n,m, ε) , H( |S|
n

)+D
n
H(ε)+ εD

n
log (D

m
), whereH(p) , −p loge(p)−(1−p) loge(1−p) is the

Shannon entropy function, S is the subset of X , D represents the sum of the degrees over the nodes

in S, and Sκ is the set of subset of X with exactly kl entries chosen from Xl for l = 1, 2, . . . , r.

Proof. For the case of bipartite graphs with variable nodes’ degree d, the proof is provided in [80,

Corollary 2.2]. We extend the proof to include the irregular expanders graphs as well. Consider

all subsets S ⊂ X , which are the union of subsets S1, S2, . . . , Sr with given fixed sizes |S1| =

σ1, |S2| = σ2, . . . , |Sr| = σr such that each subset Sl ⊂ Xl can have upto kl coefficients in Xl for
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l = 1, 2, . . . , r. We refer to set of such S’s as Sσ, where σ = [σ1, σ2, . . . , σr]. For a specific subset

S ∈ Sσ, with Dσ =
∑r

l=1 σldl representing the number of edges in the graph induced by S, given

G does not expand on Sσ, then in a sequence of Dσ emanating edges from S, more than εDσ of

them are associated to the vertices from Y that are identical to a preceding values in that sequence

(We refer to these vertices as collision set).

Therefore, the probability that an encoded node in Y , chosen uniformly at random, belongs to the

collision set is at most Dσ

m
. Considering the selection of each encoded node is independent then

the probability that a set of εDσ randomly chosen encoded nodes belongs to the collision set is

(Dσ

m
)εDσ . There are

(
Dσ

εDσ

)
ways to choose εDσ vertices from Dσ nodes and

(
α1n
σ1

)(
α2n
σ2

)
. . .
(
αrn
σr

)
ways to choose a set S from X .

Hence, for all subsets S ∈ Sσ with Σσ =
∑r

l=1 σl, the probability that at least one such subset has

more than εDσ neighbors in the collision set (i.e., fails to expand on Sσ), is upper-bounded (using

a union bound) as follows,

Prob(G fails to expand on Sσ) ≤
(
α1n

σ1

)(
α2n

σ2

)
. . .

(
αrn

σr

)(
Dσ
εDσ

)(
Dσ
m

)εDσ

. (4.11)

Using Chu-Vandermonde identity, it is straightforward to show that
(
α1n
σ1

)(
α2n
σ2

)
. . .
(
αrn
σr

)
≤
(
n
Dσ

)
.

Therefore,

Prob(G fails to expand on Sσ) ≤
(
n

Dσ

)(
Dσ
εDσ

)(
Dσ
m

)εDσ

. (4.12)

We know
(
n
np

)
≤ 5

4
(2πp(1 − p)n)−

1
2 exp (nH(p)) [80, Lemma 2.10]. Applying this upper bound
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to the righthand side of (4.12), we obtain

(
n

Dσ

)(
Dσ
εDσ

)(
Dσ
m

)εDσ

≤5

4
(2π

Σσ
n

(1− Σσ
n

)n)−
1
2 exp (nH(

Dσ
n

))

× 5

4
(2πε(1− ε)Dσ)−

1
2 exp (εH(ε))

× exp (εDσ log (
Dσ
m

))

=pm(Sσ) exp (nΨ(Sσ, n,m, ε)),

(4.13)

where pm(Sσ) = (5
4
)2(2π)2(Dσ

n
(1−Dσ

n
)nε(1−ε)Dσ)−

1
2 and Ψ(Sσ, n,m, ε) = H(Dσ

n
)+Dσ

n
H(ε)+

εDσ

n
log (Dσ

m
). Considering all possible values of 0 ≤ σl ≤ kl for l = 1, 2, . . . , r, we have

Prob(G fails to be a (κ,d,α, ε)-irregular expander)

≤
k1∑

σ1=0

k2∑
σ2=0

. . .
kr∑

σr=0

Prob(G fails to expand on Sσ)

≤
k1∑

σ1=0

k2∑
σ2=0

. . .
kr∑

σr=0

(
n

Dσ

)(
Dσ
εDσ

)(
Dσ
m

)εDσ

.

(4.14)

Given k ≤ n
2
, the largest summand in the right hand side of (4.14) is associated with the subset S∗

in which exactly kl entries are chosen from Xl for l = 1, 2, . . . , r. Therefore,

k1∑
σ1=0

k2∑
σ2=0

. . .
kr∑

σr=0

(
n

Dσ

)(
Dσ
εDσ

)(
Dσ
m

)εDσ

<

k1∑
σ1=0

k2∑
σ2=0

. . .
kr∑

σr=0

(
n

Dκ

)(
Dκ
εDκ

)(
Dκ
m

)εDκ

<
r∏
l=1

(kl + 1)pm(Sκ) exp (nΨ(Sκ, n,m, ε)).

(4.15)

The exponential term in (4.15) will be dominant as k,m, n→∞. Thus, having Ψ(Sκ, n,m, ε) < 0

yields to Prob(G fails to be a (κ,d,α, ε)-irregular expander) → 0. In [80, Corollary 2.11], it has

been shown that Ψ(S, n,m, ε) is a monotonically increasing function of k/m. Therefore, given
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Ψ(Sκ,m, n, ε) = 0 for k/m = ρb, we conclude that Ψ(Sκ, n,m, ε) < 0 for any value of k/m < ρb

as k,m, n → ∞. Accordingly, the probability that graph G fails to be a (κ,d,α, ε)-irregular

expander goes to 0.

For the special case of r = 2, we define two types of signal coefficients. The more important

coefficients (MICs) and less important coefficients (LICs) with lengths n1 = αn and n2 = (1 −

α)n, respectively (α1 = α and α2 = 1 − α). In the measurement matrix ΦN = [ Φ1

dM
, Φ2

dL
], Φ1

and Φ2 have exactly dM and dL ones per column, respectively. The following lemma gives the

sufficient conditions on the values of dM and dL that ensures the existence of a (κ,d,α, ε)-irregular

expander.

Lemma 2. Consider bipartite graphs G(X, Y,E) with |X| = n and |Y | = m. Assume the n

variable nodes in X are partitioned into two sets X1 and X2 of sizes αn and (1 − α)n. Let each

variable node in X1 and X2 have exactly dM and dL neighbors, respectively in Y . For all dM and

dL that satisfy (4.16), there exists a bipartite graph that is (κ,d,α, ε)-irregular expander.



(a) : log

(
k1k2

(
αn

k1

)(
(1− α)n

k2

))
+ log((1− ε)Dκ − d̃) + εDκ log

(
(1− ε)Dκ

m

)
+ (1− ε)Dκ −

1

2
log(2π(1− ε)Dκ) < 0;

(b) : m ≥ 2(1− ε)Dκ,

(4.16)

where Dκ = k1dM + k2dL, d̃ = max (dM , dL), κ = [k1, k2],d = [d1, d2],α = [α, 1−α], k1 ≤ αn
2

,

and k2 ≤ (1−α)n
2

.

Proof. The proof is related to the proof of [81, Lemma 1], which considers the case of regular

expanders (i.e., r = 1). We extend that proof to include the case of irregular expanders with r = 2.

For G(X, Y,E) with |X| = n and |Y | = m, there exist
(
m
dM

)αn(m
dL

)(1−α)n incidents of irregular

bipartite graphs with αn degree dM and (1 − α)n degree dL variable nodes. Consider all subsets
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S ⊂ X , which are the union of subsets S1 and S2 with given fixed sizes |S1| = σ1 and |S2| = σ2

such that each subset Sl ⊂ Xl can have upto kl coefficients in Xl for l = 1, 2. We refer to set of

such S’s as Sσ and Dσ = σ1dM + σ2dL represents the number of edges in the graph induced by

Sσ. For a subset Sσ, there are no more than Σ
d(1−ε)Dσe−1

ms=d̃

(
m
ms

)(
ms
dM

)σ1(ms
dL

)σ2 ways that this subset

has fewer than (1− ε)Dσ neighbors in Y . Therefore, the number of cases that the graph fails to be

(κ,d,α, ε)-irregular expander is less than or equal to

k1∑
σ1=1

k2∑
σ2=1

(
αn

σ1

)(
(1− α)n

σ2

)(
m

dM

)αn−σ1(m
dL

)((1−α)n)−σ2 d(1−ε)Dσe−1∑
ms=d̃

(
m

ms

)(
ms

dM

)σ1(ms

dL

)σ2
.

Hence, if the upper-bound on the the total number of non-expander graphs is less than all possible

incidents of irregular bipartite graphs, there exists a (κ,d,α, ε)-irregular expander graph. This is

represented in the following

k1∑
σ1=1

k2∑
σ2=1

(
αn

σ1

)(
(1− α)n

σ2

)(
m

dM

)αn−σ1(m
dL

)((1−α)n)−σ2

d(1−ε)Dσe−1∑
ms=d̃

(
m

ms

)(
ms

dM

)σ1(ms

dL

)σ2
<

(
m

dM

)αn(
m

dL

)(1−α)n

.

(4.17)

We can rewrite (4.17) as follows,

Qt ,
k1∑

σ1=1

k2∑
σ2=1

(
αn
σ1

)(
(1−α)n
σ2

)(
m
dM

)σ1(m
dL

)σ2 d(1−ε)Dσe−1∑
ms=d̃

(
m

ms

)(
ms

dM

)σ1(ms

dL

)σ2
< 1, (4.18)

Note that
(
ms
dM

)
and

(
ms
dL

)
are increasing functions of ms and d(1 − ε)Dσe − 1 ≤ (1 − ε)Dσ.

Moreover, given m ≥ 2((1− ε)Dσ), for dM ≤ ms ≤ (1− ε)Dσ−1,
(
m
ms

)
is an increasing function
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of ms. Therefore,

Qt ≤
k1∑

σ1=1

k2∑
σ2=1

(
αn
σ1

)(
(1−α)n
σ2

)(
m
dM

)σ1(m
dL

)σ2 ((1− ε)Dσ − d̃)

(
m

(1− ε)Dσ

)(
(1− ε)Dσ

dM

)σ1((1− ε)Dσ
dL

)σ2
=

k1∑
σ1=1

k2∑
σ2=1

(
αn

σ1

)(
(1− α)n

σ2

)
((1− ε)Dσ − d̃)

(
m

(1− ε)Dσ

)(((1−ε)Dσ

dM

)(
m
dM

) )σ1 (((1−ε)Dσ

dL

)(
m
dL

) )σ2

.

(4.19)

In (4.19), we can substitute
((1−ε)Dσ

dM
)

( m
dM

)
and

((1−ε)Dσ
dL

)
(mdL)

with
( m−dM
m−(1−ε)Dσ

)
( m
m−(1−ε)Dσ

)
and

( m−dL
m−(1−ε)Dσ

)
( m
m−(1−ε)Dσ

)
, respectively,

because (m−hd )
(md)

=
(m−dh )
(mh)

< (m−h
m

)d. Hence (4.19) can be written as,

Qt ≤
k1∑

σ1=1

k2∑
σ2=1

(
αn

σ1

)(
(1− α)n

σ2

)
((1− ε)Dσ − d̃)

(
m

(1− ε)Dσ

)(( m−dM
m−(1−ε)Dσ

)(
m

m−(1−ε)Dσ

))σ1 (( m−dL
m−(1−ε)Dσ

)(
m

m−(1−ε)Dσ

))σ2

≤
k1∑

σ1=1

k2∑
σ2=1

(
αn

σ1

)(
(1− α)n

σ2

)
((1− ε)Dσ − d̃)

(
m

(1− ε)Dσ

)(
(1− ε)Dσ

m

)σ1dM+σ2dL

.

(4.20)

Given αn ≥ 2k1 and (1− α)n ≥ 2k2 all summands in the right hand side of (4.20) are increasing

functions of σ1 and σ2. Therefore, we have

Qt ≤ k1k2((1− ε)Dκ − dM)

(
αn

k1

)(
(1− α)n

k2

)(
m

(1− ε)Dκ

)(
(1− ε)Dκ

m

)Dκ

. (4.21)

By taking natural log from both sides of (4.21) and noting that
(
n
k

)
< 1√

2πk
(n
k
)k exp (k) (can be
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shown using Stirling’s formula), we have

log(Qt) ≤ log

(
k1k2

(
αn

k1

)(
(1− α)n

k2

))
+ log

(
(1− ε)Dκ − d̃

)
+Dκ log

(
(1− ε)Dκ

m

)
+ log

((
m

(1− ε)Dκ

))
≤ log

(
k1k2

(
αn

k1

)(
(1− α)n

k2

))
+ log

(
(1− ε)Dκ − d̃

)
+Dκ log

(
(1− ε)Dκ

m

)
− (1− ε)Dκ log

(
(1− ε)Dκ

m

)
+ (1− ε)Dκ −

1

2
log(2π(1− ε)Dκ).

(4.22)

In (4.22), we provided an upper bound for the natural logarithm of Qt. If this upper bound is

less than zero it means Qt was less than 1 and there exists a (κ,d,α, ε)-irregular expander graph.

Applying this condition on (4.22), the inequality in (4.16) follows.

In Figure 4.6, we have depicted the conditions given in Lemma 2 on dM -dL plane for a numerical

example with n = 5 × 105, m = 1.2 × 105, k1 = 80, k2 = 20, α = 0.5 and different values of ε.

The areas in dM -dL plane where (4.16) holds are shown with the white color.
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Figure 4.6: The areas in dM -dL plane where (4.16) holds are shown with white color. The design

of NCS imposes dM ≥ dL. Therefore the desirable values for dM and dL are below the dM = dL

line. For all dM and dL values in those areas, there exists a (κ,d,α, ε)-irregular expander graph.

Please note that the values of dM and dL obtained using Lemma 2 are only sufficient for existence

of a (κ,d,α, ε)-irregular expander graph. Hence, it is possible to find the set of parameters that

does not satisfy the conditions in Lemma 2, yet a (κ,d,α, ε)-irregular expander graph exists for

those parameters.

Application of NCS in Burst Image Capture

As we mentioned earlier, one of the interesting applications of NCS is in burst image capture. In

capturing images with a high frame rate, the changes from one frame to the next is very small and

this makes the difference frame very sparse [82]. This property has been employed in high-frame-
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rate image and video sampling [83]. However, this sampling strategy is oblivious to the ROIs in the

image. We can apply the proposed NCS to the sampling of bursty images as shown in Figure 4.1.

Since the pixels are divided into ROI and non-ROI pixels, the NCS will have only two importance

levels (i.e., more important coefficients and less important coefficients). Accordingly the first frame

is sampled and recovered using a typical CS scheme. After the first frame is recovered the ROI,

which is determined based on the saliency of the pixels [84], is being extracted. This ROI is fed

back to the sampler to set up the NCS’ measurement matrix and the more important coefficients.

Clearly, it is assumed that in the high frame rate image capture, the ROI does not change drastically

from one frame to the next.

The Structure of the NCS-Based Image Sensor

An efficient image sensor can be implemented using the proposed NCS sampling. In high-frame-

rate image capture, the saliency information of one recovered frame can be passed on to the next

frame and determine the nonuniformity of the columns of ΦN . The most salient pixels contribute

to more measurements compared to less salient pixels. The structure of the proposed NCS-based

image sampler is depicted in Figure 4.7. The columns that are denoted by Φ1 and Φ2 are used

to sample the ROI and non-ROI pixels, respectively. The number of nonzero entries per column

of Φ1 and Φ2 are d1 and d2, respectively. The nonzero entries at each row of ΦN determines the

pixels that their analog reading is being applied to the input of the Σ∆ ADC. The output of ADC

block in this case will be the quantized value of the average input to the ADC [69]. The output of

each ADC will be treated as one CS measurement. It is worth noting that the parallel structure of

ADCs and multiplexers that is proposed in Figure 4.7 implies that all m CS measurements can be

captured in a single-shot.
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Figure 4.7: Block diagram representation of the proposed NCS-based image sampling. The rows

of non-uniformly sparse ΦN are used to determine the pixels that their values are multiplexed in

analog domain and applied to the input of Σ∆ modulator

Performance Evaluation

In this section, we consider a special case of NCS in which the signal x has two sections (r = 2).

