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Abstract

In modern “Big Data” applications, structured learning is the most widely employed

methodology. Within this paradigm, the fundamental challenge lies in developing prac-

tical, effective algorithmic inference methods. Often (e.g., deep learning) successful

heuristic-based approaches exist but theoretical studies are far behind, limiting under-

standing and potential improvements. In other settings (e.g., recommender systems)

provably effective algorithmic methods exist, but the sheer sizes of datasets can limit

their applicability. This twofold challenge motivates this work on developing new an-

alytical and algorithmic methods for structured learning, with a particular focus on

parsimony in measurements and computation, i.e., those requiring low storage and com-

putational costs.

Toward this end, we make efforts to investigate the theoretical properties of models

and algorithms that present significant improvement in measurement and computation

requirement. In particular, we first develop randomized approaches for dimensionality

reduction on matrix and tensor data, which allow accurate estimation and inference

procedures using significantly smaller data sizes that only depend on the intrinsic di-

mension (e.g., the rank of matrix/tensor) rather than the ambient ones. Our next effort

is to study iterative algorithms for solving high dimensional learning problems, includ-

ing both convex and nonconvex optimization. Using contemporary analysis techniques,

we demonstrate guarantees of iteration complexities that are analogous to the low di-

mensional cases. In addition, we explore the landscape of nonconvex optimizations that

exhibit computational advantages over their convex counterparts and characterize their

properties from a general point of view in theory.
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Chapter 1

Introduction

In many data science applications the available data can be quite diverse, exhibiting

characteristics of large scale (large number of observations) and multiple perspectives

(high dimensionality), but also potentially containing uncertainties from various sources.

For example, Facebook alone has over 1 billion active users sharing more than 5 billion

pieces of data daily (messages, images, posts, comments and etc.), and there exist tens

of millions of fake profiles (by Statista1). Traditional inference methods often perform

relatively poorly in these challenging environments due to limits on computing, storage,

and their lack of robustness to the nature of uncertainties present in contemporary

datasets. This necessitates new inference methods that can effectively draw inferences

from such unwieldy data.

Structured learning can provide a natural advantage when dealing with these chal-

lenging tasks. By leveraging the fact that the datasets themselves, or the nature of

the data corruptions, adhere to some form of low-complexity model (e.g., natural re-

dundancy in user preference data manifests as low rank structure in large arrays of

preferences, while corruptions are often relatively few in number, or sparse), structured

learning methods can sometimes cast large scale inference tasks into problems of learning

only the parameters of these low-complexity models. This insight can enable potentially

significant improvements over more naive, traditional approaches that do not directly

exploit such low-complexity models.

Tremendous advances have been made in past decades in developing algorithms for

1Available at https://www.statista.com/topics/751/facebook/.

1

https://www.statista.com/topics/751/facebook/
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specific learning problems, for example, state-of-the-art results are now obtained using

deep learning and neural networks in computer vision and natural language process-

ing. However, other than for a small set of problems, the theoretical understanding

of structured learning methods are rather limited and often far behind practitioners

achievements. Even in settings where provably effective structured learning algorithmic

methods do exist, their utility can be limited by the sheer size of the datasets on which

they are to be deployed. For example, in recommendation systems where partially ob-

served arrays of users preferences comprise the available data (as in the so-called Netflix

problem), fitting low-rank models to enormous arrays (corresponding to millions of users

preferences for potentially tens of thousands of items, or more) can be computationally

prohibitive.

The challenges outlined above are pervasive and timely within the structured learn-

ing paradigm, and serve as the essential motivation for the work comprising this dis-

sertation. Specifically, motivated by the lack of theoretical understanding for many

successful methods in structured learning, we aim to develop new analytical methods to

facilitate theoretical comprehension of these techniques. Such exercises are not purely

academic; rigorous theoretical understanding of well-performing algorithms not only

helps us understand their mechanism(s), but also (more importantly) can provide es-

sential new insights that may be used to improve them. A complementary thrust of

our efforts is focused on developing new structured learning methods that are explicitly

designed with an eye toward reduced computational cost and storage requirements.

Our approach to this end consists of comprehensive analyses to investigate various

measurement reduction, modeling, and computational efficient algorithms for solving

the problems described above. In a first series of works, we utilize a careful, judicious

reduction in the available data that are ultimately input to the inference engine (Chapter

2 and Chapter 3). In another thrust, we develop efficient iterative algorithms for high

dimensional learning problems and study their convergence behavior that achieve same

complexities with low dimensional problems (Chapter 4 and Chapter 5). Next, we

shred light on some fundamental properties of nonconvex problems that demonstrate

superiority over their convex counterparts (Chapter 6). The details of the topics to be

discussed are listed as following:
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• In Chapter 2, we study a randomized approach for dimension reduction on ma-

trices. In particular, we examine the problem of locating outlier columns in a

large, otherwise low-rank, matrix. We propose a simple two-step adaptive sensing

and inference approach and establish theoretical guarantees for its performance;

our results show that accurate outlier identification is achievable using very few

linear summaries of the original data matrix – as few as the squared rank of the

low-rank component plus the number of outliers, times constant and logarithmic

factors. We demonstrate the performance of our approach experimentally in two

stylized applications, one motivated by robust collaborative filtering tasks, and

the other by saliency map estimation tasks arising in computer vision and auto-

mated surveillance, and also investigate extensions to settings where the data are

group-structured, noisy, or possibly incomplete.

• In Chapter 3, we further study randomized approaches for dimensionality reduc-

tion on low-rank tensor regression based on least square problems. This is moti-

vated by the fact that the effective number of parameters in a structured tensor is

significantly smaller than the its size. We consider the CANDECOMP/PARAFAC

decomposition and the Tucker decomposition for tensors. For both models, we

show how to apply data dimensionality reduction techniques based on sparse ran-

dom projections to reduce the problem to a much smaller one, for which if a tensor

is a near-optimum to the smaller least square problem, then it is also a near-

optimum to the original one. Leveraging the randomized sketching techniques,

we obtain significant reduction in dimensionality and sparsity in the sketching

matrix for ordinary least squares regression. In addition, we provide a number of

numerical simulations supporting our theory.

• In Chapter 4, we consider analyzing first order algorithms for solving high dimen-

sional sparse learning problems with guarantees. Many machine learning tech-

niques sacrifice convenient computational structures to gain estimation robust-

ness and modeling flexibility. However, by exploring the modeling structures, we

find these “sacrifices” do not always require more computational efforts. To shed

light on such a “free-lunch” phenomenon, we study the square-root-Lasso (SQRT-

Lasso) type regression problem. Specifically, we show that the nonsmooth loss
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functions of the SQRT-Lasso type regression ease tuning effort and gain adaptiv-

ity to inhomogeneous noise, but is not necessarily more challenging than Lasso to

solve. We can directly apply proximal algorithms (e.g. proximal gradient descent,

proximal Newton, and proximal quasi-Newton algorithms) without worrying the

nonsmoothness of the loss function. Theoretically, we prove that the proximal al-

gorithms combined with the pathwise optimization scheme enjoy fast convergence

guarantees with high probability. Numerical evaluations are provided to support

our theoretical results.

• In Chapter 5, we study second order algorithms for solving nonconvex high di-

mensional learning problems. In particular, we propose a difference of convex

(DC) proximal Newton algorithm for solving nonconvex regularized sparse learn-

ing problems in high dimensions. Our proposed algorithm integrates the proxi-

mal Newton algorithm with multi-stage convex relaxation based on DC program-

ming, and enjoys both strong computational and statistical guarantees. Specif-

ically, by leveraging a sophisticated characterization of sparse modeling struc-

tures/assumptions (i.e., local restricted strong convexity and Hessian smoothness),

we prove that within each stage of convex relaxation, our proposed algorithm

achieves (local) quadratic convergence, and eventually obtains a sparse approx-

imate local optimum with optimal statistical properties after only a few convex

relaxations. Numerical experiments are provided to support our theory.

• In Chapter 6, we propose a general theory for studying the landscape of nonconvex

optimization with underlying symmetric structures for a class of machine learn-

ing problems (e.g., low-rank matrix factorization, phase retrieval, and deep linear

neural networks). In particular, we characterize the locations of stationary points

and the null spaces of Hessian matrices of the objective function through the lens

of invariant groups. As a major motivating example, we apply the proposed gen-

eral theory to characterize the global landscape of the nonconvex optimization in

certain low-rank matrix factorization problems. In particular, we illustrate how

the rotational symmetry group gives rise to infinitely many nonisolated strict sad-

dle points and equivalent global minima of the objective function. By explicitly

identifying all stationary points, we divide the entire parameter space into three
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regions: the region containing the neighborhoods of all strict saddle points, where

the objective has negative curvatures; the region containing neighborhoods of all

global minima, where the objective enjoys strong convexity along certain direc-

tions; and the complement of the above regions, where the gradient has sufficiently

large magnitudes. We further extend our result to the matrix sensing problem.

• In Chapter 7, we provide all detailed discussion of the analyses presented in the

thesis.

The authors graciously acknowledge support from the NSF under Award CCF-

1217751, DARPA Young Faculty Award N66001-14-1-4047, University of Minnesota

Startup Funding, and Doctoral Dissertation Fellowship from University of Minnesota.



Chapter 2

Outlier Identification via

Randomized Approaches

2.1 Introduction

We address a matrix outlier identification problem. Suppose M ∈ Rn1×n2 is a data

matrix that admits a decomposition of the form

M = L+ C,

where L is a low-rank matrix, and C is a matrix of outliers that is nonzero in only

a fraction of its columns. We are ultimately interested in identifying the locations of

the nonzero columns of C, with a particular focus on settings where M may be very

large. The question we address here is, can we accurately (and efficiently) identify the

locations of the outliers from a small number of linear measurements of M?

Our investigation is motivated in part by robust collaborative filtering applications,

in which the goal may be to identify the locations (or even quantify the number) of

corrupted data points or outliers in a large data array. Such tasks may arise in a

number of contemporary applications, for example, when identifying malicious responses

in survey data or anomalous patterns in network traffic, to name a few. Depending on

the nature of the outliers, conventional low-rank approximation approaches based on

principal component analysis (PCA) [1, 2] may be viable options for these tasks, but

6
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such approaches become increasingly computationally demanding as the data become

very high-dimensional. Here, our aim is to leverage dimensionality reduction ideas along

the lines of those utilized in randomized numerical linear algebra, (see, e.g., [3,4] and the

references therein) and compressed sensing (see, e.g., [5–7]), in order to reduce the size of

the data on which our approach operates. In so doing, we also reduce the computational

burden of the inference approach relative to comparable methods that operate on “full

data.”

We are also motivated by an image processing task that arises in many computer

vision and surveillance applications – that of identifying the “saliency map” [8] of a

given image, which (ideally) indicates the regions of the image that tend to attract

the attention of a human viewer. Saliency map estimation is a well-studied area, and

numerous methods have been proposed for obtaining saliency maps for a given image

– see, for example, [9–13]. In contrast to these (and other) methods designed to iden-

tify saliency map of an image as a “post processing” step, our aim here is to estimate

the saliency map directly from compressive samples – i.e., without first performing full

image reconstruction as an intermediate step. We address this problem here using a

linear subspace-based model of saliency, wherein we interpret an image as a collection

of distinct (non-overlapping) patches, so that images may be (equivalently) represented

as matrices whose columns are vectorized versions of the patches. Previous efforts have

demonstrated that such local patches extracted from natural images may be well ap-

proximated as vectors in a union of low-dimensional linear subspaces (see, e.g., [14]).

Here, our approach to the saliency map estimation problem is based on an assumption

that salient regions in an image may be modeled as outliers from a single common

low-dimensional subspace; the efficacy of similar models for visual saliency has been

established recently in [15]. Our approach here may find utility in rapid threat detec-

tion in security and surveillance applications in high-dimensional imaging tasks, where

the goal is not to image the entire scene, but rather to merely identify regions in the

image space corresponding to anomalous behavior. Successful identification of salient

regions could comprise a first step in an active vision task, where subsequent imaging

is restricted to the identified regions.

Innovations and Our Approach. We propose a framework that employs dimen-

sionality reduction techniques within the context of a two-step adaptive sampling and
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inference procedure [16–18], and our approach is based on a few key insights. First,

we exploit the fact that the enabling geometry of our problem (to be formalized in the

following section) is approximately preserved if we operate not on M directly, but in-

stead on a “compressed” version ΦM that has potentially many fewer rows. Next, we

use the fact that we can learn the (ostensibly, low-dimensional) linear subspace spanned

by the columns of the low rank component of ΦM using a small, randomly selected

subset of the columns of ΦM . Our algorithmic approach for this step utilizes a recently

proposed method called Outlier Pursuit (OP) [19] that aims to separate a matrix Y

into its low-rank and column-sparse components using the convex optimization

min
L(1),C(1)

‖L(1)‖∗ + λ‖C(1)‖1,2 s.t. Y = L(1) + C(1) (2.1)

where ‖L(1)‖∗ denotes the nuclear norm of L(1) (the sum of its singular values), ‖C(1)‖1,2
is the sum of the `2 norms of the columns of C(1), and λ > 0 is a regularization parameter.

Finally, we leverage the fact that correct identification of the subspace spanned by the

low-rank component of ΦM facilitates (simple) inference of the column outliers.

We analyze two variants of this overall approach. The first (depicted as Algorithm 1)

is based on the notion that, contingent on correct identification of the subspace spanned

by the low-rank component of ΦM , we may effectively transform the overall outlier

identification problem into a compressed sensing problem, using a carefully-designed

linear measurement operator whose net effect is to (i) reduce the overall n1×n2 matrix

to a 1 × n2 vector whose elements are (nominally) nonzero only at the locations of

the outlier columns, and (ii) compressively sample the resulting vector. This reduction

enables us to employ well-known theoretical results (e.g., [20]) to facilitate our overall

analysis. We call this approach Adaptive Compressive Outlier Sensing (ACOS).

The second approach, which we call Simplified ACOS (SACOS) and summarize as

Algorithm 2, foregoes the additional dimensionality reduction in the second step and

identifies as outliers those columns of ΦM having a nonzero component orthogonal to

the subspace spanned by the low-rank component of ΦM . The simplified approach

has a (perhaps significantly) higher sample complexity than ACOS, but (as we will see

in Section 2.3) benefits from an ability to identify a larger number of outlier columns

relative to the ACOS method. In effect, this provides a trade-off between detection
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Algorithm 1 Adaptive Compressive Outlier Sensing (ACOS)

Assume: M ∈ Rn1×n2

Input: Column sampling Bernoulli parameter γ ∈ [0, 1], regularization parameter λ >
0, Measurement matrices Φ ∈ Rm×n1 , A ∈ Rp×n2 , measurement vector φ ∈ R1×m

Initalize: Column sampling matrix S = I:,S , where
S = {i : si = 1} with {si}i∈[n2] i.i.d. Bernoulli(γ)

Step 1
Collect Measurements: Y(1) = ΦMS

Solve: {L̂(1), Ĉ(1)} = argminL(1),C(1)
‖L(1)‖∗ + λ‖C(1)‖1,2 s.t. Y(1) = L(1) + C(1)

Let: L̂(1) be the linear subspace spanned by col’s of L̂(1)

Step 2

Compute: PL̂(1)
, the orthogonal projector onto L̂(1)

Set: PL̂⊥
(1)

, I − PL̂(1)

Collect Measurements: y(2) = φ PL̂⊥
(1)

ΦMAT

Solve: ĉ = argminc ‖c‖1 s.t. y(2) = cAT

Output: ÎC = {i : ĉi 6= 0}

performance and sample complexity for the two methods. We also investigate extensions

to settings where the data are group-structured, noisy, or possibly incomplete [21–24].

Related Work. Our effort here leverages results from Compressive Sensing (CS), where

parsimony in the object or signal being acquired, in the form of sparsity, is exploited

to devise efficient procedures for acquiring and reconstructing high-dimensional objects

[5–7, 20]. The sequential and adaptive nature of our proposed approach is inspired by

numerous recent works in the burgeoning area of adaptive sensing and adaptive CS (see,

for example, [25–42] as well as the summary article [43] and the references therein). The

column subsampling inherent in the first step of our approaches is also reminiscent of

the data partitioning strategy of the divide-and-conquer parallelization approach of [44]

(though our approach only utilizes one small partition of the data for the first inference

step).

Our efforts here utilize a generalization of the notion of sparsity, formalized in terms

of a low-rank plus outlier matrix model. In this sense, our efforts here are related to

earlier works in Robust PCA [45, 46] that seek to identify low-rank matrices in the

presence of sparse impulsive outliers, and their extensions to settings where the outliers

present as entire columns of an otherwise low-rank matrix [19, 47–54]. In fact, the
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Algorithm 2 Simplified ACOS (SACOS)

Assume: M ∈ Rn1×n2

Input: Column sampling Bernoulli parameter γ ∈ [0, 1], regularization parameter λ >
0, Measurement matrix Φ ∈ Rm×n1

Initalize: Column sampling matrix S = I:,S , where
S = {i : si = 1} with {si}i∈[n2] i.i.d. Bernoulli(γ)

Step 1
Collect Measurements: Y = ΦM
Form: Y(1) = Y S

Solve: {L̂(1), Ĉ(1)} = argminL(1),C(1)
‖L(1)‖∗ + λ‖C(1)‖1,2 s.t. Y(1) = L(1) + C(1)

Let: L̂(1) be the linear subspace spanned by col’s of L̂(1)

Step 2

Compute: PL̂(1)
, the orthogonal projector onto L̂(1)

Set: PL̂⊥
(1)

, I − PL̂(1)

Form: Y(2) = PL̂⊥
(1)
Y

Form: ĉ with ĉi = ‖(Y(2)):,i‖2 for all i ∈ [n2]

Output: ÎC = {i : ĉi 6= 0}

computational approach and theoretical analysis of the first step of our approach make

direct utilization of the results of [19].

We also note a related work [55], which seeks to decompose matrices exhibiting some

simple structure (e.g., low-rank plus sparse, etc.) into their constituent components from

compressive observations. Our work differs from that approach in both the measurement

model and scope. Namely, our linear measurements are formed via simple row and

column operations on the matrix and our overall approach is adaptive in nature, in

contrast to the non-adaptive “global” compressive measurements acquired in [55], each

of which is essentially a linear combination of all of the matrix entries. Further, the

goal of [55] was to exactly recover the constituent components, while our aim is only to

identify the locations of the outliers. We discuss some further connections with [55] in

Section 2.5.

A component of our numerical evaluation here entails assessing the performance of

our approach in a stylized image processing task of saliency map estimation. We note

that several recent works have utilized techniques from the sparse representation liter-

ature in salient region identification, and in compressive imaging scenarios. A seminal
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effort in this direction was [56], which proposed a model for feature identification via the

human visual cortex based on parsimonious (sparse) representations. More recently, [57]

applied techniques from dictionary learning [56, 58] and low-rank-plus-sparse matrix

decomposition [45, 46] in a procedure to identify salient regions of an image from (un-

compressed) measurements. Similar sparse representation techniques for salient feature

identification were also examined in [59]. An adaptive compressive imaging procedure

driven by a saliency “map” obtained via low-resolution discrete cosine transform (DCT)

measurements was demonstrated in [60]. Here, unlike in [57,59], we consider salient fea-

ture identification based on compressive samples, and while our approach is similar in

spirit to the problem examined in [60], here we provide theoretical guarantees for the

performance of our approach. Finally, we note several recent works [61,62] that propose

methods for identifying salient elements in a data set using compressive samples.

2.2 Main Results

2.2.1 Problem Statement

Our specific problem of interest here may be formalized as follows. We suppose M ∈
Rn1×n2 admits a decomposition of the form M = L+ C, where L is a low-rank matrix

having rank at most r, and C is a matrix having some k ≤ n2 nonzero columns that we

will interpret as “outliers” from L, in the sense that they do not lie (entirely) within the

span of the columns of L. Formally, let L denote the linear subspace of Rn1 spanned by

the columns of L (and having dimension at most r), denote its orthogonal complement

in Rn1 by L⊥, and let PL and PL⊥ denote the orthogonal projection operators onto L
and L⊥, respectively. We assume that the nonzero columns of C are indexed by a set

IC of cardinality k, and that i ∈ IC if and only if ‖PL⊥C:,i‖2 > 0. Aside from this

assumption, the elements of the nonzero columns of C may be arbitrary.

Notice that without loss of generality, we may assume that the columns of L are zero

at the locations corresponding to the nonzero columns of C (since those columns of L

can essentially be aggregated into the nonzero columns of C, and the resulting column

will still be an outlier according to our criteria above). We adopt that model here, and

assume L has a total of nL nonzero columns1 with nL ≤ n2 − k, which allows for the

1As we will see, the conditions under which our column subsampling in Step 1 succeeds will depend
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case where some n2 − (nL + k) ≥ 0 columns of M itself may be zero.

Given this setup, our problem of interest here may be stated concisely – our aim is

to identify the set IC containing the locations of the outlier columns.

2.2.2 Assumptions

It is well-known in the robust PCA literature that separation of low-rank and sparse

matrices from observations of their sum may not be a well-posed task – for example,

matrices having only a single nonzero element are simultaneously low rank, sparse,

column-sparse, row-sparse, etc. To overcome these types of identifiability issues, it is

common to assume that the linear subspace spanned by the rows and/or columns of

the low-rank matrix be “incoherent” with the canonical basis (see, e.g., [19, 45–47]).

Incoherence assumptions are also common in matrix completion analyses; see, e.g., [63].

In a similar vein, since our aim here is to identify column outliers from an otherwise

low-rank matrix we seek conditions that make the low-rank and outlier components

distinguishable. To this end, we assume an incoherence condition on the row space

of the low-rank component L. We formalize this notion via the following definition

from [19].

Definition 1 (Column Incoherence Property). Let L ∈ Rn1×n2 be a rank r matrix with

at most nL ≤ n2 nonzero columns, and compact singular value decomposition (SVD)

L = UΣV ∗, where U is n1 × r, Σ is r × r, and V is n2 × r. The matrix L is said to

satisfy the column incoherence property with parameter µL if

max
i
‖V ∗ei‖22 ≤ µL

r

nL
,

where {ei} are basis vectors of the canonical basis for Rn2 .

Note that µL ∈ [1, nL/r]. The lower limit is achieved, for instance, when all elements

of V ∗ have the same amplitude, while the upper limit is achieved, for instance, if any one

element of V ∗ is equal to 1. For our purposes here, an undesirable scenario occurs when

one of the directions in the span of the columns of L is defined by only a single vector

on the number of nonzero columns in the low-rank component, since any all-zero columns are essentially
non-informative for learning the low-rank subspace. Thus, we make the distinction between n2 and nL
explicit throughout.
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of L, so that distinguishing that vector from a column outlier becomes ambiguous. In

those cases we have that maxi ‖V ∗ei‖22 = 1. Thus, assuming that L satisfies the column

incoherence property with small µL is sufficient to prevent such undesirable scenarios.

With this, we may state our assumptions concisely, as follows: we assume that the

components L and C of the matrix M = L+C satisfy the following structural conditions:

(c1) rank(L) = r,

(c2) L has nL nonzero columns,

(c3) L satisfies the column incoherence property with parameter µL, and

(c4) |IC | = k, where IC = {i : ‖PL⊥C:,i‖2 > 0, L:,i = 0}.

2.2.3 Recovery Guarantees and Implications

Our main results identify conditions under which the procedures outlined in Algorithm 1

and Algorithm 2 succeed. Our particular focus is on the case where the measurement

matrices are random, and satisfy the following property.

Definition 2 (Distributional Johnson-Lindenstrauss (JL) Property). An m×n matrix

Φ is said to satisfy the distributional JL property if for any fixed v ∈ Rn and any

ε ∈ (0, 1),

Pr
( ∣∣ ‖Φv‖22 − ‖v‖22

∣∣ ≥ ε‖v‖22
)
≤ 2e−mf(ε), (2.2)

where f(ε) > 0 is a constant depending only on ε that is specific to the distribution of

Φ.