We compare the performance of NCS with the performance of uniform CS. In the uniform CS

scenario, each column of the measurement matrix has exactly d non-zero entries (with value 1
d
).

In the non-uniform scenario with r = 2, we refer to MICs and LICs by xMIC and xLIC and

x = [xTMIC ,x
T
LIC ]T . We choose dM ≥ d ≥ dL such that the average number of non-zero entries

L in each row of the measurement matrix in both uniform and non-uniform measurement matrices

remain equal. Therefore, the probability of having a non-zero entry in Φ1 and Φ2 becomes pM =

dM
m
≥ d

m
and pL = dL

m
≤ d

m
.
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We divide pM and pL by p = d
m

= L
n

and introduce two new parameters qM = pM
p

= dM
d

and

qL = pL
p

= dL
d

. Here, qM and qL solely represent the non-uniformity of the measurement matrix

regardless of its sparsity. Clearly, 0 < qL ≤ 1, and qM = 1−(1−α)qL
α

.

We consider two types of sparse signals in our simulations: signals with uniform sparsity3 and

signals with non-uniform sparsity. A signal with uniform sparsity has k non-zeros uniformly

distributed in its n coefficients. On the other hand, a signal with non-uniform sparsity has k1 and

k2 non-zeros among n1 MICs and n2 LICs, respectively, with k1
n1
6= k2

n2
. In our simulations, we set

n = 1000, α = 0.15 (i.e., n1 = 150, and n2 = 850), k = 100, k1 = 30, k2 = 70, and d = 0.04m.

We perform the CS sampling employing ΦN and perform the recovery employing the CVX opti-

mization tool [85, 86] to obtain x̂, which is the estimate of the signal x. We plot the normalized

recovery error (NRE) of MICs and LICs given by ‖xMIC−x̂MIC‖2
‖xMIC‖2 and ‖xLIC−x̂LIC‖2‖xLIC‖2 , respectively,

versus different parameters, where x̂MIC and x̂LIC correspond to the MICs and LICs in the recov-

ered signal x̂, respectively. We compare these results with the overall NRE of the signal (‖x−x̂‖2‖x‖2 )

using uniform CS measurement matrix, for which qM = 1. In our numerical simulations, when the

parameters dictate a non-integer value for dL, it has been rounded to nearest integer value.

In the first simulation, we fix the number of measurements to m = 300 (d = 12) and plot NRE

of MICs and LICs versus qM in Figures 4.8 and 4.9 for signals with uniform and non-uniform

sparsities, respectively. In Figures 4.8 and 4.9, we have also depicted the overall NRE of signal x

(the solid black line with + markers).

3As an interesting special case, NCS can be applied to uniformly sparse signals to achieve non-uniform recovery.
By applying NCS to a uniformly sparse signal, different parts of that signal are recovered with different accuracy
levels.
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Figure 4.8: NRE of MICs and LICs versus qM for uniformly sparse signals with n = 1000 and
k = 100. For ΦN , we set α = 0.15, d = 12, m = 300, and 1 ≤ qM ≤ 6. Note that qM = 1
corresponds to the NRE of uniform CS.
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Figure 4.9: NRE of MICs and LICs versus qM , for non-uniformly sparse signals with n = 1000,

k1 = 30, k2 = 70, and α = 0.15. For ΦN we set α = 0.15, d = 12, m = 300, and 1 ≤ qM ≤ 6.

In Figure 4.8, the significant coefficients of x are distributed uniformly and the goal is to recover

the first part of the signal (MICs) with a higher accuracy. Figure 4.8 shows that as qM increases,

MICs are recovered with a smaller error at the cost of LICs increasing recovery error. Therefore,
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the desired non-uniform recovery has been provided for MICs and LICs. As an example, we

observe that at qM = 2, MICs are recovered with 25% higher accuracy compared to uniform CS

(qM = 1), while the performance loss of LICs is less than 15%. Moreover at qM = 1.5, MICs are

recovered with 15% smaller error without losing any performance for LICs.

In Figure 4.9, the significant coefficients of x are non-uniformly distributed (30% of the significant

coefficients are positioned in the initial 15% of the signal coefficients). The desired more accurate

recovery of MICs is provided using the proposed method. At qM = 2, MICs are recovered with

50% higher accuracy compared to uniform CS (qM = 1), while the performance loss of LICs

is only 5%. A very interesting results can be seen in Figure 4.9. For 1 < qM < 2.5, not only

the recovery performance of MICs are significantly improved, but also the overall performance is

better than the uniform sampling (qM = 1). This is because in signals with non-uniform sparsity,

MICs are not only sampled more frequently but also have a higher concentration of non-zeros.

Therefore, implementing NCS improves the overall performance as well.

Next, we fix qM = 2.5 and plot NREs of MICs and LICs versus the number of measurements m

for signals with uniform and non-uniform sparsities as illustrated in Figures 4.10(a) and 4.10(b),

respectively. We have also included NRE of the uniform CS (qM = 1) in both figures. We see

a greater improvement in NRE of MICs when the signal has non-uniform sparsity compared to

the signals with uniform sparsity. For example, at m = 250 MICs’ performance improves over

uniform CS by 40% and 34% for signals with non-uniform and uniform sparsities, respectively.
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(a) NRE versus m for NCS with uniformly sparse signals (k = 100).
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(b) NRE versus m for NCS with non-uniformly sparse signals (k1 = 30

and k2 = 70).

Figure 4.10: NRE versus m for n = 1000, α = 0.15, and d = 12, qM = 2.5. The dashed line

corresponds to the NRE of uniform CS.

In Figure 4.11(a), we plot NREs versus the average row weight L (by adjusting dM and dL) when

qM = 2 and m = 300. We observe that for L ≥ 40 NREs are almost insensitive to L and

the recovery error remains almost constant. In Figure 4.11(b), we plot NREs versus the sparsity

s = k
n

, by varying k. We observe that NRE is an increasing function of s. This is expected
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since increasing s results in a less compressible (less sparse) signal. However, we observe that

non-uniform recovery is still effectively provided for MICs and LICs compared to uniform CS.
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(a) NRE versus average degree of measurements, L.
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(b) NRE versus the sparsity, s = k
n .

Figure 4.11: NRE versus L and s = k
n

for MICs and LICs of signals with uniform (solid lines) and

non-uniform (dashed lines) sparsities with n = 1000, m = 300, α = 0.15, and qM = 2.5.

Figure 4.12 shows a visual comparison between the performances of NCS and uniform CS. In ad-

dition, we compare our scheme with saliency-based compressive sampling scheme in [75], which
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divides the pixels into blocks and assigns measuremnets to each block based on the number salient

pixels in that block. In Figure 4.12(a) a 128 × 128 Lenna image is represented. The image signal

x has a sparse representation in some basis B (such as Wavelet or DCT). In the case of NCS, the

random measurements are generated by y = ΦNx. The pixels corresponding to the face area are

considered as MICs, which are located inside the rectangle shown on the image. The number of

MICs are 1632 that makes α ' 0.1. In Both Figures 4.12(b) and 4.12(c), we generated m = 6000

measurements employing uniform CS and NCS, respectively, and used the standard `1-norm min-

imization to recover the sparse coefficients of the image. In the case of uniform CS in Figure

4.12(b), the NRE of the entire recovered image is 0.1249. However, as shown in Figure 4.12(c),

by employing NCS (with qM = 9), NRE of recovered MICs is dropped significantly to 0.0253

and the NRE of LICs is slightly increased to 0.1347 (≈ 8% increase). In addition, we provide the

ROI in Figure 4.12(a) to the saliency-based compressive sampling algorithm [75]. This algorithm

divides the image into 16 32 × 32 blocks. Each block is measured separately and the number of

measurements per block is determined based on the number of salient pixels that falls into that

block. Using this algorithm, NRE of recovered MICs is dropped to 0.0410 while the NRE of the

entire image is 0.1304 (see Figure 4.12(d)). As it can be seen the NRE on MICs in saliency-based

block CS is also improved but not as much the NCS.
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(a) The Original image (b) Uniform CS (c) NCS (d) Saliency-based block

CS [75]

Figure 4.12: A pictorial example for comparing the performances of NCS and uniform CS. Here

the image is 128 × 128 pixels and the number of measurements is m = 6000. For NCS, we have

α ' 0.1 and qM = 9. Substantial improvement in the recovery performance of the region of

interest (face) is achieved with a slight degradation in the recovery performance of the other parts.

In the next simulation, we compare NCS with the weighted `1 scheme [1]. We consider the follow-

ing parameters n = 200, m = 100, α = 0.5, and k2 = 10 (as given in [1]). Figure 4.13 compares

the probability of recovery for the two scenarios. The probability of recovery is defined as percent-

age of the trials that the normalized recovery error is less than 0.001. The x-axis represents k1,

the number of non-zeros in the first section of the sparse signal. In Figure 4.13, for each value of

k1 the recovery probabilities are chosen independently with empirically optimized weights (in the

case of weighted `1) and optimized qM values (in the case of NCS). Weighted `1 is a technique that

exploits non-uniformity in the sparsity of the signal at the recovery phase, as opposed to NCS that

utilizes such information in the sampling phase. As we see in Figure 4.13, weighted `1 slightly

outperforms NCS. However, interestingly, weighted `1 can be combined with NCS to result in a

better performance. As we can see the probability of recovery is maximized when the NCS is used

in the sampling step and weighted `1 is used in the recovery step.
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Figure 4.13: The probability of recovery versus k1 for our proposed NCS and weighted `1 [1] for

n = 200, m = 100, α = 0.5, and k2 = 10.

Next, the proposed NCS-based image sampling is employed to capture burst-mode images. For

our simulations, we use a raw video with frame rate 500 fps. The frames of this video are used

to simulate the readout of an image sensor. For the first frame, the saliency information is not

available. Therefore, the CS sampling matrix is chosen to be uniformly sparse. After the samples

of the first frame recovered the most salient pixels (i.e., MICs) will be determined and will be

utilized to setup ΦN for the next frame. Employing this process over 8 consecutive frames of the

video (shown in Figure 4.14(a)) and using m = 6000 measurements to samples each frame, we

depicted the average PSNR of the recovered frames and the PSNR of 10% most salient ROI pixels

and non-ROI pixels separately versus qM as shown in Figure 4.14(b).
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(b) Average PSNR versus qm

Figure 4.14: The average PSNR of 8 consecutive frames that are sampled using proposed NCS.

Each frame has 128× 128 pixels and is sampled by m = 6000 measurements.

As we can see the overall PSNR without using the NCS (i.e., qM = 1) is 24.8 dB. However, by
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employing the NCS-based sampling and setting qM = 5, the PSNR of 10% most salient pixels is

improved to 30.9 dB (more than 6 dB improvement), while the PSNR of remaining Non-ROI pixel

dropped only by less than 1 dB.

In the next simulation, we apply our proposed NCS and saliency-based CS [75] to a 128 × 128

frame. The original frame and its 10% most salient pixels are shown in Figure 4.15(a). The

number of measurements per frame is set to m = 6500. The goal is to have the overall PSNR

of the recovered image greater than or equal to 25 dB. Accordingly we set qM such that PSNR of

the ROI pixels is maximized while the overall PSNR is at least 25 dB. The visual performance of

both schemes is depicted in Figure 4.15. The proposed NCS scheme, while achieving the overall

PSNR of 25 dB, reaches the ROI PSNR of 32.12 dB, which is significantly higher than that of the

saliency-based CS (28.93 dB).

(a) Original frame and ROI (b) NCS-based sampling

(ROI PSNR: 32.12)

(c) Saliency-based CS [75]

(ROI PSNR: 28.93)

Figure 4.15: Recovered image using NCS and saliency-based CS schemes. The overall PSNR for

both schemes is set to be greater than or equal to 25.
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Conclusion

In this chapter, we proposed non-uniform compressive sensing (NCS) for recovery of sparse signals

with either non-uniform sparsity or non-uniform recovery requirement at different parts of the

signal. To realize NCS, more important signal coefficients are captured more frequently by the

measurements. In this way, NCS will provide a higher recovery accuracy for more important

coefficients compared to less important coefficients, which is of interest in many applications.

NCS is based on only modifying the sampling step of conventional CS schemes and it can be

integrated with any CS recovery scheme, such as Basis Pursuit or weighted `1. We analyzed

the proposed NCS measurement matrix and showed that it satisfies the weak restricted isometry

property. Next, we performed extensive numerical simulations and showed that by correctly setting

NCS parameters, the desired non-uniform recovery will be achieved. As an interesting application,

we have shown that NCS can be effectively applied to the burst mode image capture to provide

non-uniform recovery performance for the ROI pixels.
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CHAPTER 5: MODEL-BASED NON-UNIFORM COMPRESSED

SAMPLING AND RECOVERY OF NATURAL IMAGES UTILIZING A

WAVELET-DOMAIN UNIVERSAL HIDDEN MARKOV MODEL

In this chapter, a novel model-based compressive sampling (CS) technique for natural images is

proposed. Our algorithm integrates a universal hidden Markov tree (uHMT) model, which captures

the relation among the sparse wavelet coefficients of images, into both sampling and recovery

steps of CS. At the sampling step, we employ the uHMT model to devise a nonuniformly-sparse

measurement matrix ΦuHMT . In contrast to the conventional CS sampling matrices such as dense

Gaussian, Bernoulli or uniformly sparse matrices that are oblivious to the signal model and the

correlation among the signal coefficients, the proposed ΦuHMT is designed based on the signal

model and samples the more important coefficients (wavelet coefficients at coarser scales) with a

higher probability compared to the less important coefficients.

At the recovery step, we integrate the uHMT model into two state-of-the-art Bayesian CS recovery

schemes. Our simulation results confirm the superiority of our proposed HMT model-based non-

uniform compressive sampling and recovery, referred to as uHMT-NCS, over other model-based

CS techniques that solely consider the signal model at the recovery step. Our work is distinguished

from other model-based CS schemes in that we take a novel approach to simultaneously integrating

the signal model into both CS sampling and recovery steps. We show that such integration greatly

increases the performance of the CS recovery, which is equivalent to reducing the required number

of samples for a given reconstruction quality.
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Introduction

Today’s multimedia-rich applications have dramatically increased the traffic flow in the communi-

cation networks. To deal with this overwhelmingly large amount of data and reduce the computa-

tional complexity, new compression techniques are on demand. In this regard, the emerging field

of compressive sampling (CS) [22, 53] that has revolutionized the traditional concept of sensing

and sampling established by the Nyquist sampling theorem has attracted a lot of attention. Ac-

cording to the CS theory, the signals that have a sparse representation over a proper basis can be

recovered from a small set of linear measurements.

The compression efficiency of CS cannot compete with conventional codec such as JPEG2000

or MPEG4 when dealing with already acquired image or video signals with high resolution and

quality [87]. However, CS is still desirable in applications in which sensing is expensive (such

as MRI or infra-red imaging). The conventional CS algorithms merely exploit signal sparsity in

their designs. Nevertheless, it has recently been shown that in addition to the sparsity, we can

utilize the extra knowledge about the signal structure as a priori information in the CS recovery

step to enhance the overall CS recovery performance compared to the conventional CS recovery

algorithms [2–4, 70]. In a very recent work [88], Indyk and Razenshteyn proved that for the

signals with tree-structured sparsity (such as natural images), the recovery is achievable with fewer

measurements compared to the recovery of general sparse signals. In [70], the tree structure of

wavelet coefficients is used to design a CS recovery algorithm based on weighted `1 minimization,

called HMT-based IRWL1, for one dimensional piecewise smooth signals. In [4], the tree structure

of wavelet coefficients is exploited to create a statistical model for the sparse coefficients that

results in more accurate recovery. In [2], the authors have modified the novel approximate message

passing algorithm [43] such that the tree structure of the wavelet coefficients is utilized in the

recovery process.
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In this chapter, we take one step further and show that by exploiting the signal model in the sam-

pling step of the CS in addition to the recovery step, we can achieve greater gains. This chapter

mainly focuses on natural images. It is well known that the signal coefficients of natural images

in the wavelet domain are not only sparse but also are correlated by a tree structure as described in

[36, 89]. Romberg et al. developed a universal hidden Markov model (uHMT) for normalized nat-

ural images in [89]. The uHMT model provides relatively accurate predictions about the wavelet

coefficients. We will demonstrate how uHMT model can be integrated into the design of novel

sampling and recovery schemes. In this chapter, x corresponds to the pixels of an image, Ψ is the

wavelet basis, and θ = ΨTx corresponds to the sparse wavelet coefficients of the image.