Random matrices satisfying the distributional JL property are those that preserve

the length of any fixed vector to within a multiplicative factor of (1±ε) with probability

at least 1−2e−mf(ε). By a simple union bounding argument, such matrices can be shown

to approximately preserve the lengths of a finite collection of vectors, all vectors in a

linear subspace, all vectors in a union of subspaces, etc., provided the number of rows

is sufficiently large. As noted in [64], for many randomly constructed and appropriately

normalized Φ, (e.g., such that entries of Φ are i.i.d. zero-mean Gaussian, or are drawn

as an ensemble from any subgaussian distribution), f(ε) is quadratic2 in ε as ε → 0.

2It was shown in [65], for example, that f(ε) = ε2/4 − ε3/6 for matrices whose elements are appro-
priately normalized Gaussian or symmetric Bernoulli random variables.
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This general framework also allows us to directly utilize other specially constructed fast

or sparse JL transforms [66,67].

With this, we are in position to formulate our first main result. We state it here as

a theorem; its proof appears in Section 7.1.1.

Theorem 1 (Accurate Recovery via ACOS). Suppose M = L+ C, where the compo-

nents L and C satisfy the structural conditions (c1)-(c4) with

k ≤ 1

3(1 + 121 rµL)
n2. (2.3)

For any δ ∈ (0, 1), if the column subsampling parameter γ satisfies

γ ≥ max

{
200 log(6

δ )

nL
,
600(1 + 121rµL) log(6

δ )

n2
,
10rµL log(6r

δ )

nL

}
, (2.4)

the measurement matrices are each drawn from any distribution satisfying (2.2) with

m ≥ 5(r + 1) + log(k) + log(2/δ)

f(1/4)
(2.5)

and

p ≥ 11k + 2k log(n2/k) + log(2/δ)

f(1/4)
, (2.6)

the elements of φ are i.i.d. realizations of any continuous random variable, and for

any upper bound kub of k the regularization parameter is set to λ = 3
7
√
kub

, then the

following hold simultaneously with probability at least 1− 3δ:

• the ACOS procedure in Algorithm 1 correctly identifies the salient columns of C

(i.e., ÎC = IC), and

• the total number of measurements collected is no greater than
(

3
2

)
γmn2 + p.

It is interesting to compare this result with that of [19], which established that

the Outlier Pursuit procedure (2.1) succeeds in recovering the true low-rank subspace

and locations of the outlier columns provided M satisfy conditions analogous to (c1)-

(c4) with k ≤ n2/(1 + (121/9) rµL). The sufficient condition (2.3) on the number of

recoverable outliers that we identify for the ACOS procedure differs from the condition
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identified in that work by only constant factors. Further, the number of identifiable

outliers could be as large as a fixed fraction of n2 when both the rank r and coherence

parameter µL are small.

It is also interesting to note the sample complexity improvements that are achiev-

able using the ACOS procedure. Namely, it follows directly from our analysis that for

appropriate choice of the parameters γ,m, and p the ACOS algorithm correctly iden-

tifies the salient columns of C with high probability from relatively few observations,

comprising only a fraction of the measurements required by other comparable (non-

compressive) procedures [19] that produce the same correct salient support estimate

but operate directly on the full (n1 × n2) matrix M . Specifically, our analysis shows

that the ACOS approach succeeds with high probability with an effective sampling

rate of num obs
n1n2

= O
(

max
{

(r+log k)(n2/nL)µLr log r
n1n2

, (r+log k)
n1

}
+ k log(n2/k)

n1n2

)
, which may

be small when r and k are each small relative to the problem dimensions (and nL ∼ n2,

so that L does not have a large number of zero columns outside of IC).

Another point of comparison for our result comes from the related work [47], which

addresses a different (and in a sense, more difficult) task of identifying both the column

space and the set of outlier columns of a matrix M = L + C from observations that

take the form of samples of the elements of M . There, to deal with the fact that

observations take the form of point samples of the matrix (rather than more general

linear measurements as here), the authors of [47] assume that L also satisfy a row

incoherence property in addition to a column incoherence property, and show that

in this setting that the column space of L and set of nonzero columns of C may be

recovered from only O
(
n2r

2µ2 log(n2)
)

observations via a convex optimization, where

µ ∈ [1, n1/r] is the row incoherence parameter. Normalizing this sample complexity by

n1n2 facilitates comparison with our result above; we see that the sufficient conditions

for the sample complexity of our approach are smaller than for the approach of [47]

by a factor of at least 1/r, and, our approach does not require the row incoherence

assumption. We provide some additional, experimental comparisons between our ACOS

method and the RMC method in Section 2.3.

We may also obtain performance guarantees for Algorithm 2 (in effect, using a

simplified version of the analysis used to establish Theorem 1). This yields the following

corollary.
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Corollary 1 (Accurate Recovery via SACOS). Suppose M = L + C, where the com-

ponents L and C satisfy the structural conditions (c1)-(c4) with k as in (2.3). Let the

measurement matrix Φ be drawn from a distribution satisfying (2.2), and assume (2.4)

and (2.5) hold. If for any upper bound kub of k the regularization parameter is set to

λ = 3
7
√
kub

, then the following hold simultaneously with probability at least 1− 2δ:

• the SACOS procedure in Algorithm 2 correctly identifies the salient columns of C

(i.e., ÎC = IC), and

• the total number of measurements collected is no greater than mn2.

We leave the proof (which is straightforward, using the lemmata in the following

section) to the interested reader.

2.3 Experimental Evaluation

In this section we provide a comprehensive experimental evaluation of the performance of

our approaches for both synthetically generated and real data, the latter motivated by a

stylized application of saliency map estimation in an image processing task. We compare

our methods with the Outlier Pursuit (OP) approach of [19] and the Robust Matrix

Completion (RMC) approach of [47], each of which employs a convex optimization to

identify both the subspace in which the columns of the low rank matrix lie, and the

locations of the nonzero columns in the outlier matrix. We implement the RMC method

using an accelerated approximate alternating direction method of multipliers (ADMM)

method inspired by [68] (as well as [19, 69]). We implement the OP methods (as well

as the intermediate execution of the OP-like optimization in Step 1 of our approach)

using the procedure in [47]. We implement the `1-regularized estimation in Step 2 of

our procedure by casting it as a LASSO problem and using an accelerated proximal

gradient method [69].

2.3.1 Synthetic Data

We experiment on synthetically generated n1 × n2 matrices M , with n1 = 100 and

n2 = 1000, formed as follows. For a specified rank r and number of outliers k, we let

the number of nonzero columns of L be nL = n2 − k, generate two random matrices
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(i) 6.3%

Figure 2.1: Outlier recovery phase transitions plots for ACOS (white regions correspond
to successful recovery). Each row of the figure corresponds to a different level of com-
pression of rows of M , where m = 0.1n1, 0.2n1 and 0.3n1, respectively, from top to
bottom. Each column corresponds to a different level of compression of rows of M in
Step 2 of Algorithm 1, with p = 0.1n2, 0.2n2 and 0.3n2, respectively, from left to right.
The fraction of observations obtained (as a percentage, relative to the full dimension)
is provided as a caption below each figure. As expected, increasing m (top to bottom)
facilitates accurate estimation for increasing rank r of L, while increasing p (left to
right) allows for recovery of increasing numbers k of outlier columns.

U ∈ Rn1×r and V ∈ RnL×r with i.i.d. N (0, 1) entries, and we take L = [UV T 0n1×k].

We generate the outlier matrix C as C = [0n1×nL W ] where W ∈ Rn1×k has i.i.d. N (0, r)

entries (which are also independent of entries of U and V ). Then, we set M = L + C.

Notice that the outlier vector elements have been scaled, so that all columns of M have

the same squared `2 norm, in expectation. In all experiments we generate φ, Φ, and A
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with i.i.d. zero-mean Gaussian entries.

Our first experiment investigates the “phase transition” behavior of our ACOS ap-

proach; our experimental setting is as follows. First, we set the average sampling rate by

fixing the column downsampling fraction γ = 0.2, and choosing a row sampling parame-

ter m ∈ {0.1n1, 0.2n1, 0.3n1} and column sampling parameter p ∈ {0.1n2, 0.2n2, 0.3n2}.
Then, for each (r, k) pair with r ∈ {1, 2, 3, . . . , 40} and k ∈ {2, 4, 6, . . . , 100} we generate

a synthetic matrix M as above, and for each of 3 different values of the regularization

parameter λ ∈ {0.3, 0.4, 0.5} we perform 100 trials of Algorithm 1 recording in each

whether the recovery approach succeeded3 in identifying the locations of the true out-

liers for that value of λ, and associate to each (r, k) pair the (empirical) average success

rate. Then, at each (r, k) point examined we identify the point-wise maximum of the

average success rates for the 3 different values of λ; in this way, we assess whether re-

covery for that (r, k) is achievable by our method for the specified sampling regime for

some choice of regularization parameters. The results in Figure 2.1 depict the outcome

of this experiment for the 9 different sampling regimes examined. For easy comparison,

we provide the average sampling rate as fraction of observations obtained (relative to

the full matrix dimension) in the caption in each figure.

The results of this experiment provide an interesting, and somewhat intuitive, illus-

tration of the efficacy of our approach. Namely, we see that increasing the parameter m

of the matrix Φ in Step 1 of our algorithm while keeping the other sampling parameters

fixed (i.e., moving from top to bottom in any one column) facilitates accurate recovery

for increasing ranks r of the matrix L. Similarly, increasing the parameter p of the

matrix A in Step 2 of our algorithm while keeping the other sampling parameters fixed

(i.e., moving from left to right in any one row) facilitates accurate recovery for an in-

creasing number k of outlier columns. Overall, our approach can successfully recover the

locations of the outliers for non-trivial regimes of r and k using very few measurements

– see, for instance, panel (i), where ∼ 30 outlier columns can be accurately identified in

the presence of a rank ∼ 30 background using an effective sampling rate of only ∼ 6.3%.

3We solve the optimization associated with Step 2 of our approach as a LASSO problem, with 10
different choices of regularization parameter µ ∈ (0, 1). We deem any trial a success if for at least one
value of µ, there exists a threshold τ > 0 such that mini∈IC |̂ci(µ)| > τ > maxj /∈IC |̂cj(µ)| for the
estimate ĉ(µ) produced in Step 2. An analogous threshold-based methodology was employed to assess
the outlier detection performance of the Outlier Pursuit approach in [19].
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Figure 2.2: Outlier recovery phase transitions plots for SACOS (white regions corre-
spond to successful recovery). The row sampling parameters are m = 0.1n1, 0.2n1, and
0.3n1 respectively, from left to right. Increasing m in SACOS enables accurate estima-
tion for larger rank and increasing numbers of outlier columns. The sampling rate is
provided below each plot.
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Figure 2.3: Outlier recovery phase transitions plots for RMC. The average sampling
rates are 5%, 10% and 20%, from left to right. Note that the vertical (k) scale in
panels (a) and (b) matches that of Figure 2.1, while the scale on panel (c) matches
that of Figure 2.2. Further, comparing panels (a) and (b) here with Figure 2.1 shows
that ACOS outperforms RMC at low sampling rates, while comparing panels (b) and
(c) here with panels (a) and (b) of Figure 2.2 shows that SACOS yields correct outlier
identification for a larger portion of the parameter space than RMC for the same average
sampling rates.

We adopt a similar methodology to evaluate the Simplified ACOS approach, except

that we set k ∈ {20, 40, 60, . . . , 980} (and the parameter p is no longer applicable, since

there is no additional compression in Step 2 for this method). The results are shown in

Figure 2.2. As noted above the SACOS approach has a higher average sampling rate

than ACOS for the same m, but the results show this facilitates recovery of much larger

numbers k of outlier columns (notice the difference in the vertical scales in Figures 2.1

and 2.2). Overall, we may view ACOS and SACOS as complementary; when the number
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k of outlier columns is relatively small and low sampling ratio num obs
n1n2

is a primary focus,

ACOS may be preferred, while if the number k of outlier columns is relatively large,

SACOS is more favorable (at the cost of increased sample complexity).

We also compute phase transition curves for RMC using a similar methodology to

that described above. The results are provided in Figure 2.3 . We observe4 that RMC

approach is viable for identifying the outliers from subsampled data provided the sam-

pling rate exceeds about 10%, but even then only for small values of the rank r. As

alluded in the discussion in previous sections, the relative difference in performance is

likely due in large part to the difference in the observation models between the two ap-

proaches – the RMC approach is inherently operating in the presence of “missing data”

(a difficult scenario!) while our approach permits us to observe linear combinations of

any row or column of the entire matrix (i.e., we are allowed to “see” each entry of the

matrix, albeit not necessarily individually, throughout our approach).

2.3.2 Real Data

We also evaluate the performance of our proposed methods on real data in the context

of a stylized image processing task that arises in many computer vision and automated

surveillance – that of identifying the “saliency map” of an image. For this, we use

images from the MSRA Salient Object Database [12]5.

As discussed above, our approach here is based on representing each test image as a

collection of (vectorized) non-overlapping image patches. We transform each (color) test

image to gray scale, decompose it into non-overlapping 10× 10-pixel patches, vectorize

each patch into a 100×1 column vector, and assemble the column vectors into a matrix.

Most of the images in the database are of the size 300× 400 (or 400× 300), which here

yields matrices of size 100× 1200, corresponding to 1200 patches. Notice that we only

used gray scale values of image as the input feature rather than any high-level images

feature – this facilitates the use of our approach, which is based on collecting linear

measurements of the data (e.g., using a spatial light modulator, or an architecture like

the single pixel camera [70]).

4Our evaluation of RMC here agrees qualitatively with results in [47], where sampling rates around
10% yielded successful recovery for small r.

5Available online at http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/
salient_object.htm.

http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm
http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm
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Figure 2.4: Outlier recovery phase transitions plots for ACOS for noisy settings (white
regions correspond to successful recovery). Rows correspond to σ = 0.001, 0.0005
and 0.0001 respectively, from top to bottom; columns correspond to the settings m =
0.1n1, p = 0.1n2; m = 0.2n1, p = 0.2n2; and m = 0.3n1, p = 0.3n2 respectively,
from left to right. The fraction of observations obtained is provided below each column.
As in Figure 2.1, larger m and p promote accurate recovery for increasing rank r and
numbers k of outlier columns. Here, however, increasing noise variance degrades the
estimation results, especially with respect to the number k of outliers that can be
accurately identified.

Here, our experimental approach is (somewhat necessarily) a bit more heuristic than

for the synthetic data experiments above, due in large part to the fact that the data here

may not adhere exactly to the low-rank plus outlier model. To compensate for this, we

augment Step 1 of Algorithm 1 and Algorithm 2 with an additional “rank reduction”

step, where we further reduce the dimension of the subspace spanned by the columns

of the learned L̂(1) by truncating its SVDs to retain the smallest number of leading
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singular values whose sum is at least 0.95 × ‖L̂(1)‖∗. Further, we generalize Step 2 of

each procedure by declaring an image patch to be salient when its (residual) column

norm is sufficiently large, rather than strictly nonzero. We used visual heuristics to

determine the “best” outputs for Step 2 of each method, selecting LASSO parameters

(for ACOS) or thresholds (for SACOS) in order to qualitatively trade off false positives

with misses.

We implement our ACOS and SACOS methods using three different sampling regimes

for each, with the fixed column downsampling parameter γ = 0.2 throughout. For

ACOS, we examine settings where m = 0.2n1, 0.1n1 and 0.05n1 with p = 0.5n2, which

result in average sampling rates of 4.5%, 2.5% and 1.5%, respectively. For SACOS, we

examine settings where m = 0.2n1, 0.05n1 and 0.03n1, resulting in average sampling

rates of 20%, 5% and 3%, respectively. As before, we generate the Φ and A matrices to

have i.i.d. zero-mean Gaussian entries. We compare our approaches with two “bench-

marks” – the Graph-based visual saliency (GBVS) method from the computer vision

literature [11] and the OP approach (both of which use the full data) – as well as with

the RMC approach at sampling rates of 20% and 5%.

The results of this experiment are provided in Figure 2.5. We note first that the OP

approach performs fairly well at identifying the visually salient regions in the image,

essentially identifying the same salient regions as the GBVS procedure and providing

evidence to validate the use of the low-rank plus outlier model for visual saliency (see

also [15]). Next, comparing the results of the individual procedures, we see that the

OP approach appears to uniformly give the best detection results, which is reasonable

since it is using the full data as input. The RMC approach performs well at the 20%

sampling rate, but its performance appears to degrade at the 5% sampling rate. The

SACOS approach, on the other hand, still produces reasonably accurate results using

only 3% sampling. Moreover, ACOS provides acceptable results even with 1.5-2.5%

sampling rate.

We also compare implementation times of the algorithms on this saliency map esti-

mation task. Table 2.1 provides the average execution times (and standard deviations)

for each approach, evaluated over 1000 images in the MSRA database6. Here, we only

6Timing comparisons were done with MATLAB R2013a on an iMac with a 3.4 GHz Intel Core i7
processor, 32 GB memory, and running OS X 10.8.5.
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execute each procedure for one choice of regularization parameter, and we also include

the additional “rank reduction” step discussed above for the ACOS and SACOS meth-

ods. Overall, we see the ACOS approach is up to 4× faster than the GBVS method

and 15× faster than the OP and RMC methods, while the SACOS approach could re-

sult overall in relative speedups of 100× over GBVS and 300× over the OP and RMC

methods. Overall, our results suggest a significant improvement obtained via ACOS

and SACOS for both detection consistency and timing, which may have a promising

impact in a variety of salient signal detection tasks.

Method GBVS OP RMC RMC SACOS SACOS SACOS ACOS ACOS ACOS
Sampling 100% 100% 20% 5% 20% 5% 3% 4.5% 2.5% 1.5%

Figure 2.5: Detection results for the MSRA Salient Object Database for various meth-
ods. Our ACOS approach produces results comparable to the “full sampling” OP
method using an average sampling rate below 5%. The performance of the RMC ap-
proach appears to degrade at low sampling rates.
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Table 2.1: Timing analysis for detection experiments on 1000 images from MRSA
Database. Each entry is the mean execution time in seconds with the standard de-
viation in parenthesis.

Method GBVS OP RMC RMC SACOS SACOS ACOS ACOS
Sampling 100% 100% 20% 5% 20% 3% 4.5% 1.5%

Step 1 0.9926 2.9441 2.6324 2.7254 0.0538 0.0074 0.0533 0.0105
(0.274) (0.385) (0.323) (0.366) (0.012) (0.002) (0.012) (0.003)

Step 2 – – – – 0.0015 0.0009 0.2010 0.2065
– – – – (0.001) (0.001) (0.067) (0.069)

2.4 Extensions

2.4.1 Group Structure

We also consider the task of locating salient group-structured features [21]. Let G ∈
Rt1×t2 denote the original image panel, and let F ∈ Rt1×t2 denote the output of a linear

operator applied to G. In what follows, the linear operators we will consider correspond

to filters that extract specific features from the image G (e.g., vertical or horizontal

edge detectors, or Laplacian of Gaussian filters, which detect edges at any orientation).

Now, we reinterpret F as a different matrix, by first decomposing it into n2 patches of

size s1 × s2, vectorizing each patch into a n1×1 column vector where n1 = s1s2, and

assembling the column vectors into a matrix M ∈ Rn1×n2 . We denote the collection

of the locations of the outlier columns as a set IC ⊂ {1, 2, . . . , n2}. Here, we assume

that k , |IC | < n2; i.e., that the number of outlier columns is (perhaps much) smaller

than the number of columns of M . Further, we assume that the elements of IC occur

in “groups,” which may be formalized for our purposes as follows. Suppose that the set

{1, 2, . . . , n2} is partitioned into J disjoint subsets, each of size B = n2/J . Then, we

assume that the elements comprising IC correspond to only a small number of the J

subgroups of column indices.

Our aim here is to estimate IC from a small number of linear observations of M .

To this end, we adopt the two-step adaptive compressive sensing approach outlined in

Algorithm 3. Our analysis in the next section establishes performance guarantees for

this approach.
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Algorithm 3 Salient Feature Detection via Group Adaptive Compressive Sensing
(GACS)

Input: M ∈ Rn1×n2 , γ ∈ [0, 1], λ1 > 0, Φ ∈ Rm×n1 , A ∈ Rp×n2 and φ ∈ R1×m

Initalize: Column sampling matrix S = I:,S , where
S = {i : Si = 1} with {Si}i∈[n2] i.i.d. Bernoulli(γ)

Step 1
Collect Measurements: Y(1) = ΦMS

Solve: {L̂(1), Ĉ(1)} = argminL(1),C(1)
‖L(1)‖∗ + λ1‖C(1)‖1,2 s.t. Y(1) = L(1) + C(1)

Let: L̂(1) be the linear subspace spanned by col’s of L̂(1)

Step 2
Collect Measurements: y(2) = φ PL̂⊥

(1)
ΦMAT

Solve: ĉ = argminc

∑J
j=1 ‖cj‖2 s.t. y(2) = cAT

Output: Saliency segmentation FI ∈ Rt1×t2 , where the i-th patch is assigned with 1 if ĉi 6= 0;

otherwise 0 if ĉi = 0, i = 1, 2, . . . , n2

The following result quantifies the performance of the GACS approach under the

structural assumptions outlined above.

Theorem 2. Given any δ ∈ (0, 1/3), suppose M = L + C, where the components L

and C satisfy the structural assumptions above with

k ≤ n2/(c1rµL), (2.7)

γ ≥ c2rµL log r/nL, (2.8)

m ≥ c3(r + log k), (2.9)

p ≥ c4

(
k +

k√
B

log
n2 − k
B

)
, (2.10)

where c1− c4 are some constants depending on δ. Let Φ ∈ Rm×n1 have i.i.d. N (0, 1/m)

entries, A ∈ Rp×n2 have i.i.d. N (0, 1/p) entries, and let elements of φ ∈ R1×m be

i.i.d. realizations of any continuous random variable. For any upper bound kub of k the

regularization parameter is set to λ = 3
7
√
kub

, then the following hold simultaneously with

probability at least 1− 3δ: (i) the GACS procedure in Algorithm 3 correctly identifies

the salient columns of C (i.e., ÎC = IC), and (ii) the total number of measurements

collected is no greater than
(

3
2

)
γmn2 + p.
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Notice that the effective sampling rate here is

#obs

n1n2
= O

(
(r + log k)(n2/nL)µLr log r

n1n2
+
k + k√

B
log n2−k

B

n1n2

)
,

which could be much smaller than 1, indicating that accurate outlier identification may

be achieved using significantly downsampled data.

Visual Experimental Results.

In this section, we provide visual experimental results to demonstrate the efficacy of

the extensions that we examine here. The image database we used here (and the next

section) is MSRA10K [71], where carefully manually labeled ground truth is provided

for each image.

Sampling Low-Level Features: We examine several low-level features, including

pixel-level features on the color (Red, Green, and Blue) planes, Laplacian of Gaussian

filters (LoG), and horizontal and vertical edge-emphasizing filters (referred to here by the

acronyms HE and VE, respectively). Since our overall approach allows for incorporation

of any linear operator mapping of the original image G to the feature image F , each

of these low-level features are valid within our overall framework (provided that the

acquisition modality acquires and operates on the conventional RGB color panels).

In addition, we also investigate a variant of our approach that can be used to identify

salient features in other color spaces (e.g., HSI, or the hue-saturation-intensity space).

Strictly speaking, this transformation would fall outside of our specified observation

model, since the mapping from RGB to the HSI space is nonlinear and thus cannot

be directly incorporated into our sampling structure. To overcome this limitation here,

we consider applying this nonlinear transformation on the compressed observed data,

when seeking to locate salient features in these color spaces. More formally, suppose

that Mr, Mg and Mb denote the reshaped matrices from red, green and blue panels,

respectively, of an image. We can consider transforming the compressed measurements

that result from step 1 of our approach to the HSI color space by applying the RGB

to HSI transformation to the stacked color panels ΦMrS, ΦMgS and ΦMbS. In what

follows, we refer to this approach as “Stacked HSI.”

We demonstrate several saliency detection results using these different features; the

results appear in Figure 2.6. Overall, we observe (as expected) that different low-level
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features are receptive to different types of features. What is interesting here is that

these features are accurately unveiled from the under sampled data resulting from our

approach.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 2.6: Gray scale saliency map estimate via low-level image features, including
RGB (c)-(e), stacked HSI (f)-(h), LoG (i), HE (j) and VE (k). Original images the their
ground truth are given in (a) and (b) respectively. We set γ = 0.2, m = 0.2n1 and p =
0.5n2 with the sampling rate of 4.5% for n1 = 100 and n2 = 1200.

Grouping Effect: We provide some visual evidence of the grouping effect in Figure

2.7 using square-shaped groups in the feature space with side lengths g = 1, 2, and

3. Notice that g = 1 corresponds to no grouping effect. It is evident that grouping

adjacent features does show improvement due to its robustness to background noise

and lower sample demands (p = O(k + k√
B

log n2−k
B ) may be considerably smaller than

p = O(k log n2) when B is large) compared with that without grouping.

Comparison with Existing Saliency Detection Methods: We compare our ap-

proach with other state-of-art methods, including global based (GB) [11], region contract

(RC) [71], self-resemblance (SeR) [72], frequency tuned (FT) [73], low rank (LR) [15],

spectral residual (SR) [74] and spatially weighted dissimilarity (SWD) [75] methods,

whose saliency maps are provided in the MSRA10K database. For our approach GACS,

we set m = 0.1n1, which results in an average sampling rate of 2.5%. A set of selected

results are shown in Figure 2.8. We observe that our results are visually comparable,

or even better than the results from some state-of-art methods that extract high level

features, using only a few (2.5%) linear measurements.
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(a) (b) (c) (d) (e)

Figure 2.7: Detection results with the grouping effect. Column (a) - (e) are the original
image, ground truth, detection result without grouping effect and with grouping effects
(g = 2 in (d) and 3 in (e)) respectively. We set γ = 0.2, m = 0.1n1 and p = 0.5n2,
which corresponds to the sampling rate of 2.5%.

Quantitative Experimental Results: We also provide some quantitative experi-

mental evidence to validate our approach. For all evaluations in this section, we use

non-overlapping feature patches of size s1 = s2 = 10, fix γ = 0.2, λ1 = 0.4 and p =

0.5 n2, and solve a constrained version of the optimization in Step 2 using 100 turning

parameters λ2. For each λ2, we obtain the saliency segmentation FI and compare it to

the ground truth to calculate P = Precision, R = Recall and F-measure = (β2+1)P ·R
(β2P+R)

.

We follow [15,71,73] and set β2 = 0.3. For each image, we choose the feature (from R,

G, B, H, S, I, LoG, HE and VE) that returns the highest maximum F-measure. For all

experiments, the precision and recall curves are averages over the tested set of images,

and the maximum average F-measure is provided with the average precision and recall

values. In practice, the image background is not exactly low-rank, so a “rank reduction”

step is applied in Step 1 that retains the smallest number of leading singular values of

L̂ whose sum is at least 0.95×‖L̂‖∗.
Grouping: We start with an evaluation of the grouping effect. A random subset of

2,000 images from the MSRA10K database is selected as the test set and the average

sampling rate is 4.5% with m = 0.2n1. The group size is chosen from g ∈ {1, 2, 3, 4, 5, 6}.
Note that g = i here indicate the use of all group sizes 1≤ g ≤ i and we choose the g

that returns the highest maximum F-measure for each image.

The plot of precision-recall curves and the average precision, recall and F-measure
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2.8: Detection results for the MSRA10K Salient Object Database for various
methods. From (a) to (j), it corresponds to the original image, ground truth, SR, SeR,
GB, FT, SWD, LR, RC and GACS respectively. For GACS, the results corresponds to
S, G, LoG, I, R, H respectively from top to bottom.

over the choices of group sizes are provided in Figure 2.9 (a). The observation is that the

grouping procedure (i.e. g ≥ 2) does show a considerable enhancement. On the other

hand, when g ≥ 4, the improvement becomes minor, which coincides with our observa-

tion that g = 2 or 3 gives the best performance most of the time. For computational

efficiency, we fix g = 3 for the rest our experimental investigations.

Comparisons: We run a thorough test on the entire database (i.e., 10,000 images)

for all 8 other approaches and ours, with the precision-recall curves and the average

precision, recall and F-measure results demonstrated in Figure 2.9 (b). Though, our

approach here is not giving the best performance across all tested methods, it is inspiring

to see that GACS is comparable to the stat-of-art using only 2.5% measurements.
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Figure 2.9: Comparison results on the MSRA10K database with (a) different grouping
sizes (g = 1, . . . , 6), (b) different methods (GB ,RC, SeR, SR, SWD, FT and LR), and
(c) different levels of missing entries (pΩ = 1, 0.7, 0.5 and 0.3 respectively from left to
right). The precision-recall curves (top row) and average precision, recall and F-measure
(bottom row) are demonstrated.

2.4.2 Noisy Observations

We demonstrate the outlier detection performance of our approaches under the scenario

when M is contaminated by unknown random noise or modeling error. Formally, we

consider the setting where L and C are as above, but

M = L+ C +N, (2.11)

where N has i.i.d. N (0, σ2) entries.
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Figure 2.10: Outlier recovery phase transitions plots for SACOS for noisy settings (white
regions correspond to successful recovery). Rows of the figure correspond to σ = 0.03,
0.02 and 0.01 respectively, from top to bottom; columns correspond to m = 0.1n1, 0.2n1,
and 0.3n1 respectively, from left to right. The fraction of observations obtained is
provided below each column. In this case, increasing noise variance results in a decrease
in both the rank r as well as the number k of outliers that can be accurately identified.

We first investigate the performance of the ACOS method, following a similar ex-

perimental methodology as in Section 2.3 to generate L and C, except that now we

renormalize each column of (L + C) to have unit Euclidean norm (essentially to stan-

dardize the noise levels). We consider three different noise levels (σ = 0.001, 0.0005 and

0.0001), three pairs of the row sampling parameter m and the column sampling param-

eter p (m = 0.1n1, p = 0.1n2; m = 0.2n1, p = 0.2n2; and m = 0.3n1, p = 0.3n2)

and for each we fix the column downsampling fraction to be γ = 0.2; the corresponding

sampling ratios are 2.1%, 4.2% and 6.3%, respectively. We again perform 100 trials

of Algorithm 1 and record the success frequency for each (using the same criteria for
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success as in Sect. 2.3.1). The results are given in Figure 2.4.

It can be observed from the results that increasing m and p promote accurate esti-

mation of outlier column indices for increasing rank r and numbers k of outlier columns,

which is exactly what we have seen in Figure 2.1 for the noiseless case. However, the

presence of noise degrades the estimation performance, albeit gracefully. This is rea-

sonable, since in Step 2 of Algorithm 1, the measurements y2 might be perturbed more

seriously as the energy of noise increases, which results in more difficult recovery of true

supports of c. Under this scenario, we will require larger p to enable better recovery of

the underlying true supports.

We also evaluate the SACOS procedure in noisy settings for three choices of m

(m = 0.1n1, 0.2n1 and 0.3n2) and fixed column downsampling fraction γ = 0.2. Here, we

again normalize columns of (L+C), but consider three higher noise levels, corresponding

to σ = 0.03, 0.02 and 0.01. The results are presented in Figure 2.10. Here, we again

observe a graceful performance degradation with noise. Notice, however, that higher

level of variances of noise can be tolerated for SACOS compared with ACOS, which is

an artifact of the difference between the inference steps of the two procedures.

2.4.3 Missing Data

We also describe and demonstrate an extension of our SACOS method that is amenable

to scenarios characterized by missing data. Suppose that there exists some underlying

matrix M that admits a decomposition of the form M = L+C with L and C as above,

but we are only able to observe M at a subset of its locations. Formally, we denote by

Ω ⊆ [n1]× [n2] the set of indices corresponding to the available elements of M , and let

PΩ(·) be the operator that masks its argument at locations not in Ω. Thus, rather than

operate on M itself, we consider procedures that operate on the sampled data PΩ(M).

In this setting, we can modify our SACOS approach so that the observations obtained

in Step 1 are of the form Y(1) = ΦPΩ(M)S, where (as before) S is a column selection

matrix but Φ is now a row subsampling matrix (i.e., it is comprised of a subset of rows

of the n1 × n1 identity matrix) containing some m rows. The key insight here is that

the composite operation of sampling elements of M followed by row subsampling can be

expressed in terms of a related operation of subsampling elements of a row-subsampled

version of M . Specifically, we have that ΦPΩ(M) = PΩΦ
(ΦM), where PΩΦ

(·) masks the
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same elements as PΩ(·) in the rows selected by Φ.

Now, given Y(1), we solve a variant of RMC [47]

{L̂(1), Ĉ(1)} = argmin
L(1),C(1)

‖L(1)‖∗ + λ‖C(1)‖1,2 s.t. Y(1) = PΩΦ
(L(1) + C(1))

in an initial step, identifying (as before) an estimate L̂(1) whose column span is an

estimate of the subspace spanned by the low-rank component of ΦM .

Then (in a second step) we perform the “missing data” analog of the orthogonal

projection operation on every column j ∈ [n2] of ΦPΩ(M), as follows. For each j ∈ [n2],

we let Ij ∈ [m] denote the locations at which observations of column j of ΦPΩ(M) are

available, and let (ΦPΩ(M))Ij ,j be the sub vector of (ΦPΩ(M)):,j containing only the

elements indexed by Ij . Similarly, let (L̂(1))Ij ,: be the row submatrix of L̂(1) formed

by retaining rows indexed by Ij . Now, let PL̂(1)j

denote the orthogonal projection onto

the subspace spanned by columns of (L̂(1))Ij ,: and compute the residual energy of the

j-th column as ‖(I −PL̂(1)j

)(ΦPΩ(M))Ij ,j‖2. Overall, the orthogonal projection for the

j-th column of ΦPΩ(M) is only computed over the nonzero entries of that column, an

approach motivated by recent efforts in subspace detection with missing data [76,77].

We evaluate this approach empirically using the same data generation methods as

above, and using an independent Bernoulli model to describe the subsampling operation

PΩ(·) (so that each (i, j) ∈ Ω independently with probability pΩ). We consider noise-free

settings, fix the column subsampling parameter γ = 0.2, and examine three different

row-sampling scenarios (m = 0.1n1, 0.2n1 and 0.3n1) in each choosing subsets of m rows

uniformly at random from the collection of all
(
n1

m

)
sets of cardinality m. The results

are in Figure 2.11. Again, increasing m and p permits accurate estimation of outlier

column indices for increasing rank r and numbers k of outlier columns. Further, we do

observe the performance degradation as the number of missing entries of M increases.

For noisy observation and missing entry cases, we provide detailed theoretical anal-

yses in [22].
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Figure 2.11: Outlier recovery phase transitions plots for a “missing data” variant of the
SACOS method (white regions correspond to successful recovery). Rows correspond to
available data fractions of pΩ=0.3, 0.5 and 0.7 respectively, from top to bottom; columns
corresponds to row sampling parameters m = 0.1n1, 0.2n1, and 0.3n1, respectively, from
left to right.

2.5 Discussion

It is illustrative here to note a key difference between our approach and more conven-

tional compressive sensing (CS) tasks. Namely, the goal of the original CS works [5–7]

and numerous follow-on efforts was to exactly recover or reconstruct a signal from

compressive measurements, whereas the nature of our task here is somewhat simpler,

amounting to a kind of multidimensional “support recovery” task (albeit in the pres-

ence of a low-rank “background”). Exactly recovering the low-rank and column-sparse



35

components would be sufficient for the outlier identification task we consider here, but

as our analysis shows it is not strictly necessary. This is the insight that we exploit

when operating on the “compressed” data ΦM instead of the original data matrix M .

Ultimately, this allows us to successfully identify the locations of the outliers without

first estimating the original (full size) low-rank matrix or the outliers themselves. For

some regimes of µL, r and k, we accomplish the outlier identification task using as few

as O ((r + log k)(µLr log r) + k log(n2/k)) observations.

Along related lines, it is reasonable to conjecture that any procedure would require

at least r2 + k measurements in order to identify k outliers from an r-dimensional

linear subspace. Indeed, a necessary condition for the existence of outliers of a rank-r

subspace, as we have defined them, is that the number of rows of M be at least r + 1.

Absent any additional structural conditions on the outliers and the subspace spanned

by columns of the low-rank matrix, one would need to identify a collection of r vectors

that span the r-dimensional subspace containing the column vectors of the low-rank

component (requiring specification of some O(r2) parameters) as well as the locations

of the k outliers (which would entail specifying another k parameters). In this sense,

our approach may be operating near the sample complexity limit for this problem, at

least for some regimes of µL, r and k.

It would be interesting to see whether the dimensionality reduction insight that we

exploit in our approach could be leveraged in the context of the Compressive Princi-

pal Component Pursuit (Compressive PCP) of [55] in order to yield a procedure with

comparable performance as ours, but which acquires only non-adaptive linear measure-

ments of M . Direct implementation of that approach in our experimental setting was

somewhat computationally prohibitive (e.g., simulations at a 10% sampling rate would

require generation and storage of random matrices having 109 elements). Alternatively,

it is interesting to consider implementing the Compressive PCP method not on the full

data M , but on the a priori compressed data ΦM . Our Lemma 6 establishes that the

row compression step preserves rank and column incoherence properties, so it is plausi-

ble that the Compressive PCP approach may succeed in recovering the components of

the compressed matrix, which would suffice for the outlier identification task. We defer

this investigation to a future effort.
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Table 2.2: Computational complexities of outlier identification methods. The stated
results assume use of an accelerated first order method for all solvers (see text for
additional details).

Method Complexity

OP O (IT · [n1n2 ·min{n1, n2}])
RMC O (IT · [n1n2 ·min{n1, n2}])
ACOS O (IT1 [m(γn2) min{m, γn2}] + IT2 [pn2])

SACOS O
(
IT1 [m(γn2) min{m, γn2}] +m2n2

)

We also comment briefly on the computational complexities of the methods we ex-

amined. We consider first the OP and RMC approaches, and assume that the solvers

for each utilize an iterative accelerated first-order method (like those mentioned in the

first part of Section 2.3). In this case, the computational complexity will be dom-

inated by SVD steps in each iteration. Now, for an n1 × n2 matrix the computa-

tional complexity of the SVD is O(n1n2 · min{n1, n2}); with this, and assuming some

IT iterations are used, we have that the complexities of both OP and RMC scale as

O (IT · [n1n2 ·min{n1, n2}]). By a similar analysis, we can conclude that the complexity

of Step 1 of the ACOS and SACOS methods scales like O (IT1 · [m(γn2) ·min{m, γn2}]),
where IT1 denotes the number of iterations for the solver in Step 1. If we further as-

sume an iterative accelerated first-order method for the LASSO in Step 2 of the ACOS

approach, and that IT2 iterations are used, then the second step of the ACOS approach

would have overall computational complexity O (IT2 · [pn2])). Along similar lines, Step

2 of SACOS would entail O(m2n2+mn2) = O(m2n2) operations to compute the orthog-

onal projections and their `2 norms. We summarize the overall complexity results in

Table 2.2. Since we will typically have γ small, m� n1, and p� n2 in our approaches,

the computational complexity of our approaches can be much less than methods that

operate on the full data or require intermediate SVD’s of matrices of the same size as

M .

Note that we have not included here the complexity of acquiring or forming the

observations in any of the methods. For the ACOS method, this would comprise up to

an additional O (mn1(γn2)) operations for Step 1 and O(m2 + mn1 + n1n2 + n2p) =

O(mn1 + n1n2 + n2p) operations for Step 2, where the complexity for the second step
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is achieved by iteratively multiplying together the left-most two factors in the overall

product, and using the fact that m ≤ n1. Similarly, observations obtained via the

SACOS approach could require up O(mn1n2) operations. On the other hand, depending

on the implementation platform, forming the observations themselves could also have

a negligible computational effect e.g., in our imaging example when linear observations

are formed “implicitly” using a spatial light modulator or single pixel camera [70].

Finally, we note that further reductions in the overall complexity of our approach may

be achieved using fast or sparse JL embeddings along the lines of [66,67].

Finally, it is worth noting7 that the performance in our our visual saliency application

could likely be improved using an additional assumption that the salient regions be

spatially clustered. This could be implemented here using group sparse regularization

(e.g. [78]) in Step 2 of ACOS, or by directly identifying groups of nonzero elements in

Step 2 of SACOS. We defer investigations along these lines to a future effort.

7Thanks to David B. Dunson and Alfred O. Hero for these suggestions.



Chapter 3

Sketching of Low-Rank Tensor

Regression

3.1 Introduction

For a sequence of D-way design tensors Ai ∈ Rp1×···×pD , i ∈ [n] = {1, . . . , n}, we observe

noisy linear measurements of an unknown D-way tensor Θ ∈ Rp1×···×pD , given by

bi = 〈Ai,Θ〉+ zi, for all i ∈ [n], (3.1)

where {zi}ni=1 corresponds to the noise in each observation, and 〈Ai,Θ〉 =

vec(Ai)
>vec(Θ), with vec(X) denoting the vectorization of a tensor X. Given the

design tensors {Ai}ni=1 and noisy observations {bi}ni=1, a natural approach for estimat-

ing the parameter Θ is to use the Ordinary Least Square (OLS) estimation for tensor

regression, i.e., to solve

min
Θ∈Rp1×···×pD

n∑

i=1

(bi − 〈Ai,Θ〉)2 . (3.2)

Tensor regression has been widely studied in the literature. Applications include com-

puter vision [79–81], data mining [82], multi-model ensembles [83], neuroimaging anal-

ysis [84, 85], multitask learning [86, 87], and multivariate spatial-temporal data analy-

sis [88,89]. In these applications, modeling the unknown parameters as a tensor is what

38
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is needed, as it allows for learning data that has multi-directional relations, such as in

climate prediction [90], inherent structure learning with multi-dimensional indices [86],

and hand movement trajectory decoding [81].

Due to the high dimensionality of tensor data, structured learning based on low-rank

tensor decompositions, such as CANDECOMP/PARAFAC (CP) decomposition and

Tucker decomposition models [91, 92] have been proposed in order to obtain tractable

tensor regression problems. As discussed more below, requiring the unknown tensor to

be low-rank significantly reduces the number of unknown parameters. As natural convex

formulations based on the nuclear norm are known to be computationally expensive

[93, 94], nonconvex heuristics for low-rank tensor recovery are often used in practice

[83,86,88].

We consider low-rank tensor regression problems based on the CP decomposition

and Tucker decomposition models. For simplicity, we first focus on the CP model, and

later extend our analysis to the Tucker model. Suppose that Θ admits a rank-R CP

decomposition, that is,

Θ =

R∑

r=1

θ
(r)
1 ◦ · · · ◦ θ

(r)
D , (3.3)

where θ
(r)
d ∈ Rpd for all r ∈ [R] and ◦ is the outer product of vectors. For convenience,

we denote the set of factors for low-rank tensors by

SD,R =
{

[[Θ1, . . . ,ΘD]] : Θd = [θ
(1)
d , . . . , θ

(R)
d ] ∈ Rpd×R, for all d ∈ [D]

}
.

Then we can rewrite model (3.1) in a compact form

b = A(ΘD � · · · �Θ1)1R + z, (3.4)

where b, z ∈ Rn, A = [vec(A1), · · · , vec(An)]> ∈ Rn×
∏D
d=1 pd , 1R = [1, . . . , 1] ∈ RR is

a vector of all 1s, ⊗ is the Kronecker product, and � is the Khatri-Rao product1. In

addition, the OLS estimation for tensor regression (3.2) can be rewritten as the following

1These are defined below in the section of notation.



40

nonconvex problem in terms of low-rank tensor parameters [[Θ1, . . . ,ΘD]],

min
ϑ∈S�D,R

‖Aϑ− b‖22, (3.5)

where S�D,R =
{

(ΘD � · · · �Θ1)1R ∈ R
∏d=1
D pd : [[Θ1, . . . ,ΘD]] ∈ SD,R

}
.

The number of parameters for a general tensor Θ ∈ Rp1×···×pD is
∏D
d=1 pd, which

may be prohibitive even for small values of {pd}Dd=1. The benefit of the low-rank model

(3.3) is that it dramatically reduces the degrees of freedom of the unknown tensor from
∏D
d=1 pd to R

∑D
d=1 pd, where we are typically interested in the case when R � pd for

each d ∈ [D]. For example, a typical MRI image has size 2563 ≈ 1.7 × 107, while

using the low-rank model with R = 5, we reduce the number of unknown parameters to

256× 3× 5 ≈ 4× 103 � 107. This significantly increases the applicability of the tensor

regression model in practice.

Nevertheless, solving the tensor regression problem (3.5) is still expensive in terms of

both computation and memory requirements, for typical settings, when n� R·∑D
d=1 pd,

or even n � ∏D
d=1 pd. In particular, the per iteration complexity is at least linear in

n for popular algorithms such as block alternating minimization and block gradient

descent [95,96]. In addition, in order to store A, it takes n ·∏D
d=1 pd words of memory.

Both of these aspects are undesirable when n is large. This motivates us to consider

data dimensionality reduction techniques, also called sketching, for the tensor regression

problem.

Instead of solving (3.5), we consider the Sketched Ordinary Least Square (SOLS)

estimation problem, defined as

min
ϑ∈S�D,R

‖ΦAϑ− Φb‖22, (3.6)

where Φ ∈ Rm×n is a random matrix specified below. Importantly, Φ will satisfy two

properties discussed below, namely (1) m � n so that we significantly reduce the size

of the problem, and (2) Φ will be very sparse so that it can be applied very quickly.

Näıvely applying existing analyses of sketching techniques for least squares regression

requires m = Ω
(∏D

d=1 pd

)
(for a survey, see, e.g., [97]), which is prohibitive. Here, we

use a sparse Johnson-Lindenstrauss transformation (SJLT) as our sketching matrix,
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with constant column sparsity and dimension m = Ω
(
R ·∑D

d=1 pd

)
, up to logarithmic

factors. We show that with high probability, simultaneously for every ϑ ∈ S�,D,R, we

have ‖ΦAϑ − Φb‖22 = (1 ± ε)‖Aϑ − b‖22, which implies that any solution to (3.6) has

the same cost as in (3.5) up to a (1 + ε)-factor. In particular, by solving (3.6) we

obtain a (1+ε)-approximation to (3.5). Our result is the first non-trivial dimensionality

reduction for this problem, i.e., dimensionality reduction better than
(∏D

d=1 pd

)
, which

is trivial by ignoring the low rank structure of the tensor, and which achieves a relative

error (1 + ε)-approximation.

Our analysis is based on a careful characterization of Talagrand’s functional for the

parameter space of low-rank tensors. Our sketching dimension m almost meets the

intrinsic dimension of low-rank tensors, and is thus nearly optimal. We further provide

numerical evaluations on both synthetic and real data to demonstrate the empirical

performance of sketching based estimation.

Notation. For scalars x, y ∈ R, we denote x = (1 ± ε)y if x ∈ [(1 − ε)y, (1 + ε)y],

x . (&)y if x ≤ (≥)cy for some universal constant c > 0, and x ' y if both x . y and

x & y hold. We also use standard asymptotic notation O(·) and Ω(·). Given a positive

integer n, let [n] = {1, . . . , n}. Given a vector v ∈ Rp, we denote ‖v‖1 =
∑p

i=1 |vi|,
‖v‖22 =

∑p
i=1 v

2
i , and ‖v‖∞ = maxi∈[p] |vi|. Given d vectors v1 ∈ Rp1 , . . . , vd ∈ Rpd , we

denote v1 ◦ · · · ◦ vd ∈ Rp1×···×pd as a tensor formed by the outer product of vectors.