There have been some recent studies on unconventional measurement matrices, such as structured

measurement matrices [50] or Toeplitz matrices [90]) to mimic the real-world applications in which

the acquisition of samples by a random Gaussian or Bernoulli sampling matrices are infeasible

[50] (e.g., multipath channel estimation [90]). However, only a few contributions deliberately

modify the sampling matrix structure with the goal of improving the overall CS performance [91–

94]. In [91], the authors have shown that separately measuring each scale of signals’ wavelet

coefficients improves the recovery performance. In [92], the authors have exploited the visual

importance of different areas of an image in the sampling step and have modified the block-CS

algorithm (proposed in [32]) to generate CS measurements with different compression levels. In

[93], the authors have proposed a structurally random structure for the measurement matrix which

provides fast computation and low complexity compared to random measurement matrices. In

[95], the authors proposed a model-based dictionary learning considering the tree structure of the

wavelet coefficients. In [94], the measurement matrix is designed such that it is matched to the

dictionary that is learned through training images. Such a match reduces the coherence between

the measurement matrix and the dictionary and enhances the CS recovery performance.

To the best of our knowledge [91, 92] are the only studies that modify the sampling step based
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on the sparse signal model (in the wavelet domain) to improve the performance. In our work, we

take a novel and more effective approach to generate the CS measurement matrix to be applied to

natural images utilizing the properties of multi-scale wavelet transform as side information.

Contribution of this chapter

In this chapter, we exploit the uHMT model of wavelet coefficients of natural images to modify

both CS sampling and recovery steps and significantly enhance the performance. The contribution

of this chapter is two-fold. First, using the uHMT model, we propose a non-uniform CS mea-

surement matrix that generates CS measurements such that they include the significant coefficients

with a higher probability compared to the non-significant coefficients. Second, we propose two

model-based recovery algorithms that employ the uHMT model to improve the CS recovery perfor-

mance even further. The novelty of this work is in proposing a uHMT-model-based non-uniform

CS sampling, and in simultaneously employing the tree structure of wavelet coefficients at both

CS sampling and CS recovery steps. Figure 5.1 depicts the block diagram of the sampling and

the recovery steps in our proposed scheme, referred to as uHMT-NCS. Although this work mainly

focuses on natural images, the ideas from this work can be extended for the design of new CS

matrices when dealing with different signal models.

The Universal Hidden Markov Tree (uHMT) Model

In this section, we provide a brief introduction to uHMT model for wavelet coefficients of natural

images that we will use later to develop our proposed schemes.

The multi-resolution wavelet decomposition of images has many applications in image processing

(e.g., JPEG2000 standard). The wavelet-domain coefficients of an image exhibit both sparsity
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Figure 5.1: The block diagram of the proposed uHMT-NCS scheme. The vectors x, y, and x̂
correspond to the image signal, the CS measurements, and the recovered image, respectively. The
uHMT model parameters (Λ) are utilized at both CS Sampling and CS recovery steps.

and a tree structure [36, 89]. Figure 5.2 shows a two-dimensional wavelet transform of an image

with two scales. The top-left block represents the approximate coefficients (A). The next two

top blocks (H1 and H2), the two blocks along the left side of the image (V1 and V2), and the two

diagonal blocks (D1 and D2) represent the tree structures along the horizontal, the vertical, and the

diagonal directions, respectively. As it can be seen in Figure 5.2, quad trees form in horizontal,

vertical, and diagonal directions.
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Figure 5.2: The two-dimensional wavelet transform representing an image in terms of approximate

coefficients (A), and wavelet coefficients in horizontal (H), vertical (V ), and diagonal (D) direc-

tions. The wavelet coefficients form quad trees with each parent coefficient having four children

in the finer scale.

Let θ|J = [θbj,k] represent the coefficients of the two-dimensional discrete wavelet transform up

to scale J of an image represented by x. For a coefficient θbj,k, b ∈ {A,H, V,D}, where A, H ,

V , D stand for the approximate coefficients, horizontal, vertical, and diagonal subband coeffi-

cients, respectively, j = 0, . . . , J represents the scale of the coefficient with j = 0 indicating that

the coefficient is an approximate coefficient, and k = 1, . . . , n4−J−1+max(1,j) represents the index

of the coefficient at direction b and scale j. Generally, the first α0n wavelet coefficients in θ|J

correspond to the approximate coefficients. The remaining α1n, α2n, . . . , αJn coefficients, where
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∑J
j=0 αj = 1, correspond to the coefficients in wavelet scales 1, 2, . . . , J , respectively. For exam-

ple, given the image in Figure 5.2, α0n is equal to the number of coefficients in A, α1n is equal to

the number of coefficients in H1, V1, and D1 combined, and finally, α2n is equal to the number of

coefficients in H2, V2, and D2 combined. For a two-dimensional wavelet transform with J scales,

we have α0 = 4−J and αj = 3α04j−1 for j = 1, . . . , J . The coefficients at scale 1 are called the

coarsest coefficients because they only represent a rough estimate of the image.

In [36, 89] a complete analysis of the properties of wavelet coefficients is provided, and for them

a hidden Markov tree (HMT) model has been developed. According to this model, every wavelet

coefficient θbj,k corresponds to a hidden state variable, which can be in either state small (S) or

large (L). The HMT model suggests that a tree structure exists among state variables and each

coefficient θbj,k for j = 1, . . . , J has a two-state mixture Gaussian probability density function

(pdf) given by

f(θbj,k) = πbj,kN (0, σbS,{j,k}
2
) + (1− πbj,k)N (0, σbL,{j,k}

2
), (5.1)

where N (0, σ2) represents a zero-mean Gaussian distribution with variance σ2, and πbj,k is the

probability that the state of θbj,k is small (in the statistical sense) and we have σbS,{j,k}
2 � σbL,{j,k}

2.

The state dependency between θbj,k and its parent θbj−1,dk/4e is modeled by a state transition proba-

bility matrixAb
j,k given by

Ab
j,k =

 pS→Sj,k,b pS→Lj,k,b

pL→Sj,k,b pL→Lj,k,b

 , (5.2)

with pS→Lj,k,b = 1 − pS→Sj,k,b and pL→Sj,k,b = 1 − pL→Lj,k,b , where pS→Sj,k,b is the probability that θbj,k is in state

S given its parent is in state S and pL→Lj,k,b is the probability that θbj,k is in state L given its parent is

in state L. UsingAb
j,k, we can formulate πbj,k based on the state of its parent as follows,

πbj,k = πbj−1,dk/4ep
S→S
j,k,b + (1− πbj−1,dk/4e)p

L→S
j,k,b , (5.3)
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given the probability of being small at root coefficients (πb1,k) is known for all values of b, k. Later

in this section, we will determine πb1,k according to the image size and the number of wavelet

scales.

Although the HMT model is very powerful in capturing the properties of wavelet coefficients, it

requires at least 4n parameters to be specified. However, in [36], the authors proposed to reduce

the number of parameters to 4J by assuming all coefficients within one wavelet scale have similar

statistical parameters. Therefore, the parameters reduce to

πbj,k = πj, σbS,{j,k}
2

= σ2
S,j, σbL,{j,k}

2
= σ2

L,j, and Ab
j,k = Aj, (5.4)

for all b, j, k. These parameters can be estimated using a set of training images and exploiting

the Expectation-Maximization (EM) algorithm as done in [36]. However, it has been shown in

[89] that leveraging additional wavelet-domain image structure (such as exponential decay across

scale), a reduced-parameter HMT model can be developed that is represented with only 9 meta

parameters independent of the size of the image and the number of wavelet scales. Further, it has

been shown in [89] that these 9 parameters take similar values for real-world images, allowing to

fix a set of universal set of parameters, resulting in a universal HMT (uHMT). Employing uHMT,

the image-specific training is avoided1.

Let the uHMT model be represented by a hyper-parameter Λ, which is defined as follows,

Λ = [αS , αL, CσS , CσL , γS , γL, CSS , CLL, π
′
1].

These 9 parameters are used to determine a priori pdfs (as given by (5.1)) for all the wavelet

1The uHMT parameters are accurate when J ≤ log4 n−3 [89], which complies with our proposed sensing scheme.
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coefficients. The variances of large and small coefficients vary over the scales [89]:

σ2
L,j = CσL2−(Jd+j)αL , (5.5a)

σ2
S,j = CσS2−(Jd+j)αS , (5.5b)

where CσL � CσS and Jd = log4 n − J . Four parameters CσL , αL, CσS , and αS characterize the

variances in the marginal densities of the wavelet coefficients [89]. Using the uHMT model,Aj is

given by [89],

Aj =

{
[ 1 0
0 1 ] j≤3−Jd,[

1−CSS2−(Jd+j)γS CSS2−(Jd+j)γS
1
2
−CLL2−(Jd+j)γL 1

2
+CLL2−(Jd+j)γL

]
j>3−Jd.

(5.6)

Unlike [89], we perform the wavelet decomposition up to an arbitrary scale J and not necessarily

up to scale log4 n (which is the full wavelet decomposition). Therefore, we add the deficit term

Jd = log4 n− J in Equations (5.5)-(5.6) to compensate for this incomplete decomposition.

The parameter π′1 in Λ is the probability that the root coefficients are small when the wavelet

decomposition is carried out up to the coarsest scale (i.e., J = log4 n). In this case, we find

the probability that a coefficient at scale j is in the small state, π′j , using the following recursive

formula

π′j = π′j−1p
′S→S
j + (1− π′j−1)p

′L→S
j , (5.7)

where p′S→Sj and p′L→Sj are entries of transition matrixAj given J = log4 n. In our problem, since

we perform partial wavelet decomposition (i.e., J < log4 n), we set π1 = π′log4 n−J+1 to compensate

for the scale deficit. From π1, we can determine πj’s using (5.3) and (5.6) for j = 2, . . . , J .

From (5.3) and (5.6), we note that πj is an increasing function of j. Therefore, the sparsity rate

of wavelet coefficients at scale j, given by sj = 1 − πj , is a decreasing function of j. In the next

section, we will exploit this non-uniform sparsity property of wavelet coefficients to design a novel

CS measurement matrix.
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As an example, for a 128× 128 image with J = 4 and using the parameters of uHMT model from

[89] (γS = γL = 1, CSS = 0.2, CLL = 0.4, αS = αL = 2.5 and π′1 = 0.5), we find π1 = 0.731,

π2 = 0.858, π3 = 0.925 and π4 = 0.961. Therefore, the sparsity rates of different scales are found

as s1 = 0.269, s2 = 0.142, s3 = 0.075, s4 = 0.039. The overall sparsity rate of the wavelet

coefficients excluding the approximate coefficients is found as
∑J

j=1 αjsj = 0.055 and we see the

sparsity rate of lower scales are much higher than the overall sparsity rate of the image.

Model-based Non-Uniform Compressed Sampling

In this section, we introduce our proposed non-uniform measurement matrix ΦuHMT for natural

images. Our approach is based on the integration of the uHMT model of natural images’ wavelet

coefficients into the design of the measurement matrix.

Non-Uniform Sampling

It is known that the wavelet coefficients of an image show an exponential decay along the scales

of the wavelet tree [36, 89]. This means that most of images’ energy is carried by the approximate

coefficients and the wavelet coefficients of the coarser scales. In addition, the sparsity rate of

wavelet coefficients at scale j, given by sj = 1 − πj , is a decreasing function of j. Therefore,

it seems rational to sample the coefficients at coarser scales, which are the initial coefficients

in θ|J , with a higher probability and decrease the probability that a coefficient is sampled by a

CS measurement as we increase j. For these purposes, we propose a novel measurement matrix

ΦuHMT that integrates the uHMT model of wavelet coefficients into its design.

First, we directly sample the α0n = 4−Jn approximate coefficients. Next, we nonuniformly sample

the remaining wavelet coefficients using a nonuniformly sparse matrix ΦNU = [Φ1,Φ2, . . . ,ΦJ ],
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where sub-matrix Φj corresponds to the αjn = 3× 4−(J−j+1)n wavelet coefficients at scale j, for

j = 1, 2, . . . , J . Here J ≤ log4 n represents the depth of the wavelet trees (i.e., the level up to

which the wavelet decomposition has been done). In addition, we set every row of ΦNU to have L

non-zero coefficient, chosen from a zero mean, unit variance Gaussian distribution. The structure

of the proposed measurement matrix ΦuHMT is shown in Figure 5.3, in which Iα0n is an identity

matrix of size α0n× α0n.

Figure 5.3: The proposed non-uniform measurement matrix for compressive sensing of wavelet

coefficients of an image. A darker color corresponds to a denser matrix.

If we takem CS measurements, m−α0n of them will be generated nonuniformly from the wavelet

coefficients other than the approximate coefficients. To impose the non-uniform sampling through

ΦNU , we set each row of Φj to have Lj non-zero entries and
∑J

j=1 Lj = L. The value of L is

proportional to n, where L = n
c

and c is a large constant.

Let y = ΦuHMTθ|J denote the compressive samples of wavelet coefficients of an image. For a

measurement yi (α0n + 1 ≤ i ≤ m), the number of contributing coefficients from scale j is Lj .
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Since the significance of wavelet coefficients decreases as j increases, we set

L1

α1

>
L2

α2

> . . . >
LJ
αJ
. (5.8)

This will ensure that the coefficients at lower scales contribute to more measurements and corre-

spondingly they have more contribution in each measurement.

In our proposed scheme, we relate Lj to the sparsity of wavelet coefficients as follows:

Lj =

{ ⌈
αjsj∑J
l=1

αlsl
L

⌉
j=1,...,J−1

L−
∑J−1
l=1 Lj j=J.

, (5.9)

where sj = 1 − πj is the sparsity rate of the wavelet coefficients at scale j and πj is found using

(5.3). In (5.9), LJ will be greater than zero if we have L ≥
∑J
j=1 αjsj

αJsJ
(J − 1). Since J = O(log n)

represents the levels of the wavelet transform, choosing L to be at least O(log n) suffices to have

LJ ≥ 0. As we mentioned in the proposed non-uniform sampling, we set L = n
c
. Therefore for

sufficiently large n, Lj will be greater than or equal to zero.

Mutual Coherence of ΦuHMT and Ψ

In order to have an efficient sampling and recovery process, the measurement matrix and the spar-

sifying basis must be mutually incoherent. The mutual coherence µ of the measurement matrix

and the sparsifying matrix is defined as µ(Φ,Ψ) =
√
nmaxk,j |〈φk,ψj〉| [96], where φk is the kth

row Φ and ψj is the jth column of Ψ and ‖φk‖2 = 1 for all k = 1, . . . ,m and ‖ψj‖2 = 1 for all

j = 1, 2, . . . , n.
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As shown in Figure 5.3, our proposed measurement matrix can be written as

ΦuHMT =
[

[ Iα0n | 0 ]α0n×n
[ 0 | ΦNU ](m−α0n)×n

]
.

Therefore, the mutual coherence of ΦuHMT and Ψ is

µ(ΦuHMT ,Ψ) = max{µ([Iα0n|0],Ψ), µ([0|ΦNU ],Ψ)}. (5.10)

Given Ψ is an orthonormal basis with |ψij| = O( logn√
n

) for all i, j = 1, . . . , n, we have

µ([Iα0n|0],Ψ) = O(log n).