Given a matrix A ∈ Rm×n, we denote its spectral norm by ‖A‖2, we let span(A) ⊆ Rm

be the subspace spanned by the columns of A, we let σmax(A) and σmin(A) be the

largest and smallest singular values of A, respectively, and κ(A) = σmax(A)/σmin(A)

be the condition number. We use nnz(A) to denote the number of nonzero entries

of A. We use PA as the projection operator onto span(A). Given two matrices A =

[a1, . . . , an] ∈ Rm×n and B = [b1, . . . , bq] ∈ Rp×q, A⊗B = [a1⊗B, . . . , an⊗B] ∈ Rmp×nq

denotes the Kronecker product, and A � B = [a1 ⊗ b1, . . . , an ⊗ bn] ∈ Rmp×n denotes

the Khatri-Rao product with n = q. We let Bn ⊂ Rn be the unit sphere of Rn, i.e.,

Bn = {x ∈ Rn : ‖x‖2 = 1}. We also let P(·) be the probability of an event and E(·) the

expectation of a random variable. Without further specification, we let
∏
pd =

∏D
d=1 pd

and
∑
pd =

∑D
d=1 pd.
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3.2 Dimensionality Reduction for CP Decomposition

3.2.1 Background

We start with a few important definitions.

Definition 3 (Oblivious Subspace Embedding). Suppose Π is a distribution on m× n
matrices Φ, where m is a function of parameters n, d, and ε. Further suppose that with

probability at least 1− δ, for any fixed n× d matrix A, a matrix Φ drawn from Π has

the property that Φ is a (1± ε) subspace embedding for A, i.e., ‖ΦAx‖22 = (1± ε)‖Ax‖22
for any x ∈ X ⊆ Rd. Then we call Π an (ε, δ) oblivious subspace embedding (OSE) of

X .

An OSE Φ preserves the norm of vectors in a certain set X after linear transfor-

mation by A. This is widely studied as a key property for sketching based analyses

(see [97] and the references therein). We want to show an analogous property when X
is parameterized by a low-rank tensor model.

Definition 4 (Leverage Scores). Given A ∈ Rn×d, let Z ∈ Rn×d have orthonormal

columns that span the column space of A. Then `2i (A) = ‖e>i Z‖22 is the i-th leverage

score of A.

Leverage scores play an important role in randomized matrix algorithms [98–100].

Calculating the leverage scores näıvely by orthogonalizing A requires O(nd2) time. It is

shown in [101] that the leverage scores of A can be approximated individually up to a

constant multiplicative factor in O(nnz(A) log n + poly(d)) time using sparse subspace

embeddings.

Definition 5 (Sparse Johnson-Lindenstrauss Transforms). Let σij be independent

Rademacher random variables, i.e., P(σij = 1) = P(σij = −1) = 1/2, and let

δij : Ωδ → {0, 1} be random variables, independent of the σij , with the following

properties:

• δij are negatively correlated for fixed j, i.e., for all 1 ≤ i1 < . . . < ik ≤ m,

E

(
k∏

t=1

δit,j

)
≤

k∏

t=1

E (δit,j) =
( s
m

)k
;
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• There are s =
∑m

i=1 δij nonzero δij for a fixed j;

• The vectors (δij)
m
i=1 are independent across j ∈ [n].

Then Φ ∈ Rm×n is a sparse Johnson-Lindenstrauss transform (SJLT) matrix if Φij =
1√
s
σijδij .

The SJLT has several benefits [97,102,103]. First, the computation of Φx takes only

O(nnz(x)) time when s is a constant. Second, storing Φ takes only sn memory instead

of mn, which is significant when s� m. This can often further be reduced by drawing

the entries of Φ from a limited independent family of random variables. We will use

an SJLT as the sketching matrix in our analysis and our goal will be to show sufficient

conditions on m and s such that the analogue of the OSE property holds for low-rank

tensor regression.

Definition 6 (Talagrand’s Functional). Given a (semi-)metric ρ on Rn and a bounded

set S ⊂ Rn, Talagrand’s γ2-functional is

γ2(S, ρ) = inf
{Sr}∞r=0

sup
x∈S

∞∑

r=0

2r/2 · ρ(x,Sr), (3.7)

where ρ(x,Sr) is a distance from x to Sr and the infimum is taken over all collections

{Sr}∞r=0 such that S0 ⊂ S1 ⊂ . . . ⊂ S with |S0| = 1 and |Sr| ≤ 22r .

A closely related notion of γ2-functional is the Gausssian mean width,

G(S) = Eg sup
x∈S
〈g, x〉,

where g ∼ Nn(0, In). For any bounded S ⊂ Rn, G(S) and γ2(S, ‖ · ‖2) differ multiplica-

tively by at most a universal constant in Euclidean space. Both of these quantities are

widely used [104]. Finding a tight upper bound on the γ2-functional for the parameter

space of low-rank tensors is a key part of our analysis.

Definition 7 (Finsler Metric). Let E,E′ ⊂ Rn be p-dimensional subspaces. The Finsler

metric of E and E′ is

ρFin(E,E′) = ‖PE − PE′‖2,
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where PE is the projection onto the subspace E.

The Finsler metric is the semi-metric used in the γ2-functional in our analysis. Note

that ρFin(E,E′) ≤ 1 always holds for any E and E′ [105]. See further discussion in

Section 3.2.

For convenience, we introduce the following notation. Given a D-way tensor Θ =
∑R

r=1 θ
(r)
1 ◦ · · · ◦ θ(r)

D ∈ Rp1×···×pD , where θ
(r)
d ∈ Rpd for all d ∈ [D] and r ∈ [R], we

consider fixing all but θ
(r)
1 for r ∈ [R], and denoting

A

{
θ
(r)
\1

}
=

[
A
θ
(1)
\1 , . . . , A

θ
(R)
\1

]
∈ Rn×Rp1 ,

where

A
θ
(i)
\1 =

pD∑

jD=1

· · ·
p2∑

j2=1

A(jD,...,j2) · θ(i)
D,jD

· · · θ(i)
2,j2

A =
[
A(1,...,1), A(1,...,2), . . . , A(pD,...,p2)

]
∈ Rn×

∏
pd

θ
(i)
d,jd

is the jd-th entry of θ
(i)
d , and A(jD,...,j2) ∈ Rn×p1 for all jd ∈ [pd], d ∈ [D]\{1}. The

above parameterization allows us to view tensor regression as preserving the norms of

vectors in an infinite union of subspaces, described in more detail below.

We provide sufficient conditions for the SJLT matrix Φ ∈ Rm×n to preserve the cost

of all solutions for tensor regression, i.e., bounds on the sketching dimension m and the

per-column sparsity s for which

E
Φ

sup
x∈T

∣∣‖Φx‖22 − 1
∣∣ < ε (3.8)

where ε is a given precision, T =
⋃
E∈V {x ∈ E : ‖x‖2 = 1}, and

V =
⋃

θ
(r)
d ∈R

pd ,∀r∈[R], d∈[D]\{1}

span

[
A

{
θ
(r)
\1

}
, A

{
φ

(r)
\1

}]
.

Note that by linearity, it suffices to consider x with ‖x‖2 = 1 in the above, which
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explains the form of (3.8). Also note that (3.8) implies for all ϑ ∈ S�D,R, that

‖ΦAϑ− Φb‖22 = (1± ε)‖Aϑ− b‖22, (3.9)

which allows us to minimize the much smaller sketched problem to obtain parameters

ϑ which, when plugged into the original objective function, provide a multiplicative

(1 + ε)-approximation.

We need the following theorem for embedding an infinite union of subspaces. All

proofs can be found in the appendix.

Theorem 3. Let T ⊂ Bn and Φ ∈ Rm×n be an SJLT matrix with column sparsity s,

and

pV = sup
θ
(r)
d ∈R

pd ,∀r∈[R],
d∈[D]\{1}

dim

(
span

[
A

{
θ
(r)
\1

}
, A

{
φ

(r)
\1

}])
.

Then (3.8) holds if m and s satisfy

m &
(
γ2

2(V, ρFin) + pV + logN (V, ρFin, ε0)
)
· (log4m)(log5 n)ε−2, (3.10)

s &

([∫ ε0

0
(logN (V, ρFin, t))

1/2 dt

]2

+ α̃2 log2N (V, ρFin, ε0) + ε2
0pV log

1

ε0

)

· (log6m)(log5 n)ε−2, (3.11)

where α̃2 is the largest leverage score of any

[
A

{
θ
(r)
\1

}
, A

{
φ

(r)
\1

}]
∈ V and N (V, ρFin, t) is

the covering number of V with radius t under the Finsler metric.

The proof of Theorem 3 is provided in Appendix 7.2.1. Theorem 3 is based on recent

work on a unified theory of dimensionality reduction [106,107]. Note that the parameter

space for the tensor regression problem (3.1) is a subspace of R
∏
pd , i.e., S�D,R ⊂ R

∏
pd .

Therefore, a näıve application of sketching requires m &
∏
pd/ε

2 in order for (3.8) to

hold [108]. However,
∏
pd can be very large and is far larger than the intrinsic number

of degrees of freedom of the parameter space S�D,R, which is R
∑
pd. In the sequel, we

provide a careful analysis of dimensionality reduction in terms of γ2(V, ρFin), pV , and

N (V, ρFin, η0), where sufficient conditions m = Ω(R
∑
pd) and s = Ω(1) are achieved,
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up to logarithmic factors [109].

3.2.2 Base Case: Rank-1 and Two-Way Tensors

We start with the base case when R = 1 and D = 2, i.e., the parameter space is S2,1.

Then the parameter admits the decomposition Θ = θ1 ◦ θ2. For notational convenience,

we let Θ = u ◦ v, where u ∈ Rp1 and v ∈ Rp2 , and let Av =
∑p2

i=1A
(i)vi, where

A = [A(1), . . . , A(p2)] ∈ Rn×p2p1 with A(i) ∈ Rn×p1 for all i ∈ [p2]. Consequently, the

observation model (3.4) can be written as

b = A(v ⊗ u) + z = Avu+ z,

and the corresponding OLS and SOLS using an SJLT matrix Φ ∈ Rm×n are, respectively,

min
v∈Rp2 ,u∈Rp1

‖Avu− b‖22 and min
v∈Rp2 ,u∈Rp1

‖ΦAvu− Φb‖22.

Next, we show the following theorem, which provides sufficient conditions for the

base case S2,1.

Theorem 4. Suppose the leverage scores of A are bounded, i.e., maxi∈[n] `
2
i (A) ≤ 1/p2

2.

Let

T =

{
Ax−Ay
‖Ax−Ay‖2

∣∣∣∣∣ x = v1 ⊗ u1, y = v2 ⊗ u2, u1, u2 ∈ Rp1

}

and Φ ∈ Rm×n is an SJLT matrix with column sparsity s. Then (3.8) holds if m and s

satisfy

m & ε−2 (p1 + p2) log ((p1 + p2)κ(A))(log4m)(log5 n), (3.12)

s & ε−2 log2(p1 + p2)(log6m)(log5 n). (3.13)

The proof of Theorem 4 is provided in Appendix 7.2.2. From Theorem 4, when

m = Ω(p1 + p2) and s = Ω(1), (3.9) holds.
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3.2.3 Extension to General Ranks

We extend our analysis to the general case of two-way tensors with general rank,

i.e., the parameter space is S2,R for R ≥ 1. In this case, we have Θ =
∑R

r=1 u
(r) ◦ v(r), where u(r) ∈ Rp1 and v(r) ∈ Rp2 for all r ∈ [R], and A{v(r)} =[∑p2

i=1A
(i)v

(1)
i , . . . ,

∑p2
i=1A

(i)v
(R)
i

]
, where A = [A(1), . . . , A(p2)] ∈ Rn×p2p1 and A(i) ∈

Rn×p1 for all i ∈ [p2]. Consequently, the observation model (3.4) can be written as

b = A{v(r)} [u(1)> . . . u(R)>
]>

+ z,

and the corresponding OLS and SOLS using an SJLT matrix Φ ∈ Rm×n are, respectively,

min
v(r)∈Rp2

u(r)∈Rp1 ,∀r∈[R]

∥∥∥A{v(r)} [u(1)> . . . u(R)>
]>
− b
∥∥∥

2

2
, and

min
v(r)∈Rp2

u(r)∈Rp1 ,∀r∈[R]

∥∥∥ΦA{v(r)} [u(1)> . . . u(R)>
]>
− Φb

∥∥∥
2

2
.

Our next theorem provides sufficient conditions for S2,R.

Theorem 5. Suppose R ≤ p2/2 and the leverage scores of A are bounded, i.e.,

maxi∈[n] `
2
i (A) ≤ 1/(R2p2

2). Let

T =

{
Ax−Ay
‖Ax−Ay‖2

∣∣∣∣∣ x =

R∑

r=1

v
(r)
1 ⊗ u

(r)
1 , y =

R∑

r=1

v
(r)
2 ⊗ u

(r)
2 , u

(r)
1 , u

(r)
1 ∈ Rp1 , ∀r ∈ [R]

}

and Φ ∈ Rm×n is an SJLT matrix with column sparsity s. Then (3.8) holds if m and s

satisfy

m & ε−2(log4m)(log5 n)R (p1 + p2) log (R(p1 + p2)κ(A)),

s & ε−2(log6m)(log5 n) log2 (R(p1 + p2)κ(A)) .

The proof of Theorem 5 is provided in Appendix 7.2.3. From Theorem 5, we have

that when m = Ω(R(p1 + p2)) and s = Ω(1), (3.9) holds using an SJLT matrix Φ. The

extra condition of R ≤ p2/2 is not restrictive, as in applications of low-rank tensors,

typically R� mind∈[D] pd.
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3.2.4 Extension to General Tensors

We first extend our analysis to general tensors with rank 1, i.e., the parameter space

is now SD,1 for D ≥ 2. In this case, we have Θ = θ1 ◦ · · · ◦ θD, where θd ∈ Rpd for all

d ∈ [D]. Consequently, the observation model (3.4) can be written as

b = A · (θD ⊗ · · · ⊗ θ1) + z = A{θ\1} · θ1 + z,

and the corresponding OLS and SOLS using an SJLT matrix Φ ∈ Rm×n are, respectively,

min
θi∈Rpi
∀i∈[D]

∥∥∥A{θ\1}θ1 − b
∥∥∥

2

2
and min

θi∈Rpi
∀i∈[D]

∥∥∥ΦA{θ\1}θ1 − Φb
∥∥∥

2

2
.

Our next theorem provides sufficient conditions for SD,1.

Theorem 6. Suppose the leverage scores of A are bounded, i.e., maxi∈[n] `
2
i (A) ≤

1/
(∑D

d=2 pd

)2
. For any ϑ = θD ⊗ · · · ⊗ θ1 ∈ S�D,1 and ϕ = φD ⊗ · · · ⊗ φ1 ∈ S�D,1,

θd, φd ∈ Rpd for all d ∈ [D], let

T =

{
Aϑ−Aϕ
‖Aϑ−Aϕ‖2

∣∣∣∣∣ ϑ = θD ⊗ · · · ⊗ θ1, ϕ = φD ⊗ · · · ⊗ φ1, θd, φd ∈ Rpd , ∀d ∈ [D]

}

and Φ ∈ Rm×n is an SJLT matrix with column sparsity s. Then (3.8) holds if m and s

satisfy

m & ε−2(log4m)(log5 n)

(
D∑

d=1

pd log

(
Dκ(A)

D∑

d=1

pd

))
,

s & ε−2(log6m)(log5 n) log2

(
D∑

d=1

pd

)
.

The proof of Theorem 6 is provided in Appendix 7.2.4. From Theorem 6, we have

that when m = Ω
(∑D

d=1 pd

)
and s = Ω(1), (3.9) holds using an SJLT matrix Φ.

3.2.5 Extension to General Ranks and Tensors

Finally, we provide our guarantees for general tensors with general ranks, i.e., the pa-

rameter space is SD,R for D ≥ 2 and R ≥ 1. We have the observation model (3.4)
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as

b = A ·
R∑

r=1

θ
(r)
D ⊗ · · · ⊗ θ

(r)
1 + z =

R∑

r=1

A
θ
(r)
\1 · θ(r)

1 + z = A

{
θ
(r)
\1

}
·
[
θ

(1)>
1 . . . θ

(R)>
1

]>
+ z,

and the corresponding OLS and SOLS using an SJLT matrix Φ ∈ Rm×n are, respectively,

min
θ
(r)
i ∈R

pi

∀i∈[D],r∈[R]

∥∥∥∥∥A
{
θ
(r)
\1

}
·
[
θ

(1)>
1 . . . θ

(R)>
1

]>
− b
∥∥∥∥∥

2

2

, and

min
θ
(r)
i ∈R

pi

∀i∈[D],r∈[R]

∥∥∥∥∥ΦA

{
θ
(r)
\1

}
·
[
θ

(1)>
1 . . . θ

(R)>
1

]>
− Φb

∥∥∥∥∥

2

2

.

Our most general theorem for CP decomposition is the following, providing sufficient

conditions for SD,R.

Theorem 7. Suppose R ≤ maxd pd/2 and the leverage scores of A are bounded, i.e.,

maxi∈[n] `
2
i (A) ≤ 1/

(
R2
(∑D

d=2 pd

)2
)

. Let

T =

{
Aϑ−Aϕ
‖Aϑ−Aϕ‖2

: ϑ =

R∑

r=1

θ
(r)
D ⊗ · · · ⊗ θ

(r)
1 , ϕ =

R∑

r=1

φ
(r)
D ⊗ · · · ⊗ φ

(r)
1 ,

θ
(r)
d , φ

(r)
d ∈ Bpd , ∀r ∈ [R], d ∈ [D]

}

and Φ ∈ Rm×n is an SJLT matrix with column sparsity s. Then (3.8) holds if m and s

satisfy

m & ε−2(log4m)(log5 n)R
D∑

d=1

pd log

(
DRκ(A)

D∑

d=1

pd

)
,

s & ε−2(log6m)(log5 n) log2

(
D∑

d=1

pd

)
.

The proof of Theorem 7 is provided in Appendix 7.2.5. From Theorem 7, we have

that when m = Ω
(
R
∑D

d=1 pd

)
and s = Ω(1), (3.9) holds using an SJLT matrix Φ.

These complexities are optimal, up to logarithmic factors, for the CP decomposition
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model, since they meet the number of degrees of freedom of the CP model. The extra

condition of R ≤ maxd pd/2 is not restrictive, as we are interested in low-rank tensors

satisfying R� mind∈[D] pd.

3.3 Dimensionality Reduction for Tucker Decomposition

We start with a formal description of the Tucker model. Suppose Θ admits the following

Tucker decomposition:

Θ =

R1∑

r1=1

· · ·
RD∑

rD=1

g(r1, . . . , rD) · θ(r1)
1 ◦ · · · ◦ θ(rD)

D , (3.14)

where θ
(rd)
d ∈ Rpd for all rd ∈ [Rd]. Letting

A
θ
(r1,...,rD)

\1 =

pD∑

jD=1

· · ·
p2∑

j2=1

A(jD,...,j2) · θ(rD)
D,jD

· · · θ(r2)
2,j2

,

A

{
θ
{rd}
\1

}
=

[
R2∑

r2=1

· · ·
RD∑

rD=1

A
θ
(r1,...,rD)

\1 · g(1, r2, . . . , rD), . . . . . . ,

R2∑

r2=1

· · ·
RD∑

rD=1

A
θ
(r1,...,rD)

\1 · g(R1, r2, . . . , rD)

]
,

then the observation model (3.4) can be written as

b = A

R1∑

r1=1

· · ·
RD∑

rD=1

g(r1, . . . , rD) · θ(rD)
D ⊗ · · · ⊗ θ(r1)

1 + z

=

R1∑

r1=1

· · ·
RD∑

rD=1

A
θ
(r1,...,rD)

\1 · g(r1, . . . , rD) · θ(r1)
1 + z

= A

{
θ
{rd}
\1

}
·
[
θ

(1)>
1 . . . θ

(R1)>
1

]>
+ z,
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and the corresponding OLS and SOLS using an SJLT matrix Φ ∈ Rm×n are, respectively,

min
θ
(r)
i ∈R

pi

∀i∈[D],r∈[R]

∥∥∥∥∥A
{
θ
(r)
\1

}
·
[
θ

(1)>
1 . . . θ

(R)>
1

]>
− b
∥∥∥∥∥

2

2

, and

min
θ
(r)
i ∈R

pi

∀i∈[D],r∈[R]

∥∥∥∥∥ΦA

{
θ
(r)
\1

}
·
[
θ

(1)>
1 . . . θ

(R)>
1

]>
− Φb

∥∥∥∥∥

2

2

.

Our next theorem provides sufficient conditions for the general Tucker decomposition

model.

Theorem 8. Suppose
∏D
d=1Rd ≤ maxd pd/2 and the leverage scores of A are bounded,

i.e., maxi∈[n] `
2
i (A) ≤ 1/

(∑D
d=2Rdpd +

∏D
d=1 pd

)2
. Let

T =

{
Aϑ−Aϕ
‖Aϑ−Aϕ‖2

: ϑ =

R1∑

r1=1

· · ·
RD∑

rD=1

g1(r1, . . . , rD) · θ(rD)
D ⊗ · · · ⊗ θ(r1)

1 ,

ϕ =

R1∑

r1=1

· · ·
RD∑

rD=1

g2(r1, . . . , rD) · φ(rD)
D ⊗ · · · ⊗ φ(r1)

1 ,

θ
(rd)
d , φ

(rd)
d ∈ Bpd , ∀rd ∈ [Rd], d ∈ [D]

}

and Φ ∈ Rm×n is an SJLT matrix with column sparsity s. Then (3.8) holds if m and s

satisfy

m & ε−2(log4m)(log5 n)C0 · log


C0Dκ(A)

√√√√
D∏

d=2

Rd


 ,

s & ε−2(log6m)(log5 n) log2C0,

where C0 =
∑D

d=1Rdpd +
∏D
d=1 pd.

The proof of Theorem 8 is provided in Appendix 7.2.6. From Theorem 8, we have

that when m = Ω
(
D(
∑D

d=1Rdpd +
∏D
d=1 pd)

)
and s = Ω(D), then (3.8) holds for the

Tucker decomposition model using an SJLT matrix, provided that
∏
Rd is not too large

compared with maxd pd, which is typical in applications of low rank tensors in which
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the goal is to use small values of the Rd when faced with large values of the pd. Thus,

the solution to the SOLS is a (1 + ε)-approximation to the OLS.

3.4 Flattening Leverage Scores

The analysis above depends on a bound on the leverage scores of the design matrix A.

This might be restrictive if we have no control on the design A. In the sequel, we apply

a standard idea [110,111] to flatten the leverage scores of a deterministic design A based

on the Walsh-Hadamard matrix. An SRHT matrix is defined as

Φ =

√
n

m
PHΣ, (3.15)

where the components Σ, H and P are generated as:

(G1) Σ is an n× n diagonal matrix, where Σii = 1 or -1 with equal probabilities 1/2.

(G2) H is an n×n orthogonal matrix generated from a Walsh-Hadamard matrix scaled

by n−1/2.

(G3) P is an m× n SJLT matrix, with column sparsity bounded by s.

Note that computing a matrix-vector product with H takes O(n log n) instead of n2

time. Thus, one can compute HΣA for an n× d matrix A in O(nd log n) time, which is

well-suited for the case in which A is dense, e.g., nnz(A) = Θ(nd). The purpose of the

matrix product HΣ is to uniformize the leverage scores before applying our SJLT P .

We next give a standard lemma for flattening the leverage scores, included for com-

pleteness. Without loss of generality, we assume that n = 2q for a positive integer q,

implying that a Walsh-Hadamard matrix exists.

Lemma 1. Suppose H and Σ are generated as in (G1) and (G2). Given any real value

δ ∈ (0, 1) and an n × d matrix A with rank(A) = r, we have with probability at least

1− δ,

max
i∈[n]

`2i (HΣA) .
r · log

(
nr
δ

)

n
.
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The proof of Lemma 1 is provided in Appendix 7.2.7. Applying this with the bound

maxi∈[n] `
2
i (HΣA) ≤ 1/

(
R2
(∑D

d=2 pd

)2
)

of Theorem 7 gives:

Proposition 1. Suppose H and Σ are generated as in (G1) and (G2). For low-rank

tensor regression (3.4), where A ∈ Rn×
∏D
d=1 pd is the matricization of all tensor designs,

if n satisfies

n & R2

(
D∑

d=2

pd

)2

· rank(A) · log

(
n · rank(A)

δ

)
,

then with probability at least 1− δ, we have

max
i∈[n]

`2i (HΣA) ≤ 1/


R2

(
D∑

d=2

pd

)2

 .