In addition using the following lemma, we find the mutual coherence of [0|ΦNU ] and any orthonor-

mal bases.

Lemma 3. Let Φ be an m-by-n sparse random matrix. Assume every row of Φ has L = n
c

iid non-

zero entries (not necessarily uniformly distributed) chosen fromN (0, 1
L

) and c is a large constant.

For any arbitrary orthonormal basis Ψn×n, we have Ξ = ΦΨ is an iid zero-mean Gaussian matrix

with variance less than or equal to 1
L

.

Proof. Assume φk is the kth row Φ and ψj is the jth column of Ψ and the L indices of non-zero

elements in φk are denoted by set Rk (Rk ⊂ {1, . . . , n}). The matrix Ξ = ΦΨ with entries Ξkj =∑n
i=1 φkiψij =

∑
i∈Rk φkiψij is defined. Therefore, it can be easily seen that for all j = 1, . . . , n

and k = 1, . . . ,m, Ξkj is a linear combination of L Gaussian random variables. Accordingly,

Ξkj itself is a Gaussian random variable with mean E{Ξkj} =
∑

i∈Rk E{φki}ψij and variance

Var(Ξkj) =
∑

i∈Rk ψ
2
ijVar(φki). Hence, we have the following,

E{Ξkj} = 0,
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Var(Ξkj) =
1

L

∑
i∈Rk

ψ2
ij ≤

1

L

Lemma 3 implies that [0|ΦNU ] ×Ψ is a Gaussian random matrix with iid zero-mean entries and

variance less than or equal to 1/L. Using the union bound for the maximum absolute magnitude

of a Gaussian matrix, |Ξkj| for all j = 1, . . . , n and k = 1, . . . ,m can be bounded as follows [93],

P

(
max

1≤k≤m,1≤j≤n
|Ξkj| ≥ t

)
� 2nm exp

(
− t2

2σ2

)
≤ 2n2 exp

(
− t2

2σ2

)
, (5.11)

where σ2 ≤ 1
L

= c
n

and � represents asymptotically smaller than or equal. Choosing t =√
2c log

(
2n2

δ

)
n

, the inequality in (5.11) becomes,

P

 max
1≤k≤m,1≤j≤n

|Ξkj| ≤

√
2c log

(
2n2

δ

)
n

 � 1− δ. (5.12)

Inequality (5.12) shows that µ([0|ΦNU ],Ψ) = O
(√

log
(

n√
δ

))
, with probability at least 1 −

δ. Consequently, µ(ΦuHMT ,Ψ) = max{µ([Iα0n|0],Ψ), µ([0|ΦNU ],Ψ)} = O
(√

log
(

n√
δ

))
,

which is close to optimal bound except for the log n factor. It is worth mentioning that the Haar

wavelet satisfies the condition |ψij| = O( logn√
n

) for all i, j = 1, . . . , n [97]. Therefore, the Haar

wavelet basis, ΨHaar, satisfies µ(ΦuHMT ,ΨHaar) = O
(√

log
(

n√
δ

))
.

Algorithm 1 summarizes our proposed algorithm for non-uniform compressive sampling of 2D

wavelet coefficients of an image.
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Algorithm 1 Non-Uniform compressive sampling of wavelet coefficients of an image.
1: Initialize α0 = 4−J , αj = 3× 4−(J−j+1), sj = 1− πj for j = 1, . . . , J . The values of πj’s are

found using (5.3).
2: Generate ΦNU = [Φ1 Φ2 . . . ΦJ ] based on the structure in Figure 5.3. Each row of Φj has
Lj non-zero entries, which are chosen as iid zero-mean and unit variance Gaussian random
variables.

3: Directly sample α0n initial coefficients of θ.
4: Sample the remaining (1− α0)n coefficients of θ using the updated ΦNU .

Model-Based Non-Uniform CS Recovery

In previous section, we integrated the uHMT signal model into the design of a novel non-uniform

measurement matrix. In this section, we utilize the same model at the recovery step. We consider

two Bayesian recovery algorithms (i.e., the CSBP algorithm [7] and the AMP algorithm [43]) and

modify them to exploit the uHMT model.

CSBP-uHMT: Integrating the uHMT Model into CSBP

One of the advantages of the CSBP recovery algorithm [7] is its ability to accommodate a priori

knowledge about the signal model in the CS recovery process. In the conventional CSBP, all the

variable nodes are assigned the same a priori pdf that considers the sparsity rate s = k/n as the

probability that each coefficient is at the large state.

In contrast, in our proposed CSBP-uHMT, we assign a different prior to each variable node based

on the uHMT model. Specifically, each wavelet coefficient θbj,k receives an a priori mixture Gaus-

sian pdf

f(θbj,k) = πjN (0, σ2
S,j) + (1− πj)N (0, σ2

L,j). (5.13)

The hyper-parameter Λ = [αS , αL, CσS , CσL , γS , γL, CSS , CLL, π
′
1] is used to determine πj , σ2

S,j , and

σ2
L,j using (5.1)-(5.7).
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AMP-uHMT: Integrating the uHMT into AMP

The AMP algorithm [43] and its model-based version (Turbo AMP) [2] are proven to have very

competitive recovery performances and very low computational complexity. Unlike Turbo AMP

that employs a learning-based approach to obtain the statistical parameters of HMT model, we

directly apply the uHMT parameters to the AMP algorithm. In Turbo AMP, the variances σbS,{j,k}
2

and σbL,{j,k}
2 and the probabilities πbj,k are assumed to be random variables with known distributions

[2, Eq. (3)-(8)]. In our proposed work we treat them as fixed and known parameters found by

uHMT model using Equations (5.3) and (5.5).

Clearly the uHMT model may not be as accurate as the training-based approaches. However, it has

been shown in [89] that using uHMT has a negligible degrading effect on the accuracy of images.

Simulation Results and Discussion

In this section, we compare the recovery performance of our proposed model-based uHMT-NCS

algorithms (which is based on the integration of the HMT model into both sampling and recovery

steps) with other state-of-the-art model-based CS recovery schemes that only integrate the model

at the recovery step and use conventional CS at the sampling step. The algorithms from the lit-

erature that we have chosen are Turbo AMP [2], model-based CS [3], and TSWCS-MCMC [4].

To implement these algorithms, we use the full Gaussian measurement matrices with iid entries

with these algorithms (See Table 5.1). We consider a 128 × 128 image (n = 16, 384) for our

simulations (given in Figures 5.7(a) and 5.8(a)). The sparsifying basis, Ψ, is considered to be

the two-dimensional Haar wavelet basis. The parameters of uHMT model are set as described in

[89] (we verified these parameters for a set of 128 × 128 test natural images and Haar wavelet):

αS = αL = 2.5, CσS = 27, CσL = 213, γS = γL = 1, CSS = 0.2, CLL = 0.4, and π′1 = 0.5. We set
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L = 40 and J = 3. Therefore, we find π1 = 0.858, π2 = 0.925, and π3 = 0.961. For uHMT-NCS

simulations, the matrix Φ is generated using Algorithm 1.

In Figure 5.4, we have shown the normalized recovery error (NRE= ‖θ̂−θ‖2
‖θ‖2 ) versus the number

of measurements. We depicted the performance of our proposed uHMT-NCS (with CSBP-uHMT

and AMP-uHMT) and Turbo AMP, model-based CS, and TSWCS-MCMC schemes. For these

algorithms, the tunable parameters such as wavelet levels are set for the best performance. As

we see in Figure 5.4, Bayesian recovery-based algorithms such as TSWCS-MCMC [4] and our

proposed uHMT-NCS have very good performances even with small number of measurements.

Among all schemes uHMT-NCS with AMP-uHMT recovery performs the best.
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Model−based CS

Figure 5.4: Comparison between the recovery performances of our proposed schemes (uHMT-

NCS w/ CSBP-uHMT and uHMT-NCS w/ AMP-uHMT) and different CS recovery algorithms

(Turbo AMP [2], Model-based CS [3], and TSWCS-MCMC [4]).

A similar simulation is performed for 27 sample images (see Figure 5.5) from the Microsoft object
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class recognition database v22. We applied our proposed uHMT-NCS (with CSBP-uHMT and

AMP-uHMT) as well as Turbo AMP, model-based CS, and TSWCS-MCMC to these images. The

NRE performance of each image using each algorithm is shown in Figure 5.6. For this simulation

we set m = 4000 and J = 3 and 2D Haar wavelet in our own algorithms. However, the model-

based CS algorithm is tuned for its best performance which is achieved with J = 6.

1 4 7 10 13 16 19 22 25

2 5 8 11 12 17 20 23 26

3 6 9 12 15 18 21 24 27

Figure 5.5: A set of 27 sample images from Microsoft object class recognition database. The

numbers in each image are solely for referencing and are not part of the image.

2All images are cropped to be rectangular, and resized to 128 × 128. The database is available for download at
”http://research.microsoft.com/en-us/projects/objectclassrecognition/”
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Figure 5.6: NRE performance for the sample images in Figure 5.5.

As we see in Figure 5.6, in 25 out of 27 images our proposed uHMT-NCS performs better than

other algorithms in comparison.

Figures 5.7 and 5.8 provide the visual comparison of the recovery performance of uHMT-NCS

with state-of-the-art algorithms. The number of measurements in Figure 5.7 and Figure 5.8 are

m = 4000 and m = 6000, respectively. Figures 5.7(a) and 5.8(a) show the original image, Figures

5.7(b)-5.8(b), 5.7(c)-5.8(c), Figures 5.7(d)-5.8(d), and Figures 5.7(e)-5.8(e) show the visual per-

formance of model-based CS [3], visually weighted CS [92], TSWCS-MCMC Bayesian algorithm

[4], and Turbo AMP [2], respectively. Finally, Figures 5.7(f)-5.8(f), and 5.7(g)-5.8(g) represent

our proposed uHMT-NCS algorithm with CSBP-uHMT and AMP-uHMT recovery algorithms, re-

spectively. As we see, uHMT-NCS with both CSBP-uHMT and AMP-uHMT recovery algorithms

has a significantly smaller visual distortion compared to the others.
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(a) The Original image (b) Model-based CS [3]

(PSNR= 14.98 dB)

(c) Visually weighted CS

[92] (PSNR= 18.95 dB)

(d) TSWCS-MCMC [4]

(PSNR= 20.08 dB)

(e) Turbo AMP [2] (PSNR=

19.43 dB)

(f) uHMT-NCS w/ CSBP-

uHMT (PSNR= 20.05 dB)

(g) uHMT-NCS w/ AMP-

uHMT (PSNR=21.14 dB)

Figure 5.7: Comparing the visual performance of different CS schemes at m = 4000 measure-

ments.

In the next simulation, we investigate the effect of employing our proposed non-uniform ΦuHMT

in the overall performance of the proposed uHMT-NCS algorithm. In other words, we would

like to see how much of the improved performance is due to the integration of the model at the

sampling step through our proposed non-uniform ΦuHMT . In Figure 5.9, we compare the NRE

performance of AMP [43] with the cases when the uHMT model is added to only sampling step

(uHMT-NCS w/ AMP), only recovery step (sparse random sampling w/ AMP-uHMT), and both

steps (uHMT-NCS w/ AMP-uHMT) (See Table 5.1). When uHMT is only applied to the recovery

step the measurement matrix is sparse random matrix with L = 40 non-zero entries per row.
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(a) The Original image (b) Model-based CS
(PSNR= 20.59 dB)

(c) Visually weighted CS
(PSNR= 21.63 dB)

(d) TSWCS-MCMC
(PSNR= 22.98 dB)

(e) Turbo AMP (PSNR=
22.83 dB)

(f) uHMT-NCS w/ CSBP-
uHMT (PSNR= 23.55 dB)

(g) uHMT-NCS w/ AMP-
uHMT (PSNR= 24.15 dB)

Figure 5.8: Comparing the visual performance of different CS schemes at m = 6000 measure-
ments.

As we see in Figure 5.9, including the uHMT model only at the sampling step (uHMT-NCS w/

AMP) improves the performance compared to the case when it is solely added to the recovery step.

Therefore, integrating the model at the sampling phase is even more effective than such integration

at the recovery phase. Clearly, when uHMT model is included in both sampling and recovery steps

(denoted by uHMT-NCS w/ AMP-uHMT) the most performance improvements is achieved.
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Table 5.1: Properties of different CS sampling and recovery schemes

Scheme

Model-
based
Recov-
ery

Model-
Based
Sam-
pling

Measurement
Matrix

Model-based CS
[3]

X x Full Gaus-
sian

TSWCS [4] X x
Direct sam-
pling+ full
Gaussian

Turbo AMP [2] X x Full Gaus-
sian

AMP [43] w/
sparse random Φ

x x
Sparse ran-
dom Φ
(L = 40)

uHMT-NCS w/
AMP

x X ΦuHMT

Sparse Random
Sampling w/
AMP-uHMT

X x
Sparse ran-
dom Φ
(L = 40)

uHMT-NCS w/
AMP-uHMT

X X ΦuHMT
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uHMT-NCS w/ AMP-uHMT

Gain ΦuHMT

Figure 5.9: Improvement over the conventional AMP technique by exploiting the uHMT signal

model at the sampling step (uHMT-NCS w/ AMP), the recovery step (sparse random sampling w/

AMP-uHMT), and both (uHMT-NCS w/ AMP-uHMT).
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In the next simulation, we consider the effect of changing the row weights of Φjs, on the perfor-

mance of the uHMT-NCS. In this simulation, we set m = 4000, L = 40 and J = 3. Accordingly,

we find the NRE of uHMT-NCS with CSBP-uHMT changing L1 and L2 parameters. As shown in

Figure 5.10, employing the values of L1 and L2 given in (5.9) (i.e. L1 = 6 and L2 = 12) results

in a smaller NRE which is about 6% better than the uniform sampling case (i.e. L1 = 2, L2 = 8).

However, for this particular example for 4 ≤ L1 ≤ 6 and 10 ≤ L2 ≤ 18 the results are within the

2% of its minimum value.
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Figure 5.10: NRE versus L1 and L2. Choosing L1 and L2 using (5.9) results in almost 6% perfor-

mance improvement.

Finally, we study the effect of the parameter J (the depth of wavelet trees) in the performance. In

Figure 5.11, we have depicted the NRE of our proposed uHMT-NCS algorithm with the CSBP-

uHMT recovery scheme versus J for the sample image of Figure 5.7(a) for different values of

m.
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Figure 5.11: Recovery performance of uHMT-NCS with CSBP-uHMT recovery versus different

depths of the wavelet tree J .

As shown, by increasing tree depth, NRE initially decreases and then increases. The optimal

performance is obtained at J = 2. This observation can be explained using the exponential decay

property of wavelet coefficients. This property suggests that most of images energy are located

in the initial signal coefficients. When J = 1, direct sampling dominates the measurements.

Therefore, many coefficients will not be included in any measurement and that results in poor

performance. As J increases, fewer coefficients are measured directly and more non-uniform

CS samples are generated. However, by increasing J the sparsity rate of higher scales decreases

exponentially and it is inefficient to allocate too many measurements to sample these coefficients.

We used optimal value J = 2 for our previous simulations.