Combining Theorem 7 and Proposition 1, we achieve (3.8), provided n is sufficiently

large. Here we use that for all x, ‖HΣAx‖2 = ‖Ax‖2 since HΣ is an isometry.

In the worst case, rank(A) =
∏D
d=1 pd, which requires n =

Ω

(
R2
(∑D

d=2 pd

)2
·∏D

d=1 pd

)
. In overconstrained regression, it is often assumed

that the number n of examples is at least a small polynomial in rank(A) [97], which

implies this bound on n. Also, if, for example, Ai is sampled from a distribution with

a rank deficient covariance, one may even have rank(A)�∏D
d=1 pd.

One should note that computing PHΣA takes (n log n)
∏D
d=1 pd time, provided the

column sparsity s of P is O(1). This is O(nnz(A) log n) time for dense matrices A,

i.e., those with nnz(A) = Ω(nd), but in general, unlike our earlier results, is not

O(nnz(A) log n) time for sparse matrices. Analogous results can be obtained for the

Tucker decomposition model, which we omit.

3.5 Experiments

We study the performance of sketching for tensor regression through numerical experi-

ments over both synthetic and real data sets. For solving the OLS problem for tensor

regression (3.2), we use a cyclic block-coordinate minimization algorithm based on a

tensor toolbox [112]. Specifically, in a cyclic manner for all d ∈ [D], we fix all but
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one Θd of [[Θ1, . . . ,ΘD]] ∈ SD,R and minimize the resulting quadratic loss function

(3.2) with respect to Θi, until the decrease of the objective is smaller than a predefined

threshold τ . For SOLS, we use the same algorithm after multiplying A and b with an

SJLT matrix Φ. All results are run on a supercomputer due to the large scale of the

data.
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Figure 3.1: Comparison of SOLS and OLS for different settings on synthetic data.
The vertical axis corresponds to the scaled objectives ‖AϑtSOLS − b‖22/n for SOLS and
‖AϑtOLS − b‖22/n for OLS, where ϑt is the update in the t-th iteration. The horizontal
axis corresponds to the number of iterations (passes of block-coordinate minimization
for all blocks). For both the noiseless case σz = 0 and noisy case σz = 1, we set n1 = 104,
n2 = 105, and n3 = 106 respectively.

For synthetic data, we generate the low-rank tensor Θ as follows. For every d ∈ [D],

we generate R orthonormal columns to form Θd = [θ
(1)
d , . . . , θ

(R)
d ] of [[Θ1, . . . ,ΘD]] ∈

SD,R independently. We also generate R positive real scalars α1, . . . , αR uniformly and

independently from [1, 10]. Then Θ is formed by Θ =
∑R

r=1 αrθ
(r)
1 ◦ · · · ◦ θ(r)

D . The

sequence of n tensor designs are generated independently with i.i.d. N (0, 1) entries

for 10% of the entries chosen uniformly at random, and the remaining entries are set

to zero. This allows for fast calculation of the leverage scores of matrix A, as well as

memory savings. We also generate the noise z to have i.i.d. N (0, σ2
z) entries, and the

generation of the SJLT matrix Φ follows Definition 5. For both OLS and SOLS, we use

random initializations for Θ, i.e., Θd has i.i.d. N (0, 1) entries for all d ∈ [D].

We compare OLS and SOLS for low-rank tensor regression under both the noiseless

and noisy scenarios. For the noiseless case, i.e., σz = 0, we choose R = 3, p1 = p2 = p3 =
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Table 3.1: Comparison of SOLS and OLS on CPU execution time (in seconds) and
the optimal scaled objective over different choices of sample sizes and noise levels on
synthetic data. The results are averaged over 50 random trials, with both the mean
values and standard deviations (in parentheses) provided. Note that we terminate the
program after the running time exceeds 3× 104 seconds.

Variance of Noise σz = 0 σz = 1

Sample Size n = 104 n = 105 n = 106 n = 104 n = 105 n = 106

Time

OLS
182.96 3536.9 > 3× 104 166.02 2620.4 > 3× 104

(72.357) (1627.0) (NA) (5.6942) (769.81) (NA)

SOLS
123.43 132.81 134.10 122.641 126.09 127.98

(37.452) (38.653) (36.406) (34.408) (35.719) (33.339)

Objective

OLS
< 10−10 < 10−10 < 10−10 0.9089 0.9430 0.9440

(< 10−10) (< 10−10) (< 10−10) (0.0217) (0.0182) (0.0137)

SOLS
< 10−10 < 10−10 < 10−10 0.9414 0.9854 0.9891

(< 10−10) (< 10−10) (< 10−10) (0.0264) (0.0227) (0.0232)

Table 3.2: Comparison of SOLS and OLS on CPU execution time (in seconds) and the
optimal scaled objective over different choices of ranks on the MRI data. The results
are averaged over 10 random trials, with both the mean values and standard deviations
(in parentheses) provided.

Rank R = 3 R = 5 R = 10

Time

OLS
2824.4 8137.2 26851

(768.08) (1616.3) (8320.1)

SOLS
196.31 364.09 761.73

(68.180) (145.79) (356.76)

Objective

OLS
16.003 11.164 6.8679

(0.1378) (0.1152) (0.0471)

SOLS
17.047 11.992 7.3968

(0.1561) (0.1538) (0.0975)

100, m = 5×R(p1 +p2 +p3) = 4500, and s = 200. Different values of n ∈ {104, 105, 106}
are chosen to compare both statistical and computational performances of OLS and

SOLS. For the noisy case, the settings of all parameters are identical to those in the
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noiseless case, except that σz = 1. We provide a plot of the scaled objective versus the

number of iterations for some random trials in Figure 3.1. The scaled objective is set

as ‖AϑtSOLS − b‖22/n for SOLS and ‖AϑtOLS − b‖22/n for OLS, where ϑtSOLS and ϑtOLS

are the updates in the t-th iterations of SOLS and OLS respectively. Note the we are

using ‖ΦAϑSOLS − Φb‖22/n as the objective for solving the SOLS problem, but looking

at the original objective ‖AϑSOLS − b‖22/n for the solution of SOLS is ultimately what

one is interested in. Moreover, the gap between ‖ΦAϑSOLS − Φb‖22/n and ‖AϑSOLS −
b‖22/n is very small in our results (< 1%). The number of iterations is the number

of passes of block-coordinate minimization for all blocks. We can see that OLS and

SOLS require approximately the same number of iterations for comparable decrease of

objective. However, since the SOLS instance has a much smaller size, its per iteration

computational cost is much lower than that of OLS.

We further provide numerical results on the running time (CPU execution time) and

the optimal scaled objectives in Table 3.1. Using the same stopping criterion, we see

that SOLS and OLS achieve comparable objectives (within < 5% differences), matching

our theory. In terms of the running time, SOLS is much faster than OLS, especially

when n is large. For example, when n = 106, SOLS is orders of magnitude faster than

OLS while achieving a comparable objective function value. This matches our discussion

on the computational cost of OLS and SOLS. Note that here we suppose the rank is

known for our simulation, which can be restrictive in practice. We observe that if we

choose a moderately larger rank than the true rank of the underlying model,then the

result is similar to what we discussed above. Smaller values of the rank result in a much

deteriorated statistical performance for both OLS and SOLS.

In addition, we examine sketching for tensor regression on a real dataset of MRI

imaging [113]. The dataset consists of 56 frames of a human brain, each of which is of

dimension 128 × 128 pixels, i.e., p1 = p2 = 128 and p3 = 56. The generation of design

tensors {Ai} and linear measurements b follows the same settings as for the synthetic

data, with σz = 0. We choose three values of R = 3, 5, 10, and set m = 5×R(p1+p2+p3).

The sample size is set to n = 104 for all settings of R. Analogous to the synthetic data,

we provide numerical results for SOLS and OLS on the running time (CPU execution

time) and the optimal scaled objectives. Again, we have that SOLS is much faster than

OLS when they achieve comparable optimal objectives, under all settings of ranks.



Chapter 4

On Fast Convergence of Proximal

Algorithms for SQRT-Lasso

Optimization

4.1 Introduction

Many statistical machine learning methods can be formulated as optimization problems

in the following form

min
θ
L(θ) +R(θ), (4.1)

where L(θ) is a loss function and R(θ) is a regularizer. When the loss function is smooth

and has a Lipschitz continuous gradient, (4.1) can be efficiently solved by simple prox-

imal gradient descent and proximal Newton algorithms (also requires a Lipschitz con-

tinuous Hessian matrix of L(θ)). Some statistical machine learning methods, however,

sacrifice convenient computational structures to gain estimation robustness and model-

ing flexibility or the other way round [114–118]. Taking SVM as an example, the hinge

loss function gains estimation robustness, but sacrifices the smoothness (compared with

the square hinge loss function). However, by exploring the structure of the problem, we

find that these “sacrifices” do not always require more computational efforts.

57
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Advantage of SQRT-Lasso over Lasso. To shed a light of such a “free-lunch” phe-

nomenon, we study the high dimensional square-root (SQRT) Lasso regression prob-

lem [115,119]. Specifically, we consider a sparse linear model in high dimensions,

y = Xθ∗ + ε,

where X ∈ Rn×d is the design matrix, y ∈ Rn is the response vector, ε ∼ N(0, σ2In)

is the random noise, and θ∗ is the sparse unknown regression coefficient vector. To

estimate θ∗, [120] propose the well-known Lasso estimator by solving

θ
Lasso

= argmin
θ

1

n
‖y −Xθ‖22 + λLasso‖θ‖1, (4.2)

where λLasso is the regularization parameter. Existing literature shows that given

λLasso � σ
√

log d

n
, (4.3)

θ
Lasso

is minimax optimal for parameter estimation in high dimensions. Note that

the optimal regularization parameter for Lasso in (4.3), however, requires the prior

knowledge of the unknown parameter σ. This requires the regularization parameter

to be carefully tuned over a wide range of potential values to get a good finite-sample

performance.

To overcome this drawback, [115] propose the SQRT-Lasso estimator by solving

θ
SQRT

= argmin
θ∈Rd

1√
n
‖y −Xθ‖2 + λSQRT‖θ‖1, (4.4)

where λSQRT is the regularization parameter. They further show that θ
SQRT

is also

minimax optimal in parameter estimation, but the optimal regularization parameter is

λSQRT �
√

log d

n
. (4.5)

Since (4.5) no longer depends on σ, SQRT-Lasso eases tuning effort.

Extensions of SQRT-Lasso. Besides the tuning advantage, the regularization se-

lection for SQRT-Lasso type methods is also adaptive to inhomogeneous noise. For
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example, [116] propose a multivariate SQRT-Lasso for sparse multitask learning. Given

a matrix A ∈ Rd×d, let A∗k denote the k-th column of A, and Ai∗ denote the i-th row

of A. Specifically, [116] consider a multitask regression model

Y = XΘ∗ +W,

where X ∈ Rn×d is the design matrix, Y ∈ Rn×m is the response matrix, W∗k ∼
N(0, σ2

kIn) is the random noise, and Θ∗ ∈ Rd×m is the unknown row-wise sparse coeffi-

cient matrix, i.e., Θ∗ has many rows with all zero entries. To estimate Θ∗, [116] propose

a calibrated multivariate regression (CMR) estimator by solving

θ
CMR

= argmin
θ∈Rd×m

1√
n

m∑

k=1

‖Y∗k −XΘ∗k‖2 + λCMR‖Θ‖1,2,

where ‖Θ‖1,2 =
∑d

j=1 ‖Θj∗‖2. [116] further shows that the regularization of CMR ap-

proach is adaptive to σk’s for each regression task, i.e., Y∗k = XΘ∗∗k+W∗k, and therefore

CMR achieves better performance in parameter estimation and variable selection than

its least square loss based counterpart. With a similar motivation, [121] propose a node-

wise SQRT-Lasso approach for sparse precision matrix estimation. Due to space limit,

please refer to [121] for more details.

Existing Algorithms for SQRT-Lasso Optimization. Despite of these good prop-

erties, in terms of optimization, (4.4) for SQRT-Lasso is computationally more chal-

lenging than (4.2) for Lasso. The `2 loss in (4.4) is not necessarily differentiable, and

does not have a Lipschitz continuous gradient, compared with the least square loss in

(4.2). A few algorithms have been proposed for solving (4.4) in existing literature, but

none of them are satisfactory when n and d are large. [115] reformulate (4.4) as a second

order cone program (SOCP) and solve by an interior point method with a computa-

tional cost of O(nd3.5 log(ε−1)), where ε is a pre-specified optimization accuracy; [118]

solve (4.4) by an alternating direction method of multipliers (ADMM) algorithm with a

computational cost of O(nd2/ε); [119] propose to solve the variational form of (4.4) by

an alternating minimization algorithm, and [122] further develop a coordinate descent

subroutine to accelerate its computation. However, no iteration complexity is estab-

lished in [122]. Our numerical study shows that their algorithm only scales to moderate
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Table 4.1: Comparison with existing algorithms for solving SQRT-Lasso. SOCP:
Second-order Cone Programming; TRM: Trust Region Newton; VAM: Variational Al-
ternating Minimization; ADMM: Alternating Direction Method of Multipliers; VCD:
Coordinate Descent; Prox-GD: Proximal Gradient Descent; Prox-Newton: Proximal
Newton.

Algorithm Theoretical Guarantee Empirical Performance

[115] SOCP + TRM O(nd3.5 log(ε−1)) Very Slow

[119] VAM N.A. Very Slow

[118] ADMM O(nd2/ε) Slow

[122] VAM + CD N.A. Moderate

Ours Pathwise Prox-GD O(nd log(ε−1)) Fast

Ours Pathwise Prox-Newton + CD O(snd log log(ε−1)) Very Fast

Remark: [122] requires a good initial guess of σ to achieve moderate performance.
Otherwise, its empirical performance is similar to ADMM.

problems. Moreover, [122] require a good initial guess for the lower bound of σ. When

the initial guess is inaccurate, the empirical convergence can be slow.

Our Motivations. The major drawback of the aforementioned algorithms is that

they do not explore the modeling structure of the problem. The `2 loss function is

not differentiable only when the model are overfitted, i.e., the residuals are zero values

y − Xθ = 0. Such an extreme scenario rarely happens in practice, especially when

SQRT-Lasso is equipped with a sufficiently large regularization parameter λSQRT to

yield a sparse solution and prevent overfitting. Thus, we can treat the `2 loss as an

“almost” smooth function. Moreover, our theoretical investigation indicates that the

`2 loss function also enjoys the restricted strong convexity, smoothness, and Hessian

smoothness. In other words, the `2 loss function behaves as a strongly convex and

smooth over a sparse domain. An illustration is provided in Figure 4.1.

Our Contributions. Given these nice geometric properties of the `2 loss func-

tion, we can directly solve (4.4) by proximal gradient descent (Prox-GD), proximal

Newton (Prox-Newton), and proximal Quasi-Newton (Prox-Quasi-Newton) algorithms

[123,124]. Existing literature only apply these algorithms to solve optimization problems

in statistical machine learning when the loss function is smooth. Our theoretical analysis
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General: Smooth

Extreme: Nonsmooth

Figure 4.1: The extreme and general cases of the `2 loss. The nonsmooth region
{θ : y −Xθ = 0} is out of our interest, since it corresponds to those overfitted regression
models

shows that both algorithms enjoy strong convergence guarantees [125]. Specifically, the

Prox-GD algorithm achieves a local linear convergence and the Prox-Newton algorithm

achieves a local quadratic convergence. To further ensure global strong convergence,

we combine these two algorithms with the pathwise optimization scheme, which solves

(4.4) with a decreasing sequence of regularization parameters, λ0 ≥ . . . ≥ λN with

λN = λSQRT. The pathwise optimization scheme helps yield sparse solutions and avoid

overfitting throughout all iterations. Besides sparse linear regression, we extend our

algorithms and theory to sparse multitask regression and sparse precision matrix es-

timation. Extensive numerical results show our algorithms uniformly outperform the

competing algorithms.

Hardness of Analysis. We highlight that our local analysis with strong convergence

guarantees are novel and highly nontrivial for solving the SQRT-Lasso problem using

simple and efficient proximal algorithms. First of all, sophisticated analysis is required

to demonstrate the restricted strong convexity/smoothness and Hessian smoothness of

the `2 loss function over a neighborhood of the underlying model parameter θ∗ in high

dimensions. These are key properties for establishing the strong convergence rates of

proximal algorithms. Moreover, it is involved to guarantee that the output solution of

the proximal algorithms do not fall in the nonsmooth region of the `2 loss function.

This is important in guaranteeing the favored computational and statistical properties.

In addition, it is highly technical to show that the pathwise optimization does enter

the strong convergence region at certain stage. We defer all detailed analysis to the

appendix.

Notations. Given a vector v ∈ Rd, we define the subvector of v with the j-th entry
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removed as v\j ∈ Rd−1. Given an index set I ⊆ {1, ..., d}, let I be the complementary

set to I and vI be a subvector of v by extracting all entries of v with indices in I.

Given a matrix A ∈ Rd×d, we denote A∗j (Ak∗) the j-th column (k-th row), A\i\j as

a submatrix of A with the i-th row and the j-th column removed and A\ij (Ai\j) as

the j-th column (i-th row) of A with its i-th entry (j-th entry) removed. Let Λmax(A)

and Λmin(A) be the largest and smallest eigenvalues of A respectively. Given an index

set I ⊆ {1, ..., d}, we use AII to denote a submatrix of A by extracting all entries of

A with both row and column indices in I. We denote A � 0 if A is a positive-definite

matrix. Given two real sequences {An}, {an}, we use conventional notations An =

O(an) (or An = Ω(an)) denote the limiting behavior, ignoring constant, Õ to denote

limiting behavior further ignoring logarithmic factors, and OP (·) to denote the limiting

behavior in probability. An � an if An = O(an) and An = Ω(an) simultaneously. Given

a vector x ∈ Rd and a real value λ > 0, we denote the soft thresholding operator

Sλ(x) = [sign(xj) max{|xj | − λ, 0}]dj=1.

4.2 Algorithm

We review the Prox-GD and Prox-Newton algorithms. For convenience, we denote

Fλ(θ) = L(θ) + λ‖θ‖1,

where L(θ) = 1√
n
‖y − Xθ‖2. Since SQRT-Lasso is equipped with a sufficiently large

regularization parameter λ to prevent overfitting, i.e., y −Xθ 6= 0, we treat L(θ) as a

differentiable function in this section. Formal theoretical justifications will be provided

in the next section.

4.2.1 Proximal Gradient Desccent Algorithm

Given θ(t) at t-th iteration, we consider a quadratic approximation of Fλ(θ) at θ = θ(t)

as

Qλ(θ, θ(t)) = L(θ(t)) +∇L(θ(t))>(θ − θ(t)) +
L(t)

2
‖θ − θ(t)‖22 + λ‖θ‖1, (4.6)
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where L(t) is a step size parameter determined by the backtracking line search. We then

take

θ(t+1) = argmin
θ
Qλ(θ, θ(t)) = S λ

L(t)

(
θ(t) − ∇L(θ(t))

L(t)

)
.

For simplicity, we denote θ(t+1) = TL(t+1),λ(θ(t)). Given a pre-specified precision ε, we

terminate the iterations when the approximate KKT condition holds:

ωλ(θ(t)) = min
g∈∂‖θ(t)‖1

‖∇L(θ(t)) + λg‖∞ ≤ ε. (4.7)

4.2.2 Proximal Newton Algorithm

Given θ(t) at t-th iteration, we denote a quadratic term of θ as

‖θ − θ(t)‖2∇2L(θ(t))
= (θ − θ(t))>∇2L(θ(t))(θ − θ(t)),

and consider a quadratic approximation of Fλ(θ) at θ = θ(t) is

Qλ(θ, θ(t)) = L(θ(t)) +∇L(θ(t))>(θ − θ(t)) +
1

2
‖θ − θ(t)‖2∇2L(θ(t))

+ λ‖θ‖1. (4.8)

We then take

θ(t+0.5) = argmin
θ
Qλ(θ, θ(t)). (4.9)

An additional backtracking line search procedure is required to obtain

θ(t+1) = θ(t) + ηt(θ
(t+0.5) − θ(t)),

which guarantees Fλ(θ(t+1)) ≤ Fλ(θ(t)). The termination criterion for Prox-Newton is

same with (4.7).

Remark 1. The `1 regularized quadratic problem in (7.160) can be solved efficiently

by the coordinate descent algorithm combined with the active set strategy. See more

details in [126]. The computational cost is Õ(snd), where s� d is the solution sparsity.
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Algorithm 4 Prox-GD algorithm for solving the SQRT-Lasso optimization (4.4). We
treat L(θ) as a differentiable function.

Input: y, X, λ, ε, Lmax > 0
Initialize: θ(0), t← 0, L(0) ← Lmax, L̃(0) ← L(0)

Repeat: t← t+ 1
Repeat: (Line Search)
θ(t) ← TL̃(t),λ(θ(t−1))

If Fλ(θ(t)) < Qλ(θ(t), θ(t−1))

Then L̃(t) ← L̃(t)

2

Until: Fλ(θ(t)) ≥ Qλ(θ(t), θ(t−1))
L(t) ← min{2L̃(t), Lmax}, L̃(t) ← L(t)

θ(t) ← TL(t),λ(θ(t−1))

Until: ωλ(θ(t)) ≤ ε
Return: θ̂ ← θ(t)

Details of Prox-GD and Prox-Newton algorithms are summarized in Algorithms 4

and 5 respectively. To facilitate global fast convergence, we further combine the pathwise

optimization [127] with the proximal algorithms. See more details in Section 4.4.

Remark 2. We can also apply proximal quasi-Newton method. Accordingly, at each

iteration, the Hessian matrix in (4.8) is replaced with an approximation. See [128] for

more details.

4.3 Computational Analysis

We start with defining the locally restricted strong convexity/smoothness and Hessian

smoothness.

Definition 8. Let Br = {θ ∈ Rd : ‖θ − θ∗‖22 ≤ r} for some constant r ∈ R+. For

any v, w ∈ Br satisfying ‖v − w‖0 ≤ s, L is locally restricted strongly convex (LRSC),

smooth (LRSS), and Hessian smooth (LRHS) respectively on Br at sparsity level s, if
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Algorithm 5 Prox-Newton algorithm for solving the SQRT-Lasso optimization (4.4).
We treat L(θ) as a differentiable function.

Input: y, X, λ, ε
Initialize: θ(0), t← 0, µ← 0.9, α← 1

4
Repeat: t← t+ 1
θ(t) ← argminθQλ(θ, θ(t−1))
∆θ(t) ← θ(t) − θ(t−1)

γt ← ∇L
(
θ(t−1)

)>
∆θ(t) + λ

(
‖θ(t)‖1 − ‖θ(t−1)‖1

)

ηt ← 1, q ← 0
Repeat: q ← q + 1 (Line Search)
ηt ← µq

Until Fλ
(
θ(t−1) + ηt∆θ

(t)
)
≤ Fλ

(
θ(t−1)

)
+ αηtγt

θ(t) ← θ(t) + ηt∆θ
(t−1)

Until: ωλ(θ(t)) ≤ ε
Return: θ̂ ← θ(t)

there exist universal constants ρ−s , ρ
+
s , Ls ∈ (0,∞) such that

LRSC: L(v)−L(w)−∇L(w)>(v − w)≥ ρ
−
s

2
‖v − w‖22,

LRSS: L(v)−L(w)−∇L(w)>(v − w)≤ ρ
+
s

2
‖v − w‖22,

LRHS: sup
‖u‖0≤s,‖u‖2=1

v>(∇2L(v)−∇2L(w))v ≤ Ls‖v − w′‖22, (4.10)

We define the locally restricted condition number at sparsity level s as κs = ρ+
s

ρ−s
.