Conclusion

In this chapter, we have developed a model-based CS non-uniform sampling and recovery scheme

(uHMT-NCS) for natural images that exploits the universal hidden Markov tree (uHMT) model of
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wavelet coefficients in both CS sampling and CS recovery steps. As we have shown, not only the

signal model can be utilized to optimize the initial priors for Bayesian CS recovery algorithms, but

it can also be employed in the design of new CS measurement matrices. The results of our numer-

ical experiments suggest a significant performance gain compared to the state-of-the-art model-

based CS algorithms. To the best of our knowledge, our work is one of the first Bayesian-based

algorithms to consider the signal model in the design of the CS measurement matrix as well as the

recovery scheme. Although we considered the natural images as our underlying signal, our ap-

proach is not limited to the image processing applications and the wavelet sparsifying bases. After

the model extraction, similar procedure can be adopted for compressive sampling and recovery of

other real-world signals.
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CHAPTER 6: CLUSTER-CMSS: A CLUSTER-BASED COORIDNATED

SPECTRUM SENSNIG

A coordinated multiband spectrum sensing policy for mobile and geographically dispersed cog-

nitive radio networks (CRNs), referred to as Cluster-CMSS, is proposed. The goal is to detect

the spectrum holes and to assign each secondary user (SU) a sensing channel with the maximum

probability of being empty. In geographically dispersed CRNs, channels availability varies over the

space and this makes the sensing outcomes and sensing assignments location-dependent. However,

if SUs are not equipped with location-finding technologies, fusing the sensing outcomes to find the

optimal spectrum sensing assignments for the next sensing time becomes challenging for the base

station. To tackle this problem, we introduce a metric solely based on the sensing outcomes of

SUs. Using this metric along with a low-complexity clustering algorithm enables the base station

to efficiently divide the network into clusters. Further, we present an adaptive learning algorithm to

learn the dynamic behavior of channels occupancy in the primary network. The proposed learning

algorithm considers SUs mobility model to determine the optimal learning window. To determine

the sensing assignments, the base station performs a graph-theory-based coordinated multiband

spectrum sensing within each cluster. Specifically, a weighted bipartite matching is employed. We

have shown that Cluster-CMSS significantly increases the spectrum opportunity discovery ratio for

SUs at the cost of a slight increase in the energy consumption associated with spectrum sensing.

Introduction

Cognitive radio (CR) is a promising solution to alleviate today’s spectrum deficiency caused by an

increased demand for the wireless technologies [8]. The CR paradigm allows a new type of users

called unlicensed users or secondary users (SUs) to coexist with the licensed users or primary users
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(PUs). The SUs are allowed to access the spectrum provided that they do not interfere with the

PUs. The under-utilized spectrum bands that can be used by the SUs are called spectrum holes [9].

The availability of spectrum holes varies in both time and space since the PUs’ activity is dispersed

in both temporal and spatial domains. An ideal CR is able to efficiently detect and utilize all

spectrum holes. Due to the dynamic behavior of PUs, SUs should constantly be aware of the

occupancy status of multiple narrow bands or channels of spectrum (a.k.a., wideband spectrum

sensing). However, implementing wideband spectrum sensing requires considerable amount of

time [10] or complex hardware [11] to obtain a fairly good estimate of the entire spectrum. This

lengthy estimation will significantly reduce SUs opportunity to transmit their own data [12].

The problem that we are trying to tackle in this chapter is to develop an spectrum sensing as-

signment policy that maximizes discovery ratio of spectrum holes while the overhead spectrum

sensing time is minimized by sensing only one channel per SU at a time. Our proposed method

is referred to as cluster-based coordinated multiband spectrum sensing (Cluster-CMSS). In this

problem SUs are mobile and can communicate with a central node or base station (BS). This is

a very complex problem with numerous challenges. The main challenges are limited ability of

SUs in sensing the spectrum, geographically dispersed SU distribution, dynamic PU activity and

inaccurate sensing. To the best of our knowledge, this is the first attempt that addresses all these

challenges simultaneously.

Contribution of This Chapter

In this work we propose a spectrum sensing policy for geographically dispersed networks that

does not require location information of SUs. Accordingly, the BS identifies the SUs with highly

correlated spectrum sensing results and determines the SUs that most likely experience a similar

set of spatial spectrum holes. To this aim, we propose a spectrum sensing policy in which the
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BS groups the SUs into several clusters based on the correlation of their sensing outcomes and

performs a coordinated spectrum sensing within each cluster independently. The BS then assigns

each SU a channel to sense such that the assigned channel is expected to be empty with a high

probability. After sensing is done, every SU that has sensed an empty PU channel will have at least

one unique channel to access.

The main contribution of this chapter is addressing coordinated spectrum sensing problem in the

geographically dispersed and mobile cognitive radio networks. The novelty of the proposed frame-

work is three-fold. First, we propose a novel metric that allows us to group the SUs based on the

similarity of spectrum holes that they can find. Second, we propose a learning algorithm for esti-

mating the PU’s dynamic based on the mobility of SUs. Third, we propose a novel energy-efficient

and fast coordinated spectrum sensing policy that maximizes the channel discovery ratio for SUs.

Related Work

Spectrum sensing in cognitive radio networks is a very well-studied topic in the literature[10, 98–

100]. However, some of its aspects received more attentions compared to others. For example

many studies have extensively covered issues such as cooperation among SU to reliably detect the

spectrum holes [98, 99] or spectrum sensing employing cyclostationary features [10]. On the other

hand, the networks that include mobility or geographically dispersed SUs are under-investigated.

The idea of SUs’ coordination to perform multiband spectrum sensing was introduced in [101].

Later, a joint coordinated spectrum sensing and access scheme for wideband CRNs was introduced

in [102]. The distributed scheme in [102] utilizes a common control channel among all SUs to

perform coordination, and spectrum sensing is carried out using a negotiation-based approach.

The problem of spectrum opportunity discovery when the BS is aware of SUs locations is studied
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in [98]. The authors quantified the gain that is achieved by simultaneously employing both spatial

and temporal spectrum holes versus the employing them individually. In [99], the problem of joint

spatial and temporal spectrum opportunity discovery for a case of single PU band is considered.

In [103, 104], the joint problem of spectrum sensing and access in geographically dispersed cog-

nitive radio networks are formulated in form of a Restless Multi Armed Bandit (RMAB) problem

and the bounds for the regret of the proposed policies have been found. In [105] an iterative

Hungarian algorithm is proposed to find the sensing assignment that minimizes the probability of

miss-detection. This algorithm assigns SUs to sense different channels assuming that the channel

availability are consistent among all SUs.

In [106], a machine-learning-aided spectrum sensing policy is proposed. In the aforementioned

policy, each SU is assigned to sense the channel that provides that SU with the highest throughput.

In all the mentioned studies, it is assumed that SUs are static. Given that mobility significantly

affects the performance of spectrum sensing [107], it is of great importance to consider the effect

of mobility in learning the PU’s activity and also spectrum sensing assignment. However, in the

context of spectrum sensing for cognitive radio this problem has not received much attention. Most

of the previous work on mobile cognitive radio networks are dealing with routing or connectivity

issues [108]. The work in [107] is among the first ones that shows SU’s mobility increases spatio-

temporal diversity in the received PU’s signal and improves the sensing performance. In [109],

a mobility-aware cluster-based cooperative spectrum sensing approach has been proposed. The

authors have shown that in case of cooperation the mobility-aware clustering improves the channel

discovery ratio and the throughput.

In [110], we proposed a cluster-based coordinated spectrum sensing algorithm that employs the

Kullback-Liebler divergence between the previous sensing results of SU to form the clusters. After

the clusters are formed, SUs within each cluster perform the CMSS algorithm. In [111], a non-
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centralized clustering approach is employed to cluster the SUs based on their channel sensing

outcomes. The work in [111] assumes SUs already have the availability information of all channels

either through sensing or a databases query and forms the clusters such that the cluster members

have maximum idle PU channels in common. In [112–114], the SUs are grouped into clusters and

for each cluster the best channel to sense is determined. In these papers, the members of a cluster

all sense the same channel, which is in contrast to our approach. Additionally in [111, 115],

clustering is employed to reduce the network management traffic.

Although different aspects of spectrum sensing in cognitive radios have been studied individually,

to the best of our knowledge, this is the first study that addresses the clsuer-based coordinated

multiband spectrum sensing for mobile SUs.

System Model

The entire spectrum of interest is divided into M orthogonal frequency subbands or PU channels

each with bandwidthW . The SU network consists ofN mobile wireless terminals (or simply SUs)

and a stationary BS. Each SU is equipped with a single antenna and can perform either sensing

or transmission at a time. The RF frontend of SUs employs energy detectors and can reliably

sense only one PU channel per sensing. For now, we consider the ideal sensing case (in which

probabilities of miss-detection and false-alarm are both zero) while describing our proposed policy.

Later, we consider the non-ideal sensing scenarios. In addition, similar to many other studies (e.g.,

[113, 116, 117]), we assume a dedicated common control channel exists between the SUs and

the BS and all SUs can directly communicate with the BS. The SUs move based on a random

waypoint mobility model. According to this model, SUs movement occurs in epochs. At the

beginning of each epoch, an SU independently chooses a destination in the network (a waypoint)

uniformly at random and starts moving toward that destination at a constant velocity, which is
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chosen uniformly at random from the interval [vmin, vmax]. When SU reaches its destination, it

pauses for tp seconds until it starts a new epoch following the same rule. We represent such

mobility model with RWP (vmin, vmax, tp). It is worth nothing that epochs are not synchronized

among different SUs.

The primary network consists of Np PUs that are distributed in the network uniformly at random

and each PU operates in some of the M channel or subbands. As in [118], to model each PU’s

activity at each channel, we adopt an independent two-state Markov chain alternating between

the states busy (B) and empty (E). Let αl,i and βl,i be the probabilities that the channel i of

PU l switches its state from B to E and from E to B, respectively, for all i = 1, 2, . . . ,M and

l = 1, 2, . . . , Np. The utilization of channel i of PU l is given by λl,i =
βl,i

βl,i+αl,i
[118].

The Frame Structure of CRNs

The SUs are assumed to be synchronized and operate in time on a frame-by-frame structure as in

[118, 119]. The frame structure of a CRN, as shown in Figure 6.1, includes a sensing time TS

and a transmission time TX that add up to the total frame time T . During TS all SUs cease their

transmission, perform spectrum sensing, and report the sensing results on a dedicated common

control channel to the BS. As depicted in Figure 6.1, the sensing time TS is comprised of two

parts, namely channel sensing time (TC) and overhead time (TO). During channel sensing time TC ,

each SU senses a PU channel. During overhead time TO, SUs report the sensing results to the BS.

Moreover, the BS assigns each SU a channel to sense in the next frame, and performs spectrum

access assignment. In standard IEEE 802.22, T has been set at about a few hundred milliseconds

[118, 120].
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Figure 6.1: The frame structure of an SU’s operation in a CRN depicting two consecutive time
frames. During the sensing time TS , all SUs cease their transmissions.

SU’s Belief Vector

Because of the geographically dispersed SU network, PUs transmission can only be detected within

a specific area. Outside that area, an SU can use the same channel for its transmissions (frequency

reuse). This implies that PU channels’ availability information is inconsistent in geographically

dispersed SUs. Due to limited sensing capability of the SUs the state of every PU at every SU

location cannot be observed. However, each SU may infer the state of PUs from the observation

history. To this aim, let us define the belief vector xj(t) , [xj,1(t), . . . , xj,M(t)], where xj,i(t) is

the probability that SU j finds channel i empty at time t (whether or not it actually senses it). Let

aj(t) denote the channel that SU j senses at time t. Moreover, let Saj(t)(t) ∈ {B,E} be the status

of the observed channel by SU j at time t.

The belief vector for SU j at time t+ 1 is found as follows

xj,i(t+ 1) =



1− β̄j,i(t), aj(t) = i, Saj(t) = E

ᾱj,i(t), aj(t) = i, Saj(t) = B

xj,i(t)(1− β̄j,i(t))

+ (1− xj,i(t))ᾱj,i(t),

aj(t) 6= i.

(6.1)

In (6.1), ᾱj,i(t) and β̄j,i(t) are the state transition probabilities of channel i from the perspective

of SU j at time t. While αl,i and βl,i are deified for every PU, ᾱj,i and β̄j,i are defined from

SUs’ standpoint. Therefore, due to mobility of SUs, ᾱj,i(t) and β̄j,i(t) are constantly changing.
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In addition, finding ᾱj,i(t) and β̄j,i(t) in terms of αl,i and βl,i, respectively, is not possible due to

the lack of location information. After each SU completed the sensing at time t, it transmits the

sensing decision to the BS and then BS calculates the beliefs based on (6.1) and stores xj(t + 1)

for all j = 1, 2, . . . , N . Consequently, the BS determines the sensing policy a(t + 1) , [a1(t +

1), . . . , aN(t+ 1)], where aj(t+ 1) determines the channel that SU j senses at time t+ 1.

Cluster-CMSS: Cluster-Based Coordinated Multiband Spectrum Sensing

In this section, we explain our proposed policy, referred to as Cluster-CMSS, to find the optimal

sensing policy. First we consider a scenario where the PU’s dynamic (i.e., αl,i and βl,i for all

i = 1, 2, . . . ,M and l = 1, 2, . . . , Np) is known. Later in this section, we consider a scenario

where the dynamic of the PU activity is learned.

The Cluster-CMSS Policy With Known PU Dynamic

When ᾱj,i(t) and β̄j,i(t) for all i = 1, 2, . . . ,M and j = 1, 2, . . . , N are known, the BS can

easily update the belief vectors using (6.1). The Cluster-CMSS algorithm is initialized to xj(1) =

[1
2
, 1

2
, . . . , 1

2
]T for all j = 1, 2, . . . , N . Therefore, the BS assigns a channel to each SU uniformly at

random. At the beginning of the consequent time frames, the BS, after receiving the sensing results

from the SUs, performs the following steps. The BS updates the belief vectors for all SUs, based

on which SUs are partitioned into several clusters. For every cluster, the BS determines the unique

channels to be sensed in the next time frame by performing a one-to-one matching algorithm

between the members of that cluster and the channels. Algorithm 2 represents the pseudo code

of the steps taken at the beginning of each frame. The time required to perform Algorithm 2 at

each frame is equal to TS , in which Step 1 takes TC seconds and all other steps together take TO

93



seconds.

Algorithm 2 The proposed Cluster-CMSS algorithm at the beginning of frame t
1: SUs sense the assigned channels.
2: The BS receives the sensing results (B or E) from SUs.
3: The BS determines the belief vectors xj(t+ 1) for all j = 1, 2, . . . , N (Eq (6.1)).
4: The BS partitions SUs into clusters.
5: The BS performs bipartite matching within each cluster and assigns each SU a channel to sense in the

next time frame (some SUs will remain inactive).
6: The BS transmits the channel access permissions and the ID of the channel that each SU has to sense at

frame t+ 1.

The flowchart of our proposed policy is given in Figure 6.2. The tasks during TS at the BS and

SUs are depicted in right and left boxes, respectively.

Senses assigned 
ch. and sends 
results to BS

Start of frame t

Was SU 
assigned to 
sense a ch.?

SU j

YesNo

Receive sensing assignment for 

Updates for all SUs 

Start of frame t

Receives sensing results from SUs

Sends ch. sensing assignments for 
the next time frame to SUs

BS

Forms clusters and assigns each SU 
in a cluster a unique ch.

Figure 6.2: The flowcharts of the proposed Cluster-CMSS policy. The tasks during TS at the BS
and SUs are depicted in right and left boxes, respectively.

To measure the overall performance of the proposed policy, we define average spectrum opportu-

nity discovery ratio, R̄s. This is the ratio of the average number of unique spectrum holes discov-

ered per time frame, n̄u, to the total number of sensing attempts per time frame, N . This can be

evaluated by averaging the instantaneous ratio of these parameters over time (i.e., n̄u = E[nu(t)]).

94



At time t, the number of unique spectrum holes can be found by subtracting the number of du-

plicate sensed spectrum holes, nd(t), from the total number of successful sensing attempts, ns(t).

If two or more SUs are located within transmission range of each other and they sense the same

channel empty in one time frame, one of these sensing attempts is considered unique and the rest

are duplicate spectrum holes. Therefore, R̄s is found as follows

R̄s =
n̄u
N

=
n̄s − n̄d
N

=
E[ns(t)]− E[nd(t)]

N
. (6.2)

In Figure 6.3, we provide an example of a spectrum sensing assignment. In this example N =

6, M = 3, and we have 3 clusters each containing two SUs (see Figure 6.3(a)). Figure 6.3(b)

represents the channel sensing assignments on a bipartite graph between the SUs (square nodes)

and the PU channels (circular nodes) as well as the state of the PU channels (B and E stand for the

busy and the empty states, respectively). The details of the spectrum sensing assignment will be

discussed in the next section. Using the assignment represented by the edges of bipartite graph in

Figure 6.3(b) at time t, the SUs {1, 2, 3, 5, 6} will sense an empty channel. However, given SUs 1

and 3 are within the range of each other their sensing of channel 1 finds a duplicate spectrum hole.

Therefore in this example, ns(t) = 5, and nd(t) = 1. Hence, we find the spectrum opportunity

discovery ratio at time t as Rs(t) = 5−1
6

= 0.67. In the rest of this section, we separately describe

the building blocks of our proposed Cluster-CMSS policy.

Learning the PU Dynamic

In most real-world scenarios the dynamic of the PUs arrival and departure are a priori unknown.

Therefore, the BS needs to learn them on the fly. A simple and practical method of learning

PU’s dynamic is by recording the sample means of ᾱj,i(t) and β̄j,i(t) for all i = 1, 2, . . . ,M and

j = 1, 2, . . . , N [121]. In other words, the BS station determines the number of times that each

SU observes a certain channel has changed its state from empty to busy and vice versa. Therefore,
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Cluster 1 Cluster 2 Cluster 3

(a)

(b)

1 2 3

BE E

1 2 3 4 5 6

Cluster 1 Cluster 2 Cluster 3

Figure 6.3: Channel sensing assignment for a network with N = 6 (SUs are represented by
squares) and M = 3 (channels are represented by circles). Subfigure (a) represents the loca-
tion of SUs. There is a line between two SUs if they are in the transmission range of each other.
Subfigure (b) represents the channel sensing assignments and the state of each PU channel on a
bipartite graph. In addition the edges with dash-dotted line and solid line represent the failed and
the successful sensing attempts, respectively.

the estimated values of these parameters, α̂j,i(t) and β̂j,i(t), will be used in (6.1). To estimate

these parameters, we define a learning window with length Tl time frames in which the number

of state transitions is counted. When the SUs are static, increasing the length of the learning

window will add to the accuracy of the parameter estimations. However, in mobile SUs scenarios

having a lengthy learning window reduces the accuracy of parameter estimation because of SUs

movements. In the following, we determine the optimal length of learning window under random

waypoint mobility model for SUs.

96



We propose to choose the length of the learning window equal to the average time it takes a mobile

SU to move out of an active PU’s range. In other words, the previous sensing results of an SU

that are older than this average time are no longer useful in determining the PU’s dynamic. The

following theorem provides tight upper and lower bounds for the average time it takes for an SU

to move out of an active PU’s range.

Theorem 2. Assume a circle with radius R is entirely located at random inside an area A with a

rectangular shape. Given an SU exists within the boundaries of this circle. The average time it

takes for this SU, which moves based on random waypoint model RWP (vmin, vmax, tp), remains

inside that circle is denoted by Tr and is bounded as follows,

2

vmin + vmax

(
Pin

1− Pin
128R

45π
+ 1

)
≤ Tr ≤

2

vmin + vmax

(
Pin

1− Pin
128R

45π
+

4

3

)
, (6.3)

where Pin is the probability that a waypoint falls inside the circle and is given by Pin = πR2

A

Proof. To prove Theorem 2, assume an SU is located inside a circle with radius R, we want to

find the average amount of time that it takes for the SU to leave that circle. The mobility model is

RWP (vmin, vmax, tp). Hence, the SU will leave the circle if its new waypoint lies outside of the

circle with radius R. Let Pin be the probability that a waypoint is chosen inside the circle with

radius R and is denoted by Pin = πR2

A
. The number of epochs that it takes the SU to leave the

circle follows a geometric distribution with success probability 1−Pin. Accordingly on average it

will take Pin
1−Pin epochs before it leaves the circle. Given waypoint is located inside the circle. The

average time of an epoch with a waypoint inside the circle R, is Tin, and found as follows

Tin =
128R
45π

vmin+vmax
2

. (6.4)

in (6.4), the numerator is the average distance between any two points in a circle with radius R

chosen uniformly at random [122] and the denominator is the average velocity. On the other hand
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given the waypoint falls outside of the circle, it will take Tedge seconds on average until it reaches

the edge of the circle and leaves it. Accordingly Tedge is determined by finding the average distance

of random point inside a circle to any point in its circumference and dividing it to the average speed.

Within a circle with radius R located at the origin, the average distance of a point at location (r, 0)

to any point in its circumference is found as follows

Ledge(r) =
1

2π

∫ 2π

0

√
(R cosφ− r)2 +R2 sin2 φdφ

=
2

π
|1− r

R
|Ee(−

4r/R

(1− r/R)2
),

(6.5)

where Ee(r) is the complete elliptical integral of the second kind, which is defined as Ee(r) ,∫ π
2

0

√
1− r2 sin2(θ)dθ. Therefore, we find Tedge as follows,

Tedge(r) =
Ledge

vmin+vmax
2

=
4
π
|1− r

R
|

vmin + vmax
Ee(−

4r/R

(1− r/R)2
). (6.6)

It is easy to verify that for all 0 ≤ r
R
≤ 1, we have 1 ≤ 2

π
|1− r

R
|Ee(− 4r/R

(1−r/R)2
) ≤ 4

3
. Therefore the

value of 1 ≤ Tedge ≤ 4
3
.

Accordingly the average time it takes an SU to move out of the range of a PU is

Tr =
Pin

1− Pin
Tin + Tedge (6.7)

The upper bound and the lower bound on (6.7) can be found as follows

2

vmin + vmax

(
Pin

1− Pin
128R

45π
+ 1

)
≤ Tr ≤

2

(vmin + vmax)

(
Pin

1− Pin
128R

45π
+

4

3

)
. (6.8)
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Using Theorem 2, we set the length of the learning window to be the closest multiple of T to the

midpoint of the upper and lower bounds given in (6.3). That is

Tl = round
(

2

(vmin + vmax)T

(
Pin

1− Pin
128R

45π
+

7

6

))
. (6.9)

In (6.9), the function round(.) rounds its argument to the closest integer. Clearly when SUs are

static (vmax = vmin = 0), both the upper and the lower bounds of Tl goes to ∞ that means the

length of learning window can grow very large. In other words we can use all of previous sensnig

results to estimate the channel parameters. Given the length of the learning window, Tl, the BS

can calculate the average number of state transitions that it has observed per channel for each SU

during the learning window. For instance α̂j,i(t) is determined by dividing the number of times SU

j observes channel i changed its state from B to E to the number of times the SU j has observed

the state of channel i to be in B state during past Tl sensing attempts. The value of β̂j,i(t) is

calculated in the same way for all SUs and PU channels. It is worth noting that in some cases,

specially when the velocity of SUs are high, an SU may not observe one or more channels during

Tl. In those cases, the estimation of PU parameters from previous time frame will be used.

The Sensing-Based Clustering

In the geographically dispersed networks, clustering allows frequency reuse and more efficient

spectrum sensing. By grouping the nodes that share a same set of spectrum holes, the BS can

coordinate sensing assignment among members of every cluster. In the lack of SU’s location

information, we propose to use the sensing results of SUs as a clustering metric. We define the

distance between two SUs based on the distance between their belief vectors. More specifically,

we define the distance Dx between any two SUs as the Kullback-Leibler (KL) divergence between

beliefs of those SUs. In other words, the distance is measured by the divergence in the beliefs of
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SUs j1 and SU j2 and is defined as follows

Dx(j1, j2) , DKL(xj1(t)‖xj2(t)) +DKL(xj2(t)‖xj1(t)), (6.10)

where DKL(xj1(t)‖xj2(t)) ,
∑m

i=1 xj1,i(t) log
xj1,i(t)

xj2,i(t)
. If two SUs experience exactly the same set

of observations on PUs’ channels, they will have the same beliefs on PU’s channels and the KL dis-

tance between them will be zero. Similarly, SUs with different PU’s channel sensing experiences

will have diverged beliefs and consequently greater distances.

Various clustering algorithms have been proposed in the literature for different purposes in CRNs.

In our case, we are interested in a clustering algorithm that provides hard partitioning, has low

complexity, and operates without the prior knowledge on PU’s dynamic. To meet these require-

ments and to cluster SUs, we integrate our proposed sensing distance metric (defined in (6.10))

into the k-means clustering method. Since the number of clusters is not known a priori we use the

elbow method to determine the number of clusters. Accordingly, we start with k = 1 cluster and

find the within cluster point-to-centroid distance variance. By increasing k, within cluster point-to-

centroid variance decreases. However, there exists a k, kopt, beyond which increasing the number

of cluster will only improve the variance marginally. This point is called the elbow point [123].

Coordinated Spectrum Sensing Within Clusters Using Bipartite Matching

In this section, we describe the mapping of the CMSS problem onto a bipartite matching problem.

After the BS clusters the SUs, it assigns each SU within each cluster a unique channel to sense.

The goal is to assign every SU to sense the channel it believes to have the highest probability of

being empty. For each cluster, the BS solves this problem by finding a minimum-weight matching

on a bipartite graph that is constructed as follows.
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The vertices of one side of the graph correspond to the SUs in a cluster (i.e., Nk vertices) and

the vertices of the other side of the graph correspond to the PU channels (i.e., M vertices). An

edge exists between any two vertices from each side of this bipartite graph with a positive weight

(See Figure 6.4). We inversely relate wj,i(t), the weight of the edge connecting SU j to channel

i, to xj,i(t), the belief SU j on channel i. Therefore, the greater xj,i(t), the smaller the weight of

edge between channel i and SU j would be. The weights of each edge is set as wj,i(t) = 1
xj,i(t)+ε

,

where ε is a very small constant to avoid unbounded weights. Using this strategy, we find the

minimum-weight allocation which corresponds to maximizing the probability of finding an empty

channel for each cluster member. We employ the well-known Hungarian Algorithm [124] to solve

the minimum-weight matching problem. Algorithm 3 represents the proposed intra-clustering

assignment. Figure 6.4 depicts an example of CMSS within a cluster using bipartite matching. In

this example, M = 3 (circles), for this cluster Nk = 2 (squares), and the weight of each edge

is represented by its corresponding edge. The double-lined edges represent the minimum weight

matching and the dashed edges represent the unmatched edges. Based on this matching, SU 1 and

SU 2 will sense channels 2 and 3, respectively.

1 2 3

1 2

6
2

3
4

4
2

Figure 6.4: An example of CMSS within a cluster using bipartite matching.
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Algorithm 3 The intra-cluster CMSS algorithm at time frame t.
1: for every cluster do
2: Calculate the weights according to wj,i(t) = 1

xj,i(t)+ε
for all j ∈ {1, . . . , Nk} and i ∈ {1, . . . ,M}.

3: Run the minimum-weight Hungarian algorithm [124].
4: end for
5: Transmit the obtained channel sensing assignment results to SUs.

Performance Evaluation of Cluster-CMSS

In this section, we study the performance of our proposed Cluster-CMSS algorithm. Suppose A(t)

is the set of SUs that has been assigned by the BS to perform spectrum sensing at time frame t

and |A(t)| be the cardinality of A(t). We find the probabilities of miss-detection P j
m(t) and false-

alarm P j
f (t) for all j ∈ A(t) under the additive white Gaussian Noise (AWGN), Rayleigh, and

Rician channel models. The average probabilities of miss-detection Qm(t) and false-alarm Qf (t)

are given by,

Qm(t) =
1

|A(t)|
∑
j∈A(t)

P jm(t), (6.11)

Qf (t) =
1

|A(t)|
∑
j∈A(t)

P jf (t). (6.12)

The SUs that are not assigned to sense any channel do not contribute to the Qm(t) and Qf (t). In

the following for the brevity of expressions we omit the variable t in all formulas.

Miss-Detection and False-Alarm probabilities over AWGN channels

Suppose γj is the received SNR at SU j. An exact closed-form expression for the probabilities of

miss-detection P j
m and false-alarm P j

f of SU j over the AWGN channel are as follows [125],

P jf =
Γ(TCW,

δ
2)

Γ(TCW )
, (6.13)
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P jm = 1−QTCW (
√

2γj ,
√
δ), (6.14)

where δ is the decision threshold, Γ(.) is the gamma function, Γ(., .) is the incomplete gamma

function, and Q�(., .) is the generalized Marcum Q-function [125]. Without loss of generality,

we choose the value of TC such that TCW is restricted to be an integer. The value of TC can be

determined such that it keeps P j
f and P j

m below predefined thresholds for all j ∈ {1, . . . , N}.

Miss-Detection and False-Alarm Probabilities Over Rayleigh and Rician Channels

In many practical networks, the spectrum sensing quality might be adversely affected by fading. In

this section, we briefly consider the scenarios in which the SNR of the sensed signal at SUs follows

Rician and Rayleigh distributions. Rician model represents the scenarios in which SUs receive the

PU signal from several different paths, with one direct path that is stronger than the others. Rician

factor K is the ratio between the power received from the direct path and the power received from

other scattered paths [126]. Rayleigh model is suitable for scenarios where the direct path does

not exist. Therefore, the Rayleigh fading channel is a special case of Rician fading channel with

K = 0. Clearly, P j
f remains the same under the fading scenario because P j

f concerns the case of

no signal transmission and hence is independent of the received SNR. In case of Rician channel

the received SNR γj is a random variable that follows Rician distribution. The PDF of γj (in dB)

for all γj > 0 is given by [125],

f(γj) =
K + 1

γj
exp(−K − (K + 1)γj

γj
)I0

(
2

√
K(K + 1)γj

γj

)
, (6.15)

where γj is the average SNR (in dB) at SU j and can be estimated as described in [126], and I0(.)

is the zeroth-order modified Bessel function of the first kind.

The probability of miss-detection P j
m can be obtained by averaging (6.14) over the Rician distri-
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bution in (6.15). A closed-form expression is given in [125] for special case of TCW = 1,

Pm
j |TCW=1 = QTCW=1

(√ 2Kγj
K + 1 + γj

,

√
δ(K + 1)

K + 1 + γj

)
. (6.16)

For K = 0 this expression reduces to Rayleigh fading scenario [125]. Similar to the AWGN

scenario, the average probabilities of miss-detection and false-alarm are found using (6.11) and

(6.12).

Energy Cost of Sensing

One of the important concerns in the design of the CRNs is the energy cost of the spectrum sensing

because it is a major contributor to the total energy consumption. Suppose the energy cost of sens-

ing one channel by an SU is ES and the energy costs associated with reporting the sensing results

are ETX (corresponding to transmitter energy consumption at the SU) and ERX (corresponding to

receiver energy consumption at the BS). The energy costs associated with BS informing an SU of

the channel to sense in the next frame are ETX for the BS and ERX for the SU. In addition, The

energy cost of idling during TS is Eid.