LRSC and LRSS are locally constrained variants of restricted strong convexity and

smoothness [129,130], which are keys to establishing the strong convergence guarantees

in high dimensions. The LRHS is parallel to the local Hessian smoothness for analyzing

the proximal Newton algorithm in low dimensions [124]. This is also close related to

the self-concordance [131] in the analysis of Newton method [132].

Next, we prove that the `2 loss of SQRT-Lasso enjoys the good geometric properties

defined in Definition 8 under mild modeling assumptions.

Lemma 2. Suppose ‖θ∗‖0 = s∗ and λ = C1

√
log d
n , then with high probability, we have

λ ≥ C1

4
‖∇L(θ∗)‖∞.
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Moreover, given each row of the design matrix X independently sampled from a sub-

Gaussian distribution with the positive definite covariance matrix ΣX ∈ Rd×d with

bounded eigenvalues. Then for

n ≥ C2s
∗ log d,

L(θ) satisfies LRSC, LRSS, and LRHS properties on Br with high probability. Specifi-

cally, (4.10) holds with

ρ+
s∗+2s̃ ≤

C3

σ
, ρ−s∗+2s̃ ≥

C4

σ
and Ls∗+2s̃ ≤

C5

σ
,

where s̃ > C6(κ2
s∗+2s̃ + κs∗+2s̃)s

∗ and r ≥ C7s∗λ2

(ρ−
s∗+2s̃

)2
. C1, . . . , C7 ∈ R+ are generic con-

stants.

Lemma 2 guarantees that with high probability: (i) λ is sufficiently large to eliminate

the irrelevant variables and yields sufficiently sparse solutions [133, 134]; (ii) LRSC,

LRSS, and LRHS hold for the `2 loss of SQRT-Lasso such that fast convergence of the

proximal algorithms can be established.

4.3.1 Linear Convergence of Prox-GD

For notational simplicity, we denote

S∗ = {j : θ∗j 6= 0}, S∗ = {j : θ∗j = 0}, and Bs∗+s̃r = Br ∩ {θ ∈ Rd : ‖θ − θ∗‖0 ≤ s∗ + s̃}.

To ease the analysis, we provide a local convergence analysis when θ ∈ Bs∗+s̃r . The

convergence of Prox-GD is presented as follows.

Theorem 9. Suppose λ, X, and n satisfy conditions in Lemma 2. Given ‖θ(0)−θ∗‖22 ≤
r, we have sufficiently sparse solutions throughout all iterations, i.e.,

‖[θ(t)]Sc‖0 ≤ s∗ + s̃.

Moreover, given ε > 0, we need at most

T = O
(
κs∗+2s̃ log

(
κ3
s∗+2s̃s

∗λ2

ε2

))
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iterations to guarantee that the output solution θ̂ satisfies

‖θ̂ − θ‖22 = O
((

1− 1

8κs∗+2s̃

)T
ελs∗

)
and

Fλ(θ̂)−Fλ(θ) = O
((

1− 1

8κs∗+2s̃

)T
ελs∗

)
,

where θ is the unique sparse global optimum to (4.4) with

‖[θ]S∗‖0 ≤ s∗ + s̃.

Theorem 9 guarantees that the Prox-GD algorithm achieves a local linear conver-

gence to the unique sparse global optimum to (4.4).

4.3.2 Quadratic Convergence of Prox-Newton

We then present the convergence analysis of the Prox-Newton algorithm as follows.

Theorem 10. Suppose λ, X, and n satisfy conditions in Lemma 2. Given ‖θ(0)−θ∗‖22 ≤
r, we have sufficiently sparse solutions throughout all iterations, i.e.,

‖[θ(t)]Sc‖0 ≤ s∗ + s̃.

Moreover, given ε > 0, we need at most

T = O
(

log log

(
3ρ+

s∗+2s̃

ε

))

iterations to guarantee that the output solution θ̂ satisfies

‖θ̂ − θ‖22 = O



(
Ls∗+2s̃

2ρ−s∗+2s̃

)2T

ελs∗


 and

Fλ(θ̂)−Fλ(θ) = O



(
Ls∗+2s̃

2ρ−s∗+2s̃

)2T

ελs∗


 ,
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where θ is the unique sparse global optimum to (4.4).

Theorem 10 guarantees that the Prox-Newton algorithm achieves a local quadratic

convergence to the unique sparse global optimum to (4.4).

Remark 3. Our analysis can be further extended to the proximal quasi-Newton algo-

rithm. The only technical difference is controlling the error of the Hessian approximation

under restricted spectral norm.

4.4 Global Fast Convergence via Pathwise Optimization

Scheme

In this section, we explain how the pathwise optimization scheme extends the local fast

convergence guarantees established in Section 3 to the global setting. The pathwise opti-

mization is essentially a multistage optimization scheme for boosting the computational

performance [126,127,130].

Specifically, we solve (4.4) using a geometrically decreasing sequence of regularization

parameters

λ0 > λ1 > . . . > λN ,

where λN is the target regularization parameter of SQRT-Lasso. This yields a sequence

of output solutions

θ̂[0], θ̂[1], . . . , θ̂[N ],

also known as the solution path. At the K-th optimization stage, we choose θ̂[K−1] (the

output solution of the (K − 1)-th stage) as the initial solution, and solve (4.4) with

λ = λK using the proximal algorithms. This is also referred as the warm start initial-

ization in existing literature [127]. Details of the pathwise optimization is summarized

in Algorithm 6.

Before we proceed, we first characterize the statistical properties for the output

solutions of the proximal algorithms.

Theorem 11. Suppose λ, X, and n satisfy conditions in Lemma 2. If the output

solution θ̂ satisfies

ωλ(θ̂) ≤ ε = O(
σs∗ log d

n
),
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Algorithm 6 The pathwise optimization scheme for the proximal algorithms. We solve
the optimization problem using a geometrically decreasing sequence of regularization
parameters.

Input: y, X, N , λ[N ], ε[N ]

Initialize: θ̂[0] ← 0, λ[0] ← ‖∇L(0)‖∞, ηλ ←
(
λ[N ]

λ[0]

) 1
N

For: K = 1, . . . , N

λ[K] ← ηλλ[K−1], θ
(0)
[K] ← θ̂[K−1], ε[K] ← ε[N ]

θ̂[K] ← Prox-Alg
(
y,X, λ[K], θ

(0)
[K], ε[K]

)

End For
Return: θ̂[N ]

then we have:

‖θ̂ − θ∗‖2 = OP
(
σ

√
s∗ log d

n

)
and ‖θ̂ − θ∗‖1 = OP

(
σs∗
√

log d

n

)
.

Moreover, we have

|σ̂ − σ| = OP
(
σs∗ log d

n

)
, where σ̂ =

‖y −Xθ̂‖2√
n

.

Theorem 11 guarantees that the output solution θ̂ obtained from Algorithm 4 and

5 achieves the minimax optimal rate of convergence in parameter estimation [135,136].

Moreover, Theorem 11 implies that with sufficiently large regularization parameter, the

mean square error satisfies

1

n
‖y −Xθ̂‖22 = Ω(σ2) > 0.

This guarantees that the obtained model is not overfitted, and the output solution is

far from the nonsmooth region of the `2 loss, i.e., the set {θ : y −Xθ = 0} .
As can be seen in Algorithm 3, the pathwise optimization scheme starts with

λ0 = ‖∇L(0)‖∞ =

∥∥∥∥
X>y√
n‖y‖2

∥∥∥∥
∞
,

which yields an all zero solution θ̂[0] = 0 (null fit). As the regularization parameter
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Figure 4.2: A geometric illustration for the fast convergence of the proximal algorithms.
The proximal algorithms combined with the pathwise optimization scheme suppress the
overfitting and yield sparse solutions along the solution path. Therefore, the nonsmooth
region of the `2 loss, i.e., the set {θ : y −Xθ = 0}, is avoided, and LRSC, LRSS, and
LRHS enable the proximal algorithms to achieve fast convergence.

gradually decreases, the number of nonzero coordinates gradually increases. Throughout

stages, the regularization parameters are sufficiently large to suppress the overfitting and

yield sparse solutions along the solution path. Thus LRSC, LRSS, and LRHS are also

expected to hold along the entire solution path, and the proximal algorithms achieve

fast convergence. Note that when the design X is normalized, we have λ0 = O(d),

which implies that the total number N of regularization parameter satisfies

N = O(log d).

A geometric illustration of the pathwise optimization is provided in Figure 5.3.

4.5 Extension to CMR and SPME

We extend our algorithm and theory to calibrated multivariate regression (CMR, [116])

and sparse precision matrix estimation (SPME, [121]). Due to space limit, we only
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provide a brief discussion and omit the detailed theoretical deviation.

Extension to CMR. Recall that CMR solves

θ
CMR

= argmin
θ∈Rd×m

1√
n

m∑

k=1

‖Y∗k −XΘ∗k‖2 + λCMR‖Θ‖1,2.

Similar to SQRT-Lasso, we choose a sufficiently large λCMR to prevent overfitting. Thus,

we can expect

‖Y∗k −XΘ∗k‖2 6= 0 for all k = 1, ...,m,

and treat the nonsmooth loss of CMR as a differentiable function. Accordingly, we

can trim our algorithms and theory for the nonsmooth loss of CMR, and establish fast

convergence guarantees, as we discussed in §4.4.

Extension to SPME. [121] show that a d×d sparse precision matrix estimation prob-

lem is equivalent to a collection of d sparse linear model estimation problems. For each

linear model, we apply SQRT-Lasso to estimate the regression coefficient vector and the

standard deviation of the random noise. Since SQRT-Lasso is adaptive to imhomoge-

nous noise, we can use one singular regularization parameter to prevent overfitting for

all SQRT-Lasso problems. Accordingly, we treat the nonsmooth loss function in every

SQRT-Lasso problem as a differentiable function, and further establish fast conver-

gence guarantees for the proximal algorithms combined with the pathwise optimization

scheme.

4.6 Numerical Experiments

We compare the computational performance of the proximal algorithms with other com-

peting algorithms using both synthetic and real data. All algorithms are implemented in

C++ with double precision using a PC with an Intel 2.4GHz Core i5 CPU and 8GB mem-

ory. All algorithms are combined with the pathwise optimization scheme to boost the

computational performance. Due to space limit, we omit some less important details.

Synthetic Data: For synthetic data, we generate a training dataset of 200 samples,

where each row of the design matrix Xi∗is independently from a 2000-dimensional nor-

mal distribution N(0,Σ) where Σjj = 1 and Σjk = 0.5 for all k 6= j. We set s∗ = 3

with θ∗1 = 3, θ∗2 = −2, and θ∗4 = 1.5, and θ∗j = 0 for all j 6= 1, 2, 4. The response vector
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Figure 4.3: The objective gap v.s. the number of iterations. We can see that the
Prox-GD (Left) and Prox-Newton (Right) algorithms achieve linear and quadratic con-
vergence at every stage respectively.

Table 4.2: Computational performance of Prox-GD on synthetic data under different
choices of variance σ, the number of stages N , and the stopping criterion εN . The
training time is presented, where each entry is the mean execution time in seconds over
100 random trials. The minimal mean square error (MSE) is 1

n‖y−Xθ̂[K]‖22, where θ̂[K]

is the optimal solution that attains minFλK (θ) for all stages K = 1, . . . , N .

σ N
εN Min.

σ
εN Min.

10−4 10−5 10−6 MSE 10−4 10−5 10−6 MSE

0.1
1 0.3718 0.3721 0.3647

0.0132 0.5
0.2850 0.2951 0.2886

0.305410 0.2749 0.2764 0.2804 0.1646 0.1698 0.1753
30 0.3364 0.3452 0.3506 0.2207 0.2247 0.2285

1
1 0.2347 0.2478 0.2618

1.1833 2
0.4317 0.4697 0.4791

4.219710 0.1042 0.1031 0.1091 0.1661 0.1909 0.2110
30 0.2172 0.2221 0.2199 0.2701 0.2955 0.3134

Table 4.3: Timing comparison between multiple algorithms on real data. Each entry
is the execution time in seconds. All experiments are conducted to achieve similar
suboptimality.

Data Set
SQRT-Lasso Lasso

Prox-GD Newton ADMM ScalReg CD Alt.Min PISTA

Greenhouse 5.812 1.708 1027.590 3180.747 14.311 99.814 5.113
DrivFace 0.421 0.426 18.879 124.032 3.138 17.691 0.414

is generated by y = Xθ∗ + ε, where ε is sampled from N(0, σ2I).

We first show the fast convergence of the proximal algorithms at every stage of
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Table 4.4: Timing comparison between multiple algorithms for sparse precision matrix
estimation on biology data under different levels of sparsity recovery. Each entry is the
execution time in seconds. All experiments are conducted to achieve similar subopti-
mality. Here CD failed to converge and the program aborted before reaching the desired
suboptimality. Scalreg failed to terminate in 1 hour for Estrogen.

Sparsity
Arabidopsis

Prox-GD Newton ADMM ScalReg CD Alt.Min

1% 5.099 1.264 292.05 411.7 12.02 183.6
3% 6.201 2.088 339.2 426.1 18.18 217.7
5% 7.122 2.258 366.7 435.5 28.60 256.9

Sparsity Estrogen

1% 108.24 3.099 1597 >3600 136.2 634.2
3% 130.93 7.101 1846 >3600 332.0 662.2
5% 143.54 10.12 2029 >3600 588.4 739.5

Sparsity Lymph

1% 3.709 0.625 256.4 354.9 7.208 120.2
3% 4.819 0.905 289.1 355.3 10.51 130.6
5% 4.891 1.123 310.2 358.7 14.95 148.9

Sparsity Leukemia

1% 8.542 2.715 331.3 610.2 173.3 239.2
3% 10.562 3.935 384.7 766.1 174.3 285.1
5% 10.768 4.712 442.5 1274 288.9 333.6

Table 4.5: Timing comparison between multiple algorithms for calibrated multivariate
regression on synthetic and real data with different values of λN . Each entry is the
execution time in seconds. All experiments are conducted to achieve similar subopti-
mality. Here CD failed to converge and the program aborted before reaching the desired
suboptimality.

λN
Synthetic (σ = 1) DrivFace

Prox-GD Newton ADMM CD Prox-GD Newton ADMM CD√
log d/n 0.2964 0.0320 14.83 2.409 9.562 0.2186 158.9 12.77

2
√

log d/n 0.1725 0.0213 2.230 2.227 8.688 0.1603 129.4 20.42

4
√

log d/n 0.0478 0.0112 1.868 1.366 1.824 0.0924 94.37 19.17
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the pathwise optimization scheme. Here we set σ = 0.5, N = 200, λN =
√

log d/n,

εK = 10−6 for all K = 1, . . . , N . Figure 4.3 presents the objective gap versus the number

of iterations. We can see that the proximal algorithms achieves linear (prox-GD) and

quadratic (prox-Newton) convergence at every stage. Since the solution sparsity levels

are different at each stage, the slopes of these curves are also different.

Next, we show that the computational performance of the pathwise optimization

scheme under different settings. Table 4.2 presents the timing performance of Prox-GD

combined with the pathwise optimization scheme. We can see thatN = 10 actually leads

to better timing performance than N = 1. We can also see that the timing performance

of Prox-GD is not sensitive to σ. Moreover, we see that the minimal residual sum of

squares along the solution path is much larger than 0, thus the overfitting is prevented

and the Prox-GD algorithm enjoys the smoothness of the `2 loss.

Real Data: We adopt two data sets. The first one is the Greenhouse Gas Observing

Network Data Set [137], which contains 2921 samples and 5232 variables. The second

one is the DrivFace data set, which contains 606 samples and 6400 variables. We

compare our proximal algorithms with ADMM in [118], Coordinate Descent (CD) in

[122], Prox-GD (solving Lasso) in [130] and Alternating Minimization (Alt.Min.) [119]

and ScalReg (a simple variant of Alt. Min) in [138]. Table 4.3 presents the timing

performance of the different algorithms. We can see that Prox-GD for solving SQRT-

Lasso significantly outperforms the competitors, and is almost as efficient as Prox-GD

for solving Lasso. Prox-Newton is even more efficient than Prox-GD.

Sparse Precision Matrix Estimation. We compare the proximal algorithms with

ADMM and CD over real data sets for precision matrix estimation. Particularly, we use

four real world biology data sets preprocessed by [139]: Arabidopsis (d = 834), Lymph

(d = 587), Estrogen (d = 692), Leukemia (d = 1, 225). We set three different values for

λN such that the obtained estimators achieve different levels of sparse recovery. We set

N = 10, and εK = 10−4 for all K’s. The timing performance is summarized in Table

4.4. Prox-GD for solving SQRT-Lasso significantly outperforms the competitors, and

is almost as efficient as Prox-GD for solving Lasso. Prox-Newton is even more efficient

than Prox-GD.

Calibrated Multivariate Regression. We compare the proximal algorithms with

ADMM and CD for CMR on both synthetic data and DrivFace data. For synthetic
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data, the data generating scheme is the same as [116]. Table 4.5 presents the timing

performance. Prox-GD for solving SQRT-Lasso significantly outperforms the competi-

tors, and is almost as efficient as Prox-GD for solving Lasso. Prox-Newton is even more

efficient than Prox-GD. CD failed to converge and the program aborted before reaching

the desired suboptimality.

4.7 Discussion and Conclusions

We show that although the loss function in the SQRT-Lasso optimization problem is

nonsmooth, we can directly apply the proximal gradient and Newton algorithms. When

further combined with the pathwise optimization scheme, these algorithms enjoy strong

guarantees. Our results corroborate that exploiting modeling structures of machine

learning problems is of great importance from both computational and statistical per-

spectives.

Moreover, we remark a gap in our computational theory. In Section 4.3, we prove

the restricted strong convexity, smoothness, and Hessian smoothness hold over a neigh-

borhood of θ∗. However, to rigorously establish global fast convergence, we actually

need these conditions to hold along the solution path. We highly suspect that this

gap is only an artifact of our proof technique, because our empirical results show the

proximal algorithms indeed achieve fast convergence along the entire solution path of

the pathwise optimization. We will look for more powerful analytic tools and defer a

sharper characterization to the future effort.



Chapter 5

On Quadratic Convergence of DC

Proximal Newton Algorithm

5.1 Introduction

We consider a high dimensional regression or classification problem: Given n indepen-

dent observations {xi, yi}ni=1 ⊂ Rd × R sampled from a joint distribution D(X,Y ), we

are interested in learning the conditional distribution P(Y |X) from the data. A popular

modeling approach is the Generalized Linear Model (GLM) [140], which assumes

P (Y |X; θ∗) ∝ exp

(
Y X>θ∗ − ψ(X>θ∗)

c(σ)

)
,

where c(σ) is a scaling parameter, and ψ is the cumulant function. A natural approach

to estimate θ∗ is the Maximum Likelihood Estimation (MLE) [141], which essentially

minimizes the negative log-likelihood of the data given parameters. However, MLE

often performs poorly in parameter estimation in high dimensions due to the curse of

dimensionality [142].

To address this issue, machine learning researchers and statisticians follow Occam’s

razor principle, and propose sparse modeling approaches [115, 120, 143–145]. These

sparse modeling approaches assume that θ∗ is a sparse vector with only s∗ non-zero

entries, where s∗ < n � d. This implies that only a few variables in X are essentially

relevant to modeling, which is actually very natural to many real world applications,

76
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such as genomics and medical imaging [116,146,147]. Numerous empirical results have

corroborated the success of sparse modeling in high dimensions. Sparse modeling ap-

proaches usually obtain a sparse estimator of θ∗ by solving the following regularized

optimization problem,

θ = argmin
θ∈Rd

L(θ) +Rλtgt(θ), (5.1)

where L : Rd → R is a twice differentiable convex loss function (e.g., negative log-

likelihood or pseudo-likelihood), Rλtgt : Rd → R is a sparsity-inducing decomposable

regularizer, i.e., Rλtgt(θ) =
∑d

j=1 rλtgt(θj) with rλtgt : R → R, and λtgt > 0 is the reg-

ularization parameter. Most of the existing sparse modeling approaches can be cast as

special examples of (5.1), such as sparse linear regression [120], sparse logistic regres-

sion [143], and sparse Poisson regression [144].

For convex regularizers, e.g., Rtgt(θ) = λtgt‖θ‖1 [120], we can obtain global op-

tima in polynomial time and characterize their statistical properties. However, convex

regularizers incur large estimation bias, since they induces too large penalty for the

coefficients with large magnitudes. To address this issue, several nonconvex regulariz-

ers are proposed, including the minimax concave penalty (MCP, [148]), smooth clipped

absolute deviation (SCAD, [149]), and capped `1-regularization [150]. The obtained

estimator (e.g., hypothetical global optima to (5.1)) can achieve faster statistical rates

of convergence than their convex counterparts in parameter estimation [134,151–153].

Related Work: Despite of these superior statistical guarantees, nonconvex regulariz-

ers raise greater computational challenge than convex regularizers in high dimensions.

Popular iterative algorithms for convex optimization, such as proximal gradient de-

scent [123, 154] and coordinate descent [155–157], no longer have strong global conver-

gence guarantees for nonconvex optimization. Therefore, establishing statistical prop-

erties of the estimators obtained by these algorithms becomes very challenging, which

explains why existing theoretical studies on computational and statistical guarantees

for nonconvex regularized sparse modeling approaches are so limited until recent rise of

a new area named “statistical optimization”. Specifically, machine learning researchers

start to incorporate certain structures of sparse modeling (e.g. restricted strong convex-

ity, large regularization effect) into the algorithmic design and convergence analysis for
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nonconvex optimization. This further motivates a few recent progresses: [151] propose

proximal gradient algorithms for a family of nonconvex regularized estimators with a

linear convergence to an approximate local optimum with suboptimal statistical guar-

antees; [152, 158] further propose homotopy proximal gradient and coordinate gradient

descent algorithms with a linear convergence to a local optimum with optimal statis-

tical guarantees; [150, 153] propose a multistage convex relaxation based (also known

as Difference of Convex (DC) Programming) proximal gradient algorithm, which can

guarantee an approximate local optimum with optimal statistical properties. The com-

putational analysis in [153] further shows that within each stage of the convex relaxation,

the proximal gradient algorithm achieves a (local) linear convergence to a unique sparse

global optimum for the relaxed convex subproblem.

Motivation: The aforementioned approaches only consider first order algorithms, such

as proximal gradient descent and proximal coordinate gradient descent. The second or-

der algorithms with theoretical guarantees are still largely missing for high dimensional

nonconvex regularized sparse modeling approaches, but this does not suppress the en-

thusiasm of applying heuristic second order algorithms to real world problems. Some

evidences have already corroborated their superior computational performance over first

order algorithms (e.g. glmnet [159] and picasso [160]). This further motivates our at-

tempt towards understanding the second order algorithms in high dimensions.

Our Contribution: We study a multistage convex relaxation based proximal Newton

algorithm for nonconvex regularized sparse learning [161]. This algorithm is not only

highly efficient in practice, but also enjoys strong computational and statistical guar-

antees in theory. Specifically, by leveraging a sophisticated characterization of local

restricted strong convexity and Hessian smoothness, we prove that within each stage of

convex relaxation, our proposed algorithm maintains the solution sparsity, and achieves

a (local) quadratic convergence, which is a significant improvement over the (local) lin-

ear convergence of the proximal gradient algorithm in [153] (See more details in later

sections). This eventually allows us to obtain an approximate local optimum with opti-

mal statistical properties after only a few number of convex relaxation stages. Numerical

experiments are provided to support our theory. To the best of our knowledge, this is

the first of second order based approaches for high dimensional sparse learning using

convex/nonconvex regularizers with strong statistical and computational guarantees.
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Organization: The rest of this paper is as follows: In Section 5.2, we introduce the ba-

sic assumptions of the objective function and our algorithm; In Section 5.3, we present

both statistical and computational theories that guarantee the convergence of our pro-

posed algorithm; In Section 5.4, we provide numerical experiments to support our theo-

ries; In Section 5.5, we detailedly explain why our second order algorithm is superior to

the existing first order algorithms in practice, and discuss the extensions of our method-

ology and theory to proximal sub-sampled Newton and Quasi-Newton algorithms; The

proof sketches of our theories are presented in Section 7.4.1; The technical lemmas and

supplementary materials are presented in Appendix.