The energy costs associated to sensing depending on whether or not an SU is assigned to sense a

channel are E1 and E2, respectively and given by

E1 = ES + 2(ETX + ERX), (6.17a)

E2 = Eid + ETX + ERX . (6.17b)

In (6.17a), an SU has to report its sensing results to the BS and consequently the BS sends that

SU the information about the sensing assignments for the time frame. Therefore, the cost of

communication with the BS (i.e., ETX + ERX) is included twice.
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In comparison, the energy cost of spectrum sensing in the greedy non-cooperative policy [5], Eg
t ,

is found as Eg
t = ES + ETX + ERX , noting that all the SUs independently choose to sense

the best possible channel and transmit the outcome of sensing that channel to the BS. Similarly,

the energy cost of spectrum sensing in the genie-aided spectrum sensing policy, Ega
t , is found as

Ega
t = MES +ETX +ERX . In this case, all the SUs sense the entire spectrum band and transmits

the results to the BS. In our numerical simulations, we compare energy cost of our proposed policy

with these two policies assuming the cost of accessing an empty channel is equal to Eacc for all

three policies. The energy cost per successful SU channel access is the sum of average energy cost

to find an empty channel plus the cost to access a channel (i.e. Eacc). z

Numerical Results

For our numerical simulations, we set N = 50, M = 10, Np = 20 and assume SUs are distributed

uniformly at random in an area with size A = 10002 (distance unit)2. At this point for all PUs, we

assume the AWGN channel scenario and the received signal power is only affected by path loss

with path loss exponent γ = 2.7. We suppose SUs can detect each PU’s transmission within 100

distance unit range with a high probability. For the brevity of the results, we assume the channels

for all PUs have similar parameters (i.e., αl,i = α, βl,i = β, and λl,i = λ for all i = 1, . . . ,M

and l = 1, . . . , Np). We set α = 0.1 and change the value of β to obtain the desired channel

utilization λ. For Cluster-CMSS, the number of clusters is determined using the elbow method as

previously described. The results of this simulation is shown in Figure 6.5, which represents the

average spectrum opportunity discovery ratio (R̄s), as defined in (6.2), versus λ. In addition, the

SUs move according to the random waypoint model RWP (0, 15, 2.5).

In Figure 6.5, we compare the spectrum sensing performance of our proposed Cluster-CMSS pol-

icy with a genie-aided location aware policy and the greedy non-cooperative spectrum sensing
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Figure 6.5: Average spectrum opportunity discovery ratio versus the PU’s channel utilization λ.

policy in [5]. In the genie-aided sensing policy, the BS is aware of the status of the previous

channel states at all SUs and the distance between SUs. Clearly implementing the genie-aided

policy in a geographically dispersed and mobile network is impractical. Therefore, the genie-aided

policy solely serves as a performance upper bound. As we can see, when PU channels are under-

utilized all policies have a high opportunity discovery rate due to abundance of spectrum holes.

However, when λ is close to 1 (heavy PU utilization) our proposed policy performs better than the

greedy non-cooperative policy by at least 15%. By increasing the channel utilization, the spectrum

holes become more scarce and the effectiveness of the proposed policy in finding spectrum holes

becomes more lucid.

In Figure 6.6, we have depicted the average opportunity discovery ratio of Cluster-CMSS versus

the maximum velocity of the SU in the random waypoint model. We set the same parameters as

previous simulation (N = 50, M = 10, Np = 20, λ = 0.5 and γ = 2.7). The mobility model

in this simulation is RWP (0, vmax, 2.5). As we can see the average opportunity discovery ratio

decreases by increasing vmax. According to (6.9), by increasing vmax the length of the learning
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window decreases. Smaller learning window reduces BS’s capability to learn the dynamic behavior

of the PU network. Hence, Cluster-CMSS will not be able to effectively employ the information

from previous channel occupancy of PUs.
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Figure 6.6: Average spectrum opportunity discovery ratio versus maximum velocity of SU’s move-
ment (vmax).

In Figure 6.7, we have depicted the characteristic graph (the probability of miss-detection versus

the probability of false-alarm) of Cluster-CMSS. The simulation parameters are similar to the pre-

vious simulations and we have considered the effects of non-ideal sensing. The analytical results

obtained using (6.13) and (6.14) are compared against the values obtained through the numerical

simulations. Clearly, by increasing the received SNR at each SU, the overall probabilities of miss-

detection and false-alarm decrease. In addition, the shaded area in Figure 6.7 represents the area

in which the values of Qm, Qf , or both are not acceptable by the IEEE 802.22 standard [127].

Therefore, it is important to have the values of both Qm and Qf less than or equal to 0.1.

In Figure 6.8, we represent the numerically-obtained characteristic graph of Cluster-CMSS and

the non-cooperative policy in [5], under AWGN, Rician, and Rayleigh channels assuming the
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Figure 6.7: The characteristic graph (the probability of miss-detection versus the probability of
false-alarm) of Cluster-CMSS. Each curve represents different average SNR at the sensing SUs.
The performance in the shaded areas are not allowed in the IEEE 802.22 standard.

average received SNR is 15 dB. In this simulation, we employ the same simulation parameters as in

previous experiment, and the Rician factor is K = 10. As we can see, Cluster-CMSS has a better

performance under all channel conditions compared to non-cooperative policy [5]. Moreover,

Cluster-CMSS is the most effective in the AWGN scenario.

Now let us pair Cluster-CMSS with a very simple spectrum access scheme, which basically allows

every SU to access the channel it finds empty and transmit on that channel. The simulation param-

eters are similar to previous simulations (i.e., N = 50, M = 10, Np = 20, λ = 0.5 and γ = 2.7).

At Table 6.1, we compare the average energy costs per successful SU transmission in one time

frame for different policies. As reported in [128], the energy cost of an SU to sense one channel,

to transmit/receive a channel sensing result, to access a channel, and to idle during sensing time

is ES = 3.5mJ , ETX = ERX = 0.1125mJ , Eacc = 4mJ , and Eid = 0.05mJ , respectively.

Therefore, we find the energy cost of different policies using the simple access scheme (every SU

accesses the channel it finds empty).
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Figure 6.8: The numerically obtained characteristic graph of the proposed Cluster-CMSS policy
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Table 6.1: Average energy cost per successful SU transmission

Sepectrum sensing policy Energy cost (mJ)

Cluster-CMSS 7.97

Greedy non-cooperative 7.725

Genie-aided 39.22

As it can be concluded from Table 6.1, the energy cost of Cluster-CMSS is slightly higher, because

of coordination overhead, than non-cooperative greedy policy. This slight increase in energy con-

sumption is the price of larger opportunity discovery ratio in the spectrum sensing. In addition,

we have included the energy cost that it is required to implement the genie-aided policy, which is

considerably larger than our proposed Cluster-CMSS and greedy policies.
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Application of Structured Sparse Compressed Sensing in Cognitive Radio Spectrum Sensing

Authors in [19–21] have considered the problem of spectrum sensing and PU localization in cog-

nitive radio networks. They used compressive sensing to recover the location and the transmission

power of PUs on a grid of potential points. In [129] the authors have solved the problem of PU

localization using Bayesian compressive sensing algorithm without including the structure in the

data.

Here we adopt a system model similar to what is assumed in [19]. Suppose an area of interest

is divided into Ns grid points (as shown in Figure 6.9) and transmitters (PUs) are assumed to be

located in a subset of these grid points, unknown to us. On the other hand there are Nr receivers

(SUs) with known locations that receive a superposition of the transmitters’ signals affected by the

channel gains γsr between the transmitters and receivers and observed in the presence of zero mean

AWGN with variance σ2
r . The goal is to estimate the power spectral density (PSD) at each point,

based on which we can localize the PUs and find the frequency bands that they have occupied.

While a solution to above problem could be found through exhaustive search with a very high

computational complexity, exploiting the inherent sparsity in the problem can make the problem

tractable. Sparsity comes from scarce presence of active transmitters as well as narrow-band trans-

missions. Authors in [19] formulated this following a Lasso problem.

The model of PUs being located at possible grid points not only imposes the sparsity but also pro-

vides some extra information on the structure of sparse signal. In the primary network, mostly due

to interference avoiding considerations, PUs will not be present in the neighboring grid locations.

In other words, if a PU is found active at one location, there exist a neighborhood around that PU

such that no other PU does not exist in that neighborhood (matern hardcore model [130]. The

minimum distance between PUs are determined by their transmit power. However, for simplicity

110



we assume all PUs transmit with the same power. Therefore, all PUs will have similar range. For

example the structure of the PUs’ grid is represented in Figure 6.9, where existence of a PU at

a grid point indicates that none of its neighboring grid points is occupied by other PUs. In this

particular example the range of each PU includes the four immediate neighbors of that grid point.

Active 
PUs

PU’s 
range

Figure 6.9: The grid of the Ns PU candidate locations. The PUs are present in 2 locations and no

other PU is present in the range of those PUs. Therefore the white grid point does not include any

PU. Each column represents the activity of PUs in different frequency channel

Accordingly, the porblem of localization and estimating the PSD of PUs in a cognitive radio net-

work could be solved using a structured sparse CS recovery.

Conclusion

In this chpter, we considered the problem of coordinated multiband spectrum sensing in the geo-

graphically disperse and mobile cognitive radio networks. We proposed a policy that detects the

spectrum holes without depending on the location information of the primary users. According

to our proposed policy, the secondary users are clustered based on their spectrum sensing results.
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We introduced a novel metric for clustering SU nodes, which is based on the consensus among the

SUs’ channel sensing results. In our proposed policy, the BS uses this metric to form the clusters

without the need to know the location of the SUs. Then, the BS performs a graph-theory-based

coordinated spectrum sensing among members of each cluster. For the mobile SUs that move

according to a random way point model, we have shown through extensive simulations that the

proposed policy considerably increases the spectrum opportunity discovery ratio for the secondary

users at the cost of slight increase in the energy consumption associated with spectrum sensing.

112



CHAPTER 7: CONCLUSION

In this dissertation, we have investigated the theoretical and practical challenges in design and

implementation of the signal processing algorithms that are exploiting the underlying structured

sparsity model, which exists in many real-world signals. Examples of signals with structured

sparsity are natural images, readings of wireless sensor networks, and electromagnetic spectrum

occupation in spatial and temporal domains.

First, we designed a compressive sensing recovery algorithm for time-correlated sparse signals and

investigated its performance under model mismatch scenarios. Next, we examined the problem of

non-uniform sampling and recovery for the signals with non-uniform importance among signal co-

efficients. We showed that employing our proposed algorithm provides higher recovery accuracy

for more important signal coefficients. Accordingly, employing the similar ideas using the proper-

ties of wavelet coefficients of images, we developed a model aware compressive sensing sampling

and recovery algorithm for natural images that performs better than state-of-the art methods. Fi-

nally, we consider the problem of spectrum sensing in disperse cognitive radio networks and show

that this problem can be formulated using a structured sparse CS recovery problem. In the rest of

this Chapter, we summarize the contribution of this dissertation:

Time-Correlated Compressed Sensing

In Chapter 3, we proposed TC-CSBP, which is a CS recovery algorithm for sparse signals that are

also time-correlated. TC-CSBP is based on belief propagation (CSBP) by Baron et al. CSBP serves

as the underlying recovery scheme. However, we modify CSBP such that the priori knowledge

about the signals coefficients time correlation are included in the algorithm. Our results show a
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considerable improvement over conventional CSBP and other related work. Moreover, our results

show that TC-CSBP is robust to the error in time-correlation model parameters to a great extent

and it can maintain its supremacy in the presence of model mismatch.

Non-Uniform Compressed Sensing

In Chapter 4, we address the problem of non-uniform sampling and recovery of sparse signals.

We propose NCS for non-uniform sampling of sparse signals. To realize NCS, we employ a non-

uniformly sparse measurement matrix such that more important coefficients are captured by a

relatively larger number of measurements. We analyzed the RIP of the measurement matrix of

NCS. NCS can also be integrated with a recovery algorithm that exploits the non-uniform sparsity

of signals [1, 3] for further performance improvement.

Non-Uniform Sampling and Recovery of Natural Images Using the Hidden Markov Tree

Structure of Wavelet Coefficients

In Chapter CSBP-HMT, some of the ideas from previous two chapters are combined and are ap-

plied to the problem of sampling and recovery of natural images. Accordingly, we modify two

Bayesian CS recovery algorithms to incorporate the signal structure (i.e. the Hidden Markov Tree

structure of the wavelet coefficients). In addition based the underlying structure, we propose a

measurement matrix that is designed incorporating the signal structure. Therefore, we develop

a model-based CS non-uniform sampling and recovery scheme (uHMT-NCS) for natural images.

We show, not only the signal model can be utilized to optimize the initial priors for Bayesian CS

recovery algorithms, but it can also be employed in the design of new CS measurement matrices.

The results of our numerical experiments suggest a significant performance gain compared to the
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state-of-the-art model-based CS algorithms.

Coordinated Spectrum Sensing in Cognitive Radio Networks

The problem that we tackled in Chapter 6 is completely different that that of previous chapters.

Here, the goal is to develop an spectrum sensing assignment policy that maximizes discovery ratio

of spectrum holes while the overhead spectrum sensing time is minimized by sensing only one

channel per SU at a time. We propose cluster-based coordinated multiband spectrum sensing

(Cluster-CMSS). In this problem SUs are mobile and can communicate with a central node or base

station (BS). This is a very complex problem with numerous challenges. The main challenges are

limited ability of SUs in sensing the spectrum, geographically dispersed SU distribution, dynamic

PU activity and inaccurate sensing.

In cognitive radio networks, to construct the REM, the power spectral density (PSD) information

of every point in space at each frequency must be available in real-time. Building on the spectrum

sensing problem that is introduced in this chapter 6, we introduced a CS-based spectrum sensing

and source localization scheme that employs the structure of the signal sparsity.
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[58] C. J. Miosso, R. von Borries, M. Argàez, L. Velazquez, C. Quintero, and C. M. Potes,

“Compressive sensing reconstruction with prior information by iteratively reweighted least-

squares,” Trans. Sig. Proc., vol. 57, no. 6, pp. 2424–2431, 2009.

[59] N. Vaswani, “LS-CS-residual (LS-CS): Compressive sensing on least squares residual,” Sig-

nal Processing, IEEE Transactions on, vol. 58, no. 8, pp. 4108 –4120, 2010.

[60] N. Vaswani, “Analyzing least squares and kalman filtered compressed sensing,” in Acous-

tics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on,

pp. 3013 –3016, 2009.

[61] N. Vaswani, “Kalman filtered compressed sensing,” in Proceedings of the IEEE Interna-

tional Conference on Image Processing (ICIP), 2008.

[62] D. Angelosante, G. B. Giannakis, and E. Grossi, “Compressed sensing of time-varying sig-

nals,” in Digital Signal Processing, 2009 16th International Conference on, pp. 1–8, July

2009.

[63] D. Baron, M. Duarte, S. Sarvotham, M. Wakin, and R. Baraniuk, “An information-theoretic

approach to distributed compressed sensing,” in Allerton Conf. Comm., Control, Comput,

Citeseer, 2005.

122



[64] D. Baron, M. Wakin, M. Duarte, S. Sarvotham, and R. Baraniuk, “Distributed compressed

sensing,” 2005.

[65] S. Madden, “UC-Berkeley Intel Lab Data.” http://db.csail.mit.edu/labdata/

labdata.html, June 2004.

[66] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product algorithm,”

IEEE Transactions on information theory, vol. 47, no. 2, pp. 498–519, 2001.

[67] V. Krishnamurthy and J. Moore, “On-line estimation of hidden Markov model parameters

based on the Kullback-Leibler information measure,” IEEE Transactions on Signal Process-

ing, vol. 41, no. 8, pp. 2557–2573, 1993.

[68] D. Baron and S. Sarvotham, “Compressive sensing via belief propagation software,” De-

cember 2008. http://www.ece.rice.edu/ drorb/CSBP/.

[69] Y. Oike and A. El Gamal, “CMOS image sensor with per-column Σ∆ ADC and pro-

grammable compressed sensing,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 318–

328, Jan 2013.

[70] M. Duarte, M. Wakin, and R. Baraniuk, “Wavelet-domain compressive signal reconstruction

using a Hidden Markov Tree model,” in IEEE Int. Conf. on Acoust., Speech and Signal

Process., (ICASSP 2008), pp. 5137–5140, Mar 2008.

[71] R. Berinde and P. Indyk, “Sparse recovery using sparse random matrices,” preprint, 2008.

[72] A. Gilbert and P. Indyk, “Sparse recovery using sparse matrices,” Proceedings of the IEEE,

vol. 98, no. 6, pp. 937–947, 2010.

[73] S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank, “Efficient and robust compressed sens-

ing using optimized expander graphs,” IEEE Transactions on Information Theory, vol. 55,

pp. 4299 –4308, sept. 2009.