Notations: Given a vector v ∈ Rd, we denote the set of index for non-zero entries

as supp(v), the number of non-zero entries as ‖v‖0 =
∑

j 1(vj 6= 0), the p-norm as

‖v‖p = (
∑d

j=1 |vj |p)1/p for a real p > 0, ‖v‖∞ = maxj |vj |, and the subvector with the

j-th entry removed as v\j = (v1, . . . , vj−1, vj+1, . . . , vd)
> ∈ Rd−1. Given an index set

A ⊆ {1, ..., d}, A = {j | j ∈ {1, ..., d}, j /∈ A} is the complementary set to A. We

use vA to denote a subvector of v indexed by A. Given a matrix A ∈ Rd×d, we use

A∗j (Ak∗) to denote the j-th column (k-th row) and Λmax(A) (Λmin(A)) as the largest

(smallest) eigenvalue of A. We define ‖A‖2F =
∑

j ‖A∗j‖22 and ‖A‖2 =
√

Λmax(A>A).

We denote A\i\j as the submatrix of A with the i-th row and the j-th column removed,

A\ij (Ai\j) as the j-th column (i-th row) of A with its i-th (j-th) entry removed,

and AAA as a submatrix of A with both row and column indexed by A. If A is a

positive semidefinite matrix, we define ‖v‖A =
√
v>Av as the induced seminorm for

vector v. We use conventional notation O(·), Ω(·),Θ(·) to denote the limiting behavior,

ignoring constant, and OP (·) to denote the limiting behavior in probability. C1, C2, . . .

are denoted as generic positive constants.

5.2 DC Proximal Newton Algorithm

Throughout the rest of the paper, we assume: (1) L(θ) is nonstrongly convex and

twice continuously differentiable, e.g., the negative of log-likelihood function for the



80

generalized linear model (GLM); (2) L(θ) takes an additive form, i.e.,

L(θ) =
1

n

n∑

i=1

`i(θ),

where each `i(θ) is associated with an observation (xi, yi) for i = 1, ..., n. Take GLM as

an example, we have

`i(θ) = ψ(x>i θ)− yix>i θ,

where ψ is the cumulant function.

For nonconvex regularization, we use the capped `1 regularizer [150] defined as

Rλtgt(θ) =
d∑

j=1

rtgt(θj) = λtgt

d∑

j=1

min{|θj |, βλtgt}, (5.2)

where β > 0 is an additional tuning parameter1. Our algorithm and theory can also be

extended to the SCAD and MCP regularizers in a straightforward manner [148, 149].

As shown in Figure 5.1, rλtgt(θj) can be decomposed as the difference of two convex

functions [132],

rλ(θj) = λ|θj |︸︷︷︸
convex

−max{λ|θj | − βλ2, 0}︸ ︷︷ ︸
convex

.

= �

θj θj θj

Figure 5.1: The capped `1 regularizer is the difference of two convex functions. This
allows us to relax the nonconvex regularizer based the concave duality.

1The capped `1 regularizer is also independently proposed by [162] with a different name – “Truncated
`1 Regularizer”.
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This motivates us to apply the difference of convex (DC) programming approach to

solve the nonconvex problem. We then introduce the DC proximal Newton algorithm,

which contains three components: the multistage convex relaxation, warm initialization,

and proximal Newton algorithm.

(I) The multistage convex relaxation is essentially a sequential optimization frame-

work [150]2. At the {K + 1}-th stage, we have the output solution from the previous

stage θ̂{K}. For notational simplicity, for all j = 1, . . . , d, we define a regularization

vector λ{K+1} ∈ Rd as

λ{K+1} =
(
λ
{K+1}
1 , ..., λ

{K+1}
d

)>
, where λ

{K+1}
j = λtgt · 1

(
|θ̂{K}j | ≤ βλtgt

)
.

Let � be the Hadamard (entrywise) product. We solve a convex relaxation of (5.1) at

θ = θ̂{K} as follows,

θ
{K+1}

= argmin
θ∈Rd

Fλ{K+1}(θ), where Fλ{K+1}(θ) = L(θ) + ‖λ{K+1} � θ‖1, (5.3)

where ‖λ{K+1} � θ‖1 =
∑d

j=1 λ
{K+1}
j |θj |. One can verify that ‖λ{K+1} � θ‖1 is essen-

tially a convex relaxation of Rλtgt(θ) at θ = θ̂{K} based on the concave duality in DC

programming.

Remark 4. We emphasize that θ
{K}

denotes the unique sparse global optimum for

(5.3) (The uniqueness will be elaborated in later sections), and θ̂{K} denotes the output

solution for (5.3) when we terminate the iteration at the K-th convex relaxation stage.

The stopping criterion will be explained later.

(II) The warm initialization is the first stage of DC programming, which solves the

`1-regularized counterpart of (5.1),

θ
{1}

= argmin
θ∈Rd

L(θ) + λtgt‖θ‖1. (5.4)

This is an intuitive choice for sparse statistical recovery, since the `1-regularized esti-

mator can give us a good initialization, which is sufficiently close to θ∗. Note that (5.4)

2The DC programming approach is also independently proposed by [162] as heuristics, and their
statistical theory is still based on the hypothetical global optima.
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equivalent to (5.3) with λ
{1}
j = λtgt for all j = 1, . . . , d, which can be viewed as the

convex relaxation of (5.1) by taking θ̂{0} = 0 for the first stage.

(III) The proximal Newton algorithm proposed in [124] is then applied to solve

the convex subproblem (5.3) at each stage, including the warm initialization (5.4). For

notational simplicity, we omit the stage index {K} for all intermediate updates of θ,

and only use (t) as the iteration index within the K-th stage for all K ≥ 1. Specifically,

at the K-th stage, given θ(t) at the t-th iteration of the proximal Newton algorithm, we

consider a quadratic approximation of (5.3) at θ(t) as follows,

Q(θ; θ(t), λ{K}) = L(θ(t)) + (θ − θ(t))>∇L(θ(t)) +
1

2
‖θ − θ(t)‖2∇2L(θ(t))

+ ‖λ{K} � θ‖1,
(5.5)

where ‖θ − θ(t)‖2∇2L(θ(t))
= (θ − θ(t))>∇2L(θ(t))(θ − θ(t)). We then take

θ(t+ 1
2

) = argmin
θ

Q(θ; θ(t), λ{K}).

Since L(θ) = 1
n

∑n
i=1 `i(θ) takes an additive form, we can avoid directly computing the

d by d Hessian matrix in (5.5). Alternatively, in order to reduce the memory usage when

d is large, we rewrite (5.5) as a regularized weighted least square problem as follows

Q(θ; θ(t), λ{K}) =
1

n

n∑

i=1

wi(zi − x>i θ)2 + ‖λ{K} � θ‖1 + constant, (5.6)

where wi’s and zi’s are some easy to compute constants depending on θ(t), `i(θ
(t))’s,

xi’s, and yi’s.

Remark 5. Existing literature has shown that the `1-regularized quadratic problem in

(5.6) can be efficiently solved by coordinate descent algorithms in conjunction with the

active set strategy [158]. See more details in [159] and Appendix 7.4.2.

For the first stage (i.e., warm initialization), we require an additional backtracking

line search procedure to guarantee the descent of the objective value [124]. Specifically,
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we denote

∆θ(t) = θ(t+ 1
2

) − θ(t).

Then we start from ηt = 1 and use a backtracking line search procedure to find the

optimal ηt ∈ (0, 1] such that the Armijo condition [163] holds. Specifically, given a

constant µ ∈ (0.9, 1), we update ηt = µq from q = 0 and find the smallest nonnegative

integer q such that

Fλ{1}(θ(t) + ηt∆θ
(t)) ≤ Fλ{1}(θ(t)) + αηtγt,

where α ∈ (0, 1
2) is a fixed constant and

γt = ∇L
(
θ(t)
)>
·∆θ(t) + ‖λ{1} �

(
θ(t) + ∆θ(t)

)
‖1 − ‖λ{1} � θ(t)‖1.

We then set θ(t+1) as θ(t+1) = θ(t) +ηt∆θ
(t) and terminate the iterations for the smallest

t when the following approximate KKT condition holds:

ωλ{1}
(
θ(t)
)

= min
ξ∈∂‖θ(t)‖1

‖∇L(θ(t)) + λ{1} � ξ‖∞ ≤ ε,

where ε is a predefined precision parameter. Then we set the output solution as

θ̂{1} = θ(t). Note that θ̂{1} is then used as the initial solution for the second stage

of convex relaxation (5.3). The proximal Newton algorithm with backtracking line

search is summarized in Algorithm 7.

Such a backtracking line search procedure is not necessary at K-th stage for all

K ≥ 2. In other words, we simply take ηt = 1 and θ(t+1) = θ(t) + ∆θ(t) = θ(t+ 1
2

) for

all t ≥ 0 when K ≥ 2. This leads to more efficient updates for the proximal Newton

algorithm from the second stage of convex relaxation (5.3). We summarize our proposed

DC proximal Newton algorithm in Algorithm 8.
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Algorithm 7 Proximal Newton Algorithm (ProxNewton)

Input: θ(0), λtgt, ε

Initialize: t← 0, λ
{1}
j ← λtgt, µ← 0.9, α← 1

4
Repeat:
θ(t+ 1

2
) ← argminθQ(θ; θ(t), λ{1})

∆θ(t) ← θ(t+ 1
2

) − θ(t)

γt ← ∇L
(
θ(t)
)> ·∆θ(t) + ‖λ{1} �

(
θ(t) + ∆θ(t)

)
‖1 − ‖λ{1} � θ(t)‖1

ηt ← 1, q ← 0
Repeat:
ηt ← µq

q ← q + 1
Until Fλ{1}

(
θ(t) + ηt∆θ

(t)
)
≤ Fλ{1}

(
θ(t)
)

+ αηtγt
θ(t+1) ← θ(t) + ηt∆θ

(t)

t← t+ 1
Until ωλ{1}(θ

(t)) ≤ ε
Return: θ(t).

Algorithm 8 DC Proximal Newton Algorithm

Input: θ̂{0}, λtgt, β, ε

Warm Initialization: θ̂{1} ← ProxNewton(θ̂{0}, λtgt, ε), K ← 1
Repeat:

λ
{K+1}
j ←

{
0, if |θ̂{K}j | > βλtgt

λtgt, if |θ̂{K}j | ≤ βλtgt

t← 0, θ(0) = θ̂{K}

Repeat:
θ(t+1) ← argminθQ(θ; θ(t), λ{K+1})
t← t+ 1

Until ωλ{K+1}(θ(t)) ≤ ε
θ̂{K+1} ← θ(t)

K ← K + 1
Until Convergence
Return: θ̂{K}.

5.3 Computational and Statistical Theories

Before we present our theoretical analysis, we first introduce some preliminaries, includ-

ing important definitions and assumptions. We define the largest and smallest s-sparse

eigenvalues of the Hessian matrix as follows.
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Definition 9. Given any positive integer s, we define the largest and smallest s-sparse

eigenvalues of ∇2L(θ) as

ρ+
s = sup

‖v‖0≤s

v>∇2L(θ)v

v>v
and ρ−s = inf

‖v‖0≤s

v>∇2L(θ)v

v>v
.

Moreover, we define κs = ρ+
s /ρ

−
s as the s-sparse condition number.

The sparse eigenvalue (SE) properties are widely studied in high dimensional sparse

modeling problems, and are closely related to restricted strong convexity/smoothness

properties and restricted eigenvalue properties [134, 164–166]. For notational conve-

nience, given a parameter θ∈ Rd and a real constant R > 0, we define a neighborhood

of θ with radius R as

B(θ,R)=
{
φ ∈ Rd | ‖φ− θ‖2 ≤ R

}
.

Our first assumption is for the sparse eigenvalues of the Hessian matrix over a sparse

domain.

Assumption 1. Given θ ∈ B(θ∗, R) for a generic constant R, there exists a generic

constant C0 such that ∇2L(θ) satisfies the SE properties with parameters ρ−s∗+2s̃ and

ρ+
s∗+2s̃ satisfying

0 < ρ−s∗+2s̃ < ρ+
s∗+2s̃ < +∞ with s̃ ≥ C0κ

2
s∗+2s̃ s

∗ and κs∗+2s̃ = ρ+
s∗+2s̃/ρ

−
s∗+2s̃.

Assumption 1 requires that ∇2L(θ) has finite largest and positive smallest sparse

eigenvalues, given that θ is sufficiently sparse and close to θ∗. Similar conditions

are widely applied in the analyses of efficient algorithms for solving high dimensional

learning problems, such as proximal gradient and coordinate gradient descent algo-

rithms [130, 145, 152, 158, 167]. A direct consequence of Assumption 1 is the restricted

strong convexity/smoothness of L(θ) (RSC/RSS, [142]). Given any θ, θ′ ∈ Rd, the

RSC/RSS parameter can be defined as

δ(θ′, θ)=L(θ′)− L(θ)−∇L(θ)>(θ′ − θ).
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For notational simplicity, we define

S = {j | θ∗j 6= 0} and S = {j | θ∗j = 0}.

The following proposition connects the SE properties to the RSC/RSS property.

Proposition 2. Given θ, θ′ ∈ B(θ∗, R) with ‖θS‖0 ≤ s̃ and ‖θ′S‖0 ≤ s̃, L(θ) satisfies

1

2
ρ−s∗+2s̃‖θ′ − θ‖22 ≤ δ(θ′, θ) ≤

1

2
ρ+
s∗+2s̃‖θ′ − θ‖22.

The proof of Proposition 2 is provided in [142], and therefore is omitted. Proposition

2 implies that L(θ) is essentially strongly convex, but only over a sparse domain (See

Figure 5.2).

The second assumption requires ∇2L(θ) to be smooth over the sparse domain.

Assumption 2 (Local Restricted Hessian Smoothness). Recall that s̃ is defined in

Assumption 1. There exist generic constants Ls∗+2s̃ and R such that for any θ, θ′ ∈
B(θ∗, R) with ‖θS‖0 ≤ s̃ and ‖θ′S‖0 ≤ s̃, we have

sup
v∈Ω, ‖v‖2=1

v>(∇2L(θ′)−∇2L(θ))v ≤ Ls∗+2s̃‖θ − θ′‖22,

where Ω = {v | supp(v) ⊆ (supp(θ) ∪ supp(θ′))}.

Assumption 2 guarantees that∇2L(θ) is Lipschitz continuous within a neighborhood

of θ∗ over a sparse domain. The local restricted Hessian smoothness is parallel to the

local Hessian smoothness for analyzing the proximal Newton method in low dimensions

[124], which is also close related to the self-concordance [131] in the analysis of Newton

method [132].

In our analysis, we set the radius R as

R=
ρ−s∗+2s̃

2Ls∗+2s̃
. (5.7)

Note that 2R =
ρ−
s∗+2s̃

Ls∗+2s̃
is the radius of the region centered at the unique sparse global

minimizer of (5.3) for quadratic convergence of the proximal Newton algorithm, which
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Restricted Strongly Convex

Nonstrongly Convex

Figure 5.2: An illustrative two dimensional example of the restricted strong convexity.
L(θ) is not strongly convex. But if we restrict θ to be sparse (Black Curve), L(θ)
behaves like a strongly convex function.

will be further discussed later. This is parallel to the convergent radius in low dimensions

[124], except that we restrict the parameters over the sparse domain.

The third assumption requires λtgt to be chosen appropriately.

Assumption 3. Given the true modeling parameter θ∗, there exist generic constant

C1 such that

λtgt = C1

√
log d

n
≥ 4‖∇L(θ∗)‖∞.

Moreover, for large enough n, we have

√
s∗λtgt ≤ C2Rρ

−
s∗+2s̃.

Assumption 3 guarantees that the regularization is sufficiently large to eliminate

irrelevant coordinates such that the obtained solution is sufficiently sparse [133, 134].

In addition, λtgt can not be too large, which guarantees that the estimators are close

enough to the true model parameter. The above assumptions are deterministic. We

will verify these assumptions under GLM in the statistical analysis.

Our last assumption is on the predefined precision parameter ε as follows.

Assumption 4. For each stage of solving the convex relaxed subproblem (5.3) for all

K ≥ 1, we set

ε =
C3√
n
≤ λtgt

8
for some generic small constant C3.

Assumption 4 guarantees that the output solution θ̂{K} at each stage for all K ≥ 1

has a sufficient precision, which is critical to our convergence analysis of multistage



88

convex relaxation.

5.3.1 Computational Theory

We first characterize the convergence for the first stage of our proposed DC proximal

Newton algorithm, i.e., the warm initialization for solving (5.4).

Theorem 12 (Warm Initialization, K = 1). Suppose that Assumptions 1 ∼ 4 hold

with R defined in (5.7). After sufficiently many iterations T <∞, the following results

hold for all t ≥ T :

‖θ(t) − θ∗‖2 ≤ R and Fλ{1}(θ(t)) ≤ Fλ{1}(θ∗) +
15λ2

tgts
∗

4ρ−s∗+2s̃

,

which further guarantee

ηt = 1, ‖θ(t)

S ‖0 ≤ s̃, and ‖θ(t+1) − θ{1}‖2 ≤
Ls∗+2s̃

2ρ−s∗+2s̃

‖θ(t) − θ{1}‖22,

where θ
{1}

is the unique sparse global minimizer of (5.4) satisfying ‖θ{1}S ‖0 ≤ s̃ and

ωλ{1}(θ
{1}

) = 0. Moreover, we need at most

T + log log
(
3ρ+

s∗+2s̃/ε
)

iterations to terminate the proximal Newton algorithm for the warm initialization (5.4),

where the output solution θ̂{1} satisfies

‖θ̂{1}S ‖0 ≤ s̃, ωλ{1}(θ̂
{1}) ≤ ε, and ‖θ̂{1} − θ∗‖2 ≤

18λtgt

√
s∗

ρ−s∗+2s̃

.

The proof of Theorem 12 is provided in Appendix 7.4.1. Theorem 12 implies:

(1) The objective value is sufficiently small after finite T iterations of the proximal

Newton algorithm, which further guarantees solutions to be sparse as well as good

computational performance in all follow-up iterations.

(2) The solution enters the ball B(θ∗, R) after finite T iterations. Combined with the

sparsity of the solution, it further guarantees that the solution enters the region of
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quadratic convergence. Thus the backtracking line search stops immediately and

output ηt = 1 for all t ≥ T .

(3) The total number of iterations is at most O(T + log log(1/ε)) to achieve the ap-

proximate KKT condition ωλ{1}(θ
(t)) ≤ ε, which serves as the stopping criterion

of the warm initialization (5.4).

Remark 6. To eliminate the notational ambiguity, we emphasis again the difference

between θ
{1}

and θ̂{1}: θ
{1}

is the unique sparse global minimizer of (5.4) that satisfies

the KKT condition, i.e., ωλ{1}(θ
{1}

) = 0; θ̂{1} is the output solution of Algorithm 7

that satisfies the approximate KKT condition, i.e., ωλ{1}(θ̂
{1}) ≤ ε for some predefined

ε > 0. Notations θ
{K}

and θ̂{K} with the same interpretations above are also used for

later stages K ≥ 2.

Given these good properties of the output solution θ̂{1} obtained from the warm

initialization, we can further show that our proposed DC proximal Newton algorithm

for all follow-up stages (i.e., K ≥ 2) achieves better computational performance than

the first stage. This is characterized by the following theorem. For notational simplicity,

we omit the iteration index {K} for the intermediate updates within each stage for the

multistage convex relaxation with K ≥ 2.

Theorem 13 (Stage K, K ≥ 2). Suppose Assumptions 1 ∼ 4 hold with R defined in

(5.7). Then within each stage K ≥ 2, for all iterations t = 1, 2, ..., we have

‖θ(t)

S ‖0 ≤ s̃ and ‖θ(t) − θ∗‖2 ≤ R,

which further guarantee

ηt = 1, ‖θ(t+1) − θ{K}‖2 ≤
Ls∗+2s̃

2ρ−s∗+2s̃

‖θ(t) − θ{K}‖22, and Fλ{K}(θ(t+1)) < Fλ{K}(θ(t)),

where θ
{K}

is the unique sparse global minimizer of (5.3) at the K-th stage satisfying

‖θ{K}S ‖0 ≤ s̃ and ωλ{K}(θ
{K}

) = 0. Moreover, we need at most

log log
(
3ρ+

s∗+2s̃/ε
)
.
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iterations to terminate the proximal Newton algorithm for the K-th stage of convex

relaxation (5.3), where the output solution θ̂{K} satisfies ‖θ̂{K}S ‖0 ≤ s̃, ωλ{K}(θ̂
{K}) ≤

ε, and

‖θ̂{K} − θ∗‖2 ≤ C2


‖∇L(θ∗)S‖2 + λtgt

√∑

j∈S
1(|θ∗j | ≤ βλtgt) + ε

√
s∗




+ C30.7K−1‖θ̂{1} − θ∗‖2,

for some generic constants C2 and C3.

...

Region of Quadratic Convergence

Output Solution for the 2nd Stage

Output Solution for the Last Stage

Neighborhood of ✓⇤ : B(✓⇤,R)

Initial Solution for Warm Initialization

Output Solution for Warm Initialization

b✓{0}

b✓{1}

b✓{2}

b✓{eK}

✓⇤

Figure 5.3: A geometric interpretation of local quadratic convergence: the warm initial-
ization enters the region of quadratic convergence (orange region) after finite iterations
and all follow-up stages remain in the region of quadratic convergence. The final es-
timator θ̂{K̃} has a better estimation error than the estimator θ̂{1} obtained from the
convex warm initialization.

The proof of Theorem 13 is provided in Appendix 7.4.1. A geometric interpretation

for the computational theory of local quadratic convergence for our proposed algorithm

is provided in Figure 5.3. Within each stage of the convex relaxation (5.3) for all K ≥ 2,

Theorem 13 implies:

(1) The algorithm maintains a sparse solution throughout all iterations t ≥ 1. The

sparsity further guarantees that the SE properties and local restricted Hessian

smoothness hold, which are necessary conditions for the fast convergence of the



91

proximal Newton algorithm.

(2) The solution is maintained in the region B(θ∗, R) for all t ≥ 1. Combined with the

sparsity of the solution, we have that the solution enters the region of quadratic

convergence. This guarantees that we only need to set the step size ηt = 1 and

the objective value is monotone decreasing without the sophisticated backtracking

line search procedure. Thus, the proximal Newton algorithm enjoys the same fast

convergence as in low dimensional optimization problems [124].

(3) With the quadratic convergence rate, the number of iterations is at most

O(log log(1/ε)) to attain the approximate KKT condition ωλ{K}(θ
(t)) ≤ ε, which

is the stopping criteria at each stage.

5.3.2 Statistical Theory

Recall that our computational theory relies on deterministic assumptions (Assump-

tions 1 ∼ 3). However, these assumptions involve data, which are sampled from certain

statistical distribution. Therefore, we need to verify that these assumptions hold with

high probability under mild data generation process (e.g., GLM) in high dimensions in

the following lemma.

Lemma 3 (GLM). Suppose that xi’s are i.i.d. sampled from a zero-mean distribution

with covariance matrix Cov(xi) = Σ such that ∞ > cmax ≥ Λmax(Σ) ≥ Λmin(Σ) ≥
cmin > 0, and for any v ∈ Rd, v>xi is sub-Gaussian with parameter at most a‖v‖22,

where cmax, cmin, and a are generic constants. Moreover, for some constant Mψ > 0, at

least one of the following two conditions holds:

(1) The Hessian of the cumulant function ψ is uniformly bounded: ‖ψ′′‖∞ ≤Mψ, or

(2) The covariates are bounded ‖xi‖∞ ≤ 1, and

E[max
|u|≤1

[ψ′′(x>θ∗) + u]p] ≤Mψ for some p > 2.

Then Assumptions 1 ∼ 3 hold with high probability.