123

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html


[74] H. Kung and S. Tarsa, “Partitioned compressive sensing with neighbor-weighted decoding,”

in MILITARY COMMUNICATIONS CONFERENCE, 2011 - MILCOM 2011, pp. 149 –156,

nov. 2011.

[75] Y. Yu, B. Wang, and L. Zhang, “Saliency-based compressive sampling for image signals,”

Signal Processing Letters, IEEE, vol. 17, pp. 973–976, Nov 2010.

[76] Y. Shen, W. Hu, R. Rana, and C. T. Chou, “Nonuniform compressive sensing for heteroge-

neous wireless sensor networks,” vol. 13, pp. 2120–2128, June 2013.

[77] Y. Liu, X. Zhu, L. Zhang, and S. H. Cho, “Expanding window compressed sensing for

non-uniform compressible signals,” Sensors, vol. 12, pp. 13034–13057, Sep 2012.

[78] N. Rahnavard, B. Vellambi, and F. Fekri, “Rateless codes with unequal error protection

property,” IEEE Transactions on Information Theory, vol. 53, pp. 1521 –1532, april 2007.

[79] M. Khajehnejad, A. Dimakis, W. Xu, and B. Hassibi, “Sparse recovery of nonnegative sig-

nals with minimal expansion,” IEEE Transactions on Signal Processing, vol. 59, pp. 196–

208, Jan 2011.

[80] B. Bah and J. Tanner, “Vanishingly sparse matrices and expander graphs, with application to

compressed sensing,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7491–

7508, 2012.

[81] M. S. Pinsker, “On the complexity of a concentrator,” in 7th International Teletraffic Con-

ference, 1973.

[82] S. Borman and R. L. Stevenson, “Super-resolution from image sequences-a review,” in mws-

cas, p. 374, IEEE, 1998.

124



[83] S. Wang, B. Shahrasbi, and N. Rahnavard, “Srl1: Structured reweighted `1 minimization for

compressive sampling of videos,” in IEEE International Symposium on Information Theory

Proceedings (ISIT), pp. 301–305, Jul. 2013.

[84] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in Advances in neural

information processing systems, pp. 545–552, 2006.

[85] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version

1.21.”

[86] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent

Advances in Learning and Control (V. Blondel, S. Boyd, and H. Kimura, eds.), Lecture

Notes in Control and Information Sciences, pp. 95–110, Springer-Verlag Limited, 2008.

[87] A. Schulz, L. Velho, and E. A. B. Da Silva, “On the empirical rate-distortion performance

of compressive sensing,” in 16th IEEE Int. Conf. on Image Process. (ICIP), pp. 3049–3052,

Nov 2009.

[88] P. Indyk and I. Razenshteyn, “On model-based RIP-1 matrices,” in Automata, Languages,

and Programming (F. Fomin, R. Freivalds, M. Kwiatkowska, and D. Peleg, eds.), vol. 7965

of Lecture Notes in Computer Science, pp. 564–575, Springer Berlin Heidelberg, 2013.

[89] J. Romberg, H. Choi, and R. Baraniuk, “Bayesian wavelet-domain image modeling using

hidden markov trees,” in Int. Conf. on Image Process. (ICIP), vol. 1, pp. 158–162, Oct 1999.

[90] J. Haupt, W. Bajwa, G. Raz, and R. Nowak, “Toeplitz compressed sensing matrices with

applications to sparse channel estimation,” IEEE Trans. Inf. Theory, vol. 56, pp. 5862–5875,

Nov 2010.

[91] Y. Tsaig and D. Donoho, “Extensions of compressed sensing,” Signal Process., vol. 86,

no. 3, pp. 549 – 571, 2006.

125



[92] H. Lee, H. Oh, S. Lee, and A. Bovik, “Visually weighted compressive sensing: Measure-

ment and reconstruction,” IEEE Trans. Image Process., vol. 22, pp. 1444–1455, Apr 2013.

[93] T. Do, L. Gan, N. Nguyen, and T. Tran, “Fast and efficient compressive sensing using struc-

turally random matrices,” IEEE Trans. Signal Process., vol. 60, pp. 139–154, Jan 2012.

[94] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin,

“Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images,”

IEEE Trans. Image Process., vol. 21, pp. 130–144, Jan 2012.

[95] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal methods for hierarchical sparse

coding,” J. Mach. Learning Research, vol. 12, pp. 2297–2334, Jul 2011.

[96] E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse

problems, vol. 23, no. 3, p. 969, 2007.

[97] G.-S. Cheon and B. L. Shader, “Sparse orthogonal matrices and the haar wavelet,” Discrete

Applied Math., vol. 101, no. 1?3, pp. 63 – 76, 2000.

[98] T. Do and B. Mark, “Joint spatial-temporal spectrum sensing for cognitive radio networks,”

IEEE Transactions on Vehicular Technology,, vol. 59, pp. 3480–3490, Sept 2010.

[99] Q. Wu, G. Ding, J. Wang, and Y.-D. Yao, “Spatial-temporal opportunity detection for

spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing,” Wireless

Communications, IEEE Transactions on, vol. 12, pp. 516–526, February 2013.

[100] S. Manaffam, M. Razeghi-Jahromi, and A. Seyedi, “Stabilizing a random dynamics network

with a random communications network,” in Decision and Control (CDC), 2012 IEEE 51st

Annual Conference on, pp. 746–751, Dec 2012.

126



[101] C. han Lee and W. Wolf, “Multiple access-inspired cooperative spectrum sensing for cogni-

tive radio,” in IEEE Military Communications Conference, 2007. MILCOM 2007., pp. 1–6,

Oct 2007.

[102] H. Su and X. Zhang, “Cross-layer based opportunistic MAC protocols for QoS provision-

ings over cognitive radio wireless networks,” IEEE Journal on Selected Areas in Communi-

cations, vol. 26, pp. 118–129, Jan 2008.

[103] Y. Gai, B. Krishnamachari, and R. Jain, “Learning multiuser channel allocations in cogni-

tive radio networks: A combinatorial multi-armed bandit formulation,” in New Frontiers in

Dynamic Spectrum, 2010 IEEE Symposium on, pp. 1–9, April 2010.

[104] H. Liu, K. Liu, and Q. Zhao, “Learning in a changing world: Restless multiarmed bandit

with unknown dynamics,” IEEE Transactions on Information Theory,, vol. 59, pp. 1902–

1916, March 2013.

[105] Z. Wang, Z. Feng, and P. Zhang, “An iterative hungarian algorithm based coordinated spec-

trum sensing strategy,” IEEE Communications Letters, vol. 15, pp. 49 –51, Jan 2011.

[106] J. Oksanen, J. Lundén, and V. Koivunen, “Reinforcement learning based sensing policy op-

timization for energy efficient cognitive radio networks,” Neurocomputing, vol. 80, pp. 102–

110, Mar 2012.

[107] A. W. Min and K. G. Shin, “Impact of mobility on spectrum sensing in cognitive radio net-

works,” in Proceedings of the 2009 ACM Workshop on Cognitive Radio Networks, CoRoNet

’09, (New York, NY, USA), pp. 13–18, ACM, 2009.

[108] W. Ren, Q. Zhao, and A. Swami, “Temporal traffic dynamics improve the connectivity of ad

hoc cognitive radio networks,” IEEE/ACM Trans. Netw., vol. 22, pp. 124–136, Feb. 2014.

127



[109] G. Caso, H. Soleimani, L. De Nardis, A. Tosti, and M. Di Benedetto, “Sensic: Mobility-

aware cluster-based cooperative spectrum sensing for cognitive radio networks,” in Ultra-

WideBand (ICUWB), 2014 IEEE International Conference on, pp. 102–107, Sept 2014.

[110] B. Shahrasbi and N. Rahnavard, “A clustering-based coordinated spectrum sensing in

wideband large-scale cognitive radio networks,” in Global Communications Conference

(GLOBECOM), 2013 IEEE, pp. 1101–1106, Dec 2013.

[111] M. Bradonjic and L. Lazos, “Graph-based criteria for spectrum-aware clustering in cognitive

radio networks,” Ad Hoc Networks, vol. 10, pp. 75 – 94, Jan 2012.

[112] J. Wei and X. Zhang, “Energy-efficient distributed spectrum sensing for wireless cognitive

radio networks,” in INFOCOM IEEE Conference on Computer Communications Workshops

, 2010, pp. 1–6, Mar 2010.

[113] Y. Liu, S. Xie, R. Yu, Y. Zhang, and C. Yuen, “An efficient mac protocol with selective

grouping and cooperative sensing in cognitive radio networks,” IEEE Transactions on Ve-

hicular Technology,, vol. 62, pp. 3928–3941, Oct 2013.

[114] S. Liu, I. Ahmad, Y. Bai, Z. Feng, Q. Zhang, and Y. Zhang, “A novel cooperative sensing

based on spatial distance and reliability clustering scheme in cognitive radio system,” in

IEEE 78th Vehicular Technology Conference (VTC Fall), 2013, pp. 1–5, Sept 2013.

[115] Y. Sun, H. Hu, F. Liu, H. Yi, and X. Wang, “Selection of sensing nodes in cognitive radio

system based on correlation of sensing information,” in 4th International Conference on

Wireless Communications, Networking and Mobile Computing, 2008. WiCOM ’08., pp. 1–

6, Oct 2008.

[116] H. Liu and W. Chen, “Cooperative spectrum sensing and weighted-clustering algorithm

128



for cognitive radio network,” IJ Information Engineering and Electronic Business, vol. 2,

pp. 20–27, Mar 2011.

[117] S. Manaffam and A. Seyedi, “Synchronization probability in large complex networks,” Cir-

cuits and Systems II: Express Briefs, IEEE Transactions on, vol. 60, pp. 697–701, Oct 2013.

[118] H. Kim and K. Shin, “Efficient discovery of spectrum opportunities with MAC-layer sensing

in cognitive radio networks,” IEEE Transactions on Mobile Computing, pp. 533–545, May

2008.

[119] E. Peh, Y.-C. Liang, Y. L. Guan, and Y. Zeng, “Cooperative spectrum sensing in cognitive

radio networks with weighted decision fusion schemes,” IEEE Transactions on Wireless

Communications, vol. 9, pp. 3838–3847, Dec 2010.

[120] C. Cordeiro, K. Challapali, D. Birru, and N. Sai Shankar, “IEEE 802.22: the first worldwide

wireless standard based on cognitive radios,” in First IEEE International Symposium on

New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005., pp. 328–337,

Nov 2005.

[121] W. Dai, Y. Gai, and B. Krishnamachari, “Online learning for multi-channel opportunistic

access over unknown markovian channels,” in Sensing, Communication, and Networking

(SECON), 2014 Eleventh Annual IEEE International Conference on, pp. 64–71, June 2014.

[122] R. Garcı́a-Pelayo, “Distribution of distance in the spheroid,” Journal of Physics A: Mathe-

matical and General, vol. 38, no. 16, p. 3475, 2005.

[123] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in a data set via

the gap statistic,” Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), vol. 63, no. 2, pp. 411–423, 2001.

129



[124] R. Diestel, “Graph theory, volume 173 of Graduate Texts in Mathematics,” Springer, Hei-

delberg, vol. 91, p. 92, 2005.

[125] F. Digham, M.-S. Alouini, and M. K. Simon

[126] A. Abdi, C. Tepedelenlioglu, M. Kaveh, and G. Giannakis, “On the estimation of the k

parameter for the rice fading distribution,” IEEE Communications Letters, vol. 5, pp. 92–

94, Mar 2001.

[127] C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, and W. Caldwell, “IEEE

802.22: The first cognitive radio wireless regional area network standard,” IEEE Communi-

cations Magazine, vol. 47, pp. 130–138, Jan 2009.

[128] D. Xue, E. Ekici, and M. C. Vuran, “CORN2: Correlation-based cooperative spectrum sens-

ing in cognitive radio networks,” in 10th International Symposium on Modeling and Opti-

mization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2012, May 2012.

[129] X. Li, S. Hong, Z. Han, and Z. Wu, “Bayesian compressed sensing based dynamic joint

spectrum sensing and primary user localization for dynamic spectrum access,” in Global

Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pp. 1–5, Dec 2011.

[130] J. Andrews, R. Ganti, M. Haenggi, N. Jindal, and S. Weber, “A primer on spatial modeling

and analysis in wireless networks,” Communications Magazine, IEEE, vol. 48, pp. 156–163,

November 2010.

130


	Compressive Sensing and Recovery of Structured Sparse Signals
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Time-Correlated Compressed Sensing
	Non-Uniform Compressed Sensing
	Non-Uniform Sampling and Recovery of Natural Images Using the Hidden Markov Tree Structure of Wavelet Coefficients
	Coordinated Spectrum Sensnig in Cognitive Radio Networks
	Application of Structured Sparse Compressed Sensing in Cognitive Radio Spectrum Sensing


	CHAPTER 2: BACKGROUND
	Compressed Sensing
	Structured Sparsity
	Bayesian CS Recovery

	CHAPTER 3: TC-CSBP: COMPRESSED SENSING FOR TIME-CORRELATED DATA BASED ON BELIEF PROPAGATION
	Introduction
	Time-Correlated Data Reconstruction
	Time-Varying Signal Model
	CSBP: Compressed Sensing Recovery Using Belief Propagation
	TC-CSBP: Time-Correlated CS Algorithm Based on Belief Propagation
	Online Model Parameters Estimation


	Simulation Results
	Conclusion

	CHAPTER 4: NCS: NON-UNIFORM COMPRESSIVE SENSING USING EXPANDER GRAPHS
	Introduction
	Contribution of This Chapter

	Related Work
	Non-uniform Compressed Sensing (NCS)
	The Structure of NCS Measurement Matrices
	The RIP of NCS Measurement Matrices

	Application of NCS in Burst Image Capture
	The Structure of the NCS-Based Image Sensor

	Performance Evaluation
	Conclusion

	CHAPTER 5: MODEL-BASED NON-UNIFORM COMPRESSED SAMPLING AND RECOVERY OF NATURAL IMAGES UTILIZING A WAVELET-DOMAIN UNIVERSAL HIDDEN MARKOV MODEL
	Introduction
	Contribution of this chapter

	The Universal Hidden Markov Tree (uHMT) Model
	Model-based Non-Uniform Compressed Sampling
	Non-Uniform Sampling
	Mutual Coherence of bold0mu mumu uHMT and bold0mu mumu 

	Model-Based Non-Uniform CS Recovery
	CSBP-uHMT: Integrating the uHMT Model into CSBP
	AMP-uHMT: Integrating the uHMT into AMP

	Simulation Results and Discussion
	Conclusion

	CHAPTER 6: CLUSTER-CMSS: A CLUSTER-BASED COORIDNATED SPECTRUM SENSNIG
	Introduction
	Contribution of This Chapter

	Related Work
	System Model
	The Frame Structure of CRNs
	SU's Belief Vector

	Cluster-CMSS: Cluster-Based Coordinated Multiband Spectrum Sensing
	The Cluster-CMSS Policy With Known PU Dynamic
	Learning the PU Dynamic
	The Sensing-Based Clustering
	Coordinated Spectrum Sensing Within Clusters Using Bipartite Matching

	Performance Evaluation of Cluster-CMSS
	Miss-Detection and False-Alarm probabilities over AWGN channels
	Miss-Detection and False-Alarm Probabilities Over Rayleigh and Rician Channels
	Energy Cost of Sensing

	Numerical Results
	Application of Structured Sparse Compressed Sensing in Cognitive Radio Spectrum Sensing
	Conclusion

	CHAPTER 7: CONCLUSION
	Time-Correlated Compressed Sensing
	Non-Uniform Compressed Sensing
	Non-Uniform Sampling and Recovery of Natural Images Using the Hidden Markov Tree Structure of Wavelet Coefficients
	Coordinated Spectrum Sensing in Cognitive Radio Networks

	LIST OF REFERENCES