The proof of Lemma 3 is provided in Appendix 7.4.5. Given that these assumptions

hold with high probability, the computational theory holds, i.e., the proximal Newton



92

algorithm attains quadratic rate convergence within each stage of convex relaxation

with high probability. We then further establish the statistical rate of convergence for

the obtained estimator in parameter estimation.

Theorem 14. Suppose the observations are generated from GLM satisfying the con-

ditions in Lemma 3 for large enough n such that n ≥ C4s
∗ log d and β = C5/cmin is a

constant defined in (5.2) for generic constants C4 and C5, then with high probability,

the output solution θ̂{K} satisfies

‖θ̂{K} − θ∗‖2 ≤ C6

(√
s∗

n
+

√
s′ log d

n

)
+ C70.7K

(√
s∗ log d

n

)

for generic constants C6 and C7, where s′ =
∑

j∈S 1(|θ∗j | ≤ βλtgt).

Theorem 14 is a direct result combining Theorem 13 and the analyses in [150]. As

can be seen, s′ is essentially the number of non-zero θj ’s with smaller magnitudes than

βλtgt, which are often considered as “weak” signals. Theorem 14 essentially implies that

by exploiting the multi-stage convex relaxation framework, our DC proximal Newton

algorithm gradually reduces the estimation bias for “strong” signals, and eventually

obtains an estimator with better statistical properties than the `1-regularized estimator.

Specifically, let K̃ be the smallest integer such that after K̃ stages of convex relaxation

we have

C70.7K̃

(√
s∗ log d

n

)
≤ C6 max

{√
s∗

n
,

√
s′ log d

n

}
,

which is equivalent to requiring K̃ = O(log log d). This implies the total number of the

proximal Newton updates is at most

O (T + log log(1/ε) · (1 + log log d)) .

In addition, the obtained estimator attains the optimal statistical properties in param-

eter estimation:

‖θ̂{K̃} − θ∗‖2 ≤ OP
(√s∗

n
+

√
s′ log d

n

)
v.s. ‖θ̂{1} − θ∗‖2 ≤ OP

(√s∗ log d

n

)
. (5.8)
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Recall that θ̂{1} is obtained by the warm initialization (5.4). As illustrated in Figure 5.3,

this implies the statistical rate in (5.8) for ‖θ̂{K̃} − θ∗‖2 obtained from the multistage

convex relaxation for the nonconvex regularized problem (5.1) is a significant improve-

ment over ‖θ̂{1} − θ∗‖2 obtained from the convex problem (5.4). Especially when s′

is small, i.e., most of non-zero θj ’s are strong signals, our result approaches the oracle

bound3 OP (
√
s∗/n) [149] as illustrated in Figure 5.4.
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Figure 5.4: An illustration of the statistical rates of convergence in parameter esti-
mation. Our obtained estimator has an error bound between the oracle bound and the
slow bound from the convex problem in general. When the percentage of strong signals
increases, i.e., s′ decreases, then our result approaches the oracle bound.

5.4 Experiments

We compare our DC Proximal Newton algorithm (DC+PN) with two competing algo-

rithms for solving nonconvex regularized sparse logistic regression problems.They are

accelerated proximal gradient algorithm (APG) implemented in the SPArse Modeling

Software (SPAMS, coded in C++, [168]), and accelerated coordinate descent (ACD) algo-

rithm implemented in R package gcdnet (coded in Fortran, [169]). We further optimize

the active set strategy in gcdnet to boost its computational performance. To integrate

3The oracle bound assumes that we know which variables are relevant in advance. It is not a realistic
bound, but only for comparison purpose.
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these two algorithms with the multistage convex relaxation framework, we revise their

source code.

To further boost the computational efficiency at each stage of the convex relaxation,

, we apply the pathwise optimization for all algorithms [158, 159]. Specifically, we use

a geometrically decreasing sequence of regularization parameters {λ[m] = αmλ[0]}Mm=1,

where α ∈ (0, 1) is a shrinkage ratio, and λtgt = λ[M ]. For each λ[m], we apply the

corresponding algorithm (DC+PN, DC+APG, and DC+ACD) to solve the nonconvex

regularized problem (5.1). The value of λ[0] is chosen to be the smallest value such

that the corresponding solution is zero. Moreover, we initialize the solution for a new

regularization parameter λ[m+1] using the output solution obtained with λ[m]. Such a

pathwise optimization scheme has achieved tremendous success in practice [159,170,171],

and we refer [158] for more involved theoretical analysis.

All three algorithms are compared in wall clock time and objective values with

λtgt ≈ 1
4

√
log d/n. Our DC Proximal Newton algorithm is implemented in C with

double precisions, and called from R by a wrapper. Our comparison contains 3 datasets:

“madelon” (n = 2000, d = 500, [172]), “gisette” (n = 2000,d = 5000, [172]), and two

simulated datasets: “sim 1k” and “sim 10k”. For the simulated data sets, we choose

n = 1000 and d = 5000, and generate each xi independently from a d-dimensional

normal distribution N (0,Σ), where Σjk = 0.5|j−k| for all j, k = 1, ..., d. We generate

y ∼ Bernoulli(1/[1 + exp(−x>i θ∗)]), where θ∗ has all 0 entries except randomly selected

20 entries. The non-zero entries are independently sampled from U(0, 1).

Table 5.1: Quantitive timing comparisons for on nonconvex-regularized sparse logis-
tic regression. DC+PN denotes our proposed DC proximal Newton algorithm; ACD
denotes the coordinate descent algorithm combined with the active set strategy; APG
denotes the accelerated proximal gradient algorithm. The average values and standard
errors (in parentheses) of timing performance (in seconds) are presented.

madelon gisette sim 1k sim 10k

DC+PN
1.51(±0.01)s 5.35(±0.11)s 1.07(±0.02)s 8.82(±0.04)s

obj value: 0.52 obj value: 0.01 obj value: 0.01 obj value: 0.01

DC+ACD
5.83(±0.03)s 18.92(±2.25)s 9.46(±0.09) s 19.1(±0.56) s

obj value: 0.52 obj value: 0.01 obj value: 0.01 obj value: 0.01

DC+APG
1.60(±0.03)s 207(±2.25)s 17.8(±1.23) s 222(±5.79) s

obj value: 0.52 obj value: 0.01 obj value: 0.01 obj value: 0.01
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The experiments are performed on a personal computer with 2.6GHz Intel Core i7

and 16GB RAM. For each algorithm and dataset, we repeat the algorithm 10 times

and we report the average values and standard errors of the wall clock time in Table

5.1. The stopping criteria for each algorithms are tuned such that they attains similar

optimization errors. As can be seen in Table 5.1, our DC Proximal Newton algorithm

significantly outperforms the competing algorithms in terms of the timing performance.

We then illustrate the quadratic convergence of our DC proximal Newton algorithm

within each stage of convex relaxation using the “sim” datasets. Specifically, we provide

the plots of gap towards the optimal objective of the K-th stage, i.e., log(Fλ{K}(θ(t))−
Fλ{K}(θ

{K}
)), for K = 1, 2, 3, 4 in a single simulation in Figure 5.5. We see that our DC

proximal Newton algorithm achieves quadratic convergence, which is consistent with

our theory.

(a) Simulated Data, λ = 0.036 (b) Gissete Data, λ = 0.02

Figure 5.5: Timing comparisons in wall clock time. Our DC proximal Newton algo-
rithm demonstrates superior quadratic convergence (consistent with our theory), and
significantly outperforms the DC proximal gradient algorithm.

5.5 Discussions and Future Work

We first provide detailed discussions on the superior performance of our DC proximal

Newton in our experiment, and then discuss potential variants – DC proximal sub-

sampled Newton or Quasi-Newton algorithm.
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5.5.1 Drawbacks of first order algorithms

There exist two major drawbacks of existing multi-stage convex relaxation based first

order algorithms:

(1) The first order algorithms have significant computational overhead in each iter-

ation, e.g., for GLM, computing gradients requires frequently evaluating the cu-

mulant function and its derivatives. This often involves extensive non-arithmetic

operations such as log and exp functions, which naturally appear in the cumulant

function and its derivates and are computationally expensive. To the best of our

knowledge, even if we use some efficient numerical methods for calculating exp

in [173, 174], the computation still needs at least 10− 30 times more CPU cycles

than basic arithmetic operations, e.g., multiplications. Our proposed DC Proximal

Newton algorithm cannot avoid calculating the cumulant function and its deriva-

tives, when computing quadratic approximations. The computation, however, is

much less intense, since the convergence is quadratic.

(2) The first order algorithms are computationally expensive with the step size selec-

tion. Although for certain GLM, e.g., sparse logistic regression, we can choose the

step size parameter as

η ≈ Λ−1
max

(
1

n

n∑

i=1

xix
>
i

)
.

However, such a step size often leads to very poor performance. In contrast, as

our theoretical analysis and experiments suggest, the proposed DC proximal New-

ton algorithm needs very few line search steps, which saves much computational

efforts.

Some recent papers on proximal Newton or inexact proximal Newton also demon-

strate local quadratic convergence guarantees, such as [175,176]. However, their condi-

tions are much more stringent than the SE properties in terms of the dependence on the

problem dimensions. Specifically, their quadratic convergence can only be guaranteed

on a much smaller ball/neighborhood. For example, the constant nullspace strong con-

vexity in [175], which plays the same role as the smallest sparse eigenvalue ρ−s∗+2s̃ in our

analysis, is as small as 1/d. Thus, they can only guarantee the quadratic convergence
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in a region with radius O(1/d), which is very small in high dimensions. However, in our

analysis, ρ−s∗+2s̃ can be a constant, which is (almost) independent of d [142] and much

larger than O(1/d). A similar issue that the quadratic region is too small exists in [176]

as well.

5.5.2 Extension to sub-sampled or Quasi-Newton algorithms

Our methodology can be further extended to proximal sub-sampled Newton or Quasi-

Newton algorithms using either BFGS-type or subsampled Hessian matrices. Taking the

Proximal sub-sampled Newton algorithm as an example, we replace the Hessian matrix

with an approximate Hessian matrix in each proximal Newton iteration. Suppose that

at the t-th iteration of the K-th stage, we randomly select a mini-batch X (t) ⊂ {1, ..., n}
of m samples from the data with equal probability (i.e., |X (t)| = m). We then consider

an alternative quadratic approximation

Q̂(θ; θ(t), λ(K),X (t))

= L(θ(t)) + (θ − θ(t))>∇L(θ(t)) +
1

2
‖θ − θ(t)‖2

Ĥ(θ(t),X (t))
+ ‖λ{K} � θ‖1, (5.9)

where Ĥ(θ(t),X (t)) is the subsampled Hessian matrix

Ĥ(θ(t),X (t)) =
1

m

∑

i∈X (t)

∇2`i(θ
(t)).

By exploiting the additive nature of L(θ), we can further rewrite (5.9) as

Q̂(θ; θ(t), λ(K),X (t)) =
1

m

∑

i∈X (t)

wi(x
>
i θ)

2 + g>θ + ‖λ{K} � θ‖1 + constant, (5.10)

where g ∈ Rd and wi ∈ R for all i ∈ X (t) are some easy to compute constants depending

on θ(t), `i(θ
(t))’s, xi’s, and yi’s. Similar to (5.6), (5.10) only requires O(md) memory

usage and can be efficiently solved by coordinate descent algorithms in conjunction

with the active set strategy, soft thresholding, and residual update. See more details

in Appendix 7.4.2. Note that the line search procedure is needed for the proximal

sub-sampled Newton algorithm throughout all iterations and stages.
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The sub-sampled Hessian matrices preserve the spectral behaviors when the batch

size m is large enough (e.g. m = Ω(s∗ log d)). Thus, restricted strong convexity, smooth-

ness, and Hessian smoothness hold, and similar theoretical results are expected to hold.

A major difference is that we get slower convergence (e.g. superlinear or linear depending

on the batch size m) instead of quadratic convergence. This is a fundamental trade-

off between Proximal Newton and proximal sub-sampled Newton (or Quasi-Newton)

algorithm in both low and high dimensions. We will leave this for further investigation.



Chapter 6

Global Optimization Landscape

of Nonconvex Matrix

Factorization

6.1 Introduction

We consider a low-rank matrix estimation problem. Specifically, we want to estimate

M∗ ∈ Rn×m with rank(M∗) = r � min{n,m} by solving the following rank-constrained

problem

min
M

f(M) subject to rank(M) ≤ r, (6.1)

where f : Rn×m → R is usually a convex and smooth loss function. Since solving (6.1)

has been known to be NP-hard in general, significant efforts have been also devoted to

studying a convex relaxation of (6.1) as follows,

min
M

f(M) subject to ‖M‖∗ ≤ τ, (6.2)

where τ is a tuning parameter and ‖M‖∗ is the sum of all singular values of M , also

known as the nuclear norm [177–180].

Although there have been a number of algorithms proposed for solving either (6.1)

99
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or (6.2) in existing literature [181–183], all these algorithms are iterative, and each

iteration needs to calculate a computationally expensive Singular Value Decomposition

(SVD), or an equivalent operation for finding the dominant singular values/vectors.

This is very prohibitive for large-scale problems. In practice, most of popular heuristic

algorithms resort to factorizing M to a product of smaller matrices, i.e, M∗ = UV >,

where U ∈ Rn×r and V ∈ Rm×r, also known as the factorized form. Then instead of

solving (6.1) or (6.2), we solve the following nonconvex problem

min
X∈Rn×r,Y ∈Rm×r

f(XY >), (6.3)

where scalable algorithms can iteratively update X and Y very efficiently. The

reparametrization of the low rank matrix in (6.3) is closely related to the Burer-

Monteiro factorization for semidefinite programing in existing literature. See more

details in [184,185].

Tremendous progress has been made to provide theoretical justifications of the

popular nonconvex factorization heuristic algorithms for general classes of functions

[186–190]. A wide family of problems can be cast as (6.3). Popular examples include

matrix sensing [186,188,191–194], matrix completion [195–200], (sparse) principle com-

ponent analysis (PCA) [201–204], and factorization machine [205, 206]. Recent efforts

are also made when the observation is a superposition of low-rank and sparse ma-

trices [207, 208]. Moreover, extensions to low-rank tensor estimation and its related

problems, such as independent component analysis (ICA) and topic modeling, are also

studied [199,209–211].

The factorized form M = XY > makes (6.3) very challenging to solve. First, it yields

infinitely many nonisolated saddle points because of the existence of invariant rotation

group. For example, if some (X,Y ) pair is a saddle point, then for any orthogonal matrix

Φ ∈ Rr×r, i.e., ΦΦ> = I, (XΦ, Y Φ) is also a saddle point since XY > = XΦ(Y Φ)>.

For the same reason, there exist infinitely many local/global minima as well for r > 1.

Second, although f(M) is convex on M , f(XY >) is not jointly convex in X and Y

(even around a small neighborhood of a global optimum). To address these challenges,

various techniques are developed recently. Extensive contemporary works focus on the

local convergence rate analysis based on local geometric properties of the optimization
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problem using generalization of convexity/smoothness of f , such as local regularity

condition [192, 198, 212, 213] and local descent condition [188, 207]. However, careful

initialization is required in this type of approaches. Another line of works on solving

the factorized problem (6.3) focus on the optimality conditions that guarantees global

convergence using random initialization [193, 199]. However, since only partial results

on the landscape of optimization are discussed, e.g., only stationary points (i.e., saddle

points and local minima) are characterized without discussing their neighborhood or the

rest region of the parameter space, no explicit global convergence rate can be guaranteed.

In addition to the approaches discussed above, another more clear yet more chal-

lenging scheme is to characterize the global landscape of the nonconvex optimization

problem, based on which the global convergence analysis becomes possible. Without

further distinction, we use “landscape” to denote the the geometry of the objective

function in the optimization problem, i.e., the characterization of all stationary points

and the explicit geometry of the objective function on the entire parameter domain (e.g.,

the characterization of regions R1, R2, and R3 defined below). Nevertheless, there

are few works that discuss the global landscape of the nonconvex optimization (6.3)

in such an explicit manner. One of the earliest works that study the global landscape

of nonconvex optimization in this sense is on the phase retrieval problem [214], which

can be viewed as a special case of (6.3). Such global landscape on optimization can

further help provide global convergence rate analysis using popular iterative algorithms

without careful initialization [187,214–216]. However, existing works have not discussed

the intrinsic reasons of difficulties that present in the nonconvex matrix factorization

problems, e.g., the generation of saddle points.

To shed light on the nonconvex matrix factorization problems (6.3), our study here

consists of two major parts to answer two questions of our interest [217]: (I) Why are

there saddle points and how to identify them effectively? (II) How do the saddle points

impact the geometry of the optimization problem? To answer the first question, we

study a generic theory for characterizing the landscape of a general class of functions

with underlying symmetric structures. Based on a new symmetry principle, we iden-

tify stationary points for those functions with invariant groups, which characterizes the

underlying principle of generating saddle points in nonconvex matrix factorization prob-

lems. Moreover, we characterize the null space of the Hessian matrices of the stationary
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points via the tangent space. We further provide concrete examples to demonstrate

our proposed theory. To the best of our knowledge, this is the first effort to provide a

generic framework for characterizing geometric properties of a large class of functions

with symmetric structure.

To answer the second question, we establish a comprehensive analysis for global

landscape of the low-rank matrix factorization problem based on our proposed generic

theory. Specifically, we consider a symmetric positive semidefinite (PSD) matrix M∗ =

UU> � 0, and solve the following problem

min
X∈Rn×r

F(X), where F(X) =
1

4
‖M∗ −XX>‖2F. (6.4)

Here we only consider the PSD matrix for simplicity, and the extension to the general

rectangular case is straightforward (see more details in Section 6.2). Though (6.4) has

been viewed as an important foundation of many popular matrix factorization problems

such as matrix sensing and matrix completion, the global landscape of F(X) in (6.4) is

not very clear yet. Based on our generic theory, we explicitly identify all saddle points

and global minima of F(X). Further, we show that the entire parameter space can be

described as one the three regions as follows.

(R1) The region that contains neighborhoods of all saddle points, where any associated

Hessian matrix of the objective has negative eigenvalues. This so-called strict

saddle property guarantees that many commonly used iterative algorithms cannot

not be trapped in those saddle points.

(R2) The region that contains neighborhoods of all global minima, where the objective

is only strongly convex along certain trajectories, otherwise is nonconvex, unless

r = 1. We specify these directions explicitly, along which F(X) is strongly convex.

(R3) The complement of regions R1 and R2 in Rn×r, where the gradient has a suffi-

ciently large norm. Together with R1 and R2, a convergence of (6.4) to a global

minimum is guaranteed for many commonly used iterative algorithms without

special initializations.

Moreover, we further connect our analysis on (6.4) to the matrix sensing problem,

which can be considered as a perturbed version of (6.4). Using a suboptimal sample
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complexity, we establish analogous global geometric properties to (6.4) for the matrix

sensing problem. These strong geometric properties imply the convergence to a global

minimum of the matrix factorization problem in polynomial time without careful initial-

ization for several popular iterative algorithms, such as the gradient descent algorithm,

the noisy stochastic gradient descent algorithm, and the trust-region Newton’s algo-

rithm.

After the initial release of our paper, several concurrent and follow-up works have

appeared. In specific, [218] extend our analysis to the general rectangular matrices using

the lifting formulation and achieve analogous results to ours. Another related work

is [219], which provide a unified geometric analysis based on the strict saddle property

for several popular nonconvex problems, including matrix sensing, matrix completion,

and robust PCA. By partially applying the result in [219], we further demonstrate a

sharper result for matrix sensing in terms of the sample complexity, with some sacrifice

in the properties of the optimization landscape as a tradeoff. Further discussions will

be provided in Section 6.3.3 and 6.5.1.

The rest of the paper is organized as follows. In Section 6.2, we provide a generic

theory of identifying stationary points and the null space of their Hessian matrices, along

with several concrete examples. In Section 6.3, a global geometric analysis is established

for the low-rank matrix factorization problem. In Section 6.4, we extend the analysis to

the matrix sensing problem, followed by a further discussion in Section 6.5. All proofs

are deferred to Appendix.

Notation. Given an integer n ≥ 1, we denote [n] = {1, . . . n}. Let Or = {Ψ ∈
Rr×r : ΨΨ> = Ψ>Ψ = Ir} be the set of all orthogonal matrices in Rr×r. Given a

matrix A ∈ Rn×m and a subspace L ∈ Rn, let PL(A) be the orthogonal projection

operation of A onto L, and L⊥ be the complement of L in Rn. Denote LA as the

column space of A. We use A(∗,k) and A(j,∗) to denote the k-th column and the j-th

row respectively, A(j,k) to denote the (j, k)-th entry, and AS to denote a column-wise

sub matrix of A indexed by a set S ⊆ [m]. Let σi(A) be the i-th largest singular value,

‖A‖2 be the spectral norm (largest singular value), and ‖A‖F be the Frobenius norm.

Given two matrices A,B ∈ Rn×m, denote 〈A,B〉 = Tr(A>B) =
∑

i,j A(i,j)B(i,j). When

A ∈ Rn×n is a square matrix, we denote λmax(A) and λmin(A) as the largest and smallest

eigenvalues respectively. Given a vector a ∈ Rn, let a(i) be the i-th entry. We use a
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subscript Ai (ai) to denote the i-th matrix (vector) in a sequence of matrices (vectors).

Denote E(X) as the expectation of a random variable X and P(X ) as the probability of

an event X . We use ⊗ as the kronecker product, and preserve C1, C2, . . . and c1, c2, . . .

for positive real constants.

6.2 A Generic Theory for Stationary Points

Given a function f , our goal is to find the stationary point. Rigorous mathematical

definitions are provided as follows.

Definition 10. Given a smooth function f : Rn → R, a point x ∈ Rn is called:

(i) a stationary point , if ∇f(x) = 0;

(ii) a local minimum (or maximum), if x is a stationary point and there exists a

neighborhood B ⊆ Rn of x such that f(x) ≤ f(y) (or f(x) ≥ f(y)) for any y ∈ B;

(iii) a global minimum (or maximum), if x is a stationary point and f(x) ≤ f(y)

(or f(x) ≥ f(y)) for any y ∈ Rn;

(iv) a strict saddle point , if x is a stationary point and for any neighborhood B ⊆ Rn

of x, there exist y, z ∈ B such that f(z) < f(x) < f(y) and λmin(∇2f(x)) < 0.

A visualization of different types of stationary points are provided in Figure 6.1. In

general, finding the stationary point requires solving a large system ∇f(x) = 0, which

can be computationally challenging. However, when f has special structures, we can

develop new principles to find the set of stationary points conveniently.

In this paper, we consider a class of functions with invariant groups, for which we

provide a generic theory to determine the stationary point using the symmetry principle.

This covers the low-rank matrix factorization problem as a special example. Moreover,

we can characterize the null space of the Hessian matrix at the stationary point by

leveraging the tangent space. This will further help us to determine the saddle point

and local/global minimum (see more details in Section 6.3).
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(a) strict saddle (b) local minimum (c) global minimum

Figure 6.1: Examples of a strict saddle point, a local minimum, and a global minimum.

6.2.1 Determine Stationary Points

For self-containedness, we start with a few definitions in group theory [220] as follows.

Definition 11. A group G is a set of elements together with a binary operation {·}
that satisfies the following four properties:

• Closure: for all a1, a2 ∈ G, we have a1 · a2 ∈ G;

• Associativity: for all a1, a2, a3 ∈ G, we have (a1 · a2) · a3 = a1 · (a2 · a3);

• Identity: there exists an identity element e ∈ G such that e · a = a and a · e = a

for all a ∈ G;

• Inverse: for any a ∈ G, there exists an inverse element a−1 ∈ G such that a·a−1 = e

and a−1 · a = e.

Definition 12. A commutative group is a group that also satisfies

• Commutativity: for all a1, a2 ∈ G, we have a1 · a2 = a2 · a1.

Definition 13. A field is a set with two binary operations {+, ·}, addition (denoted

{+} and multiplication {+, ·}, both of which satisfy associativity, identity ({+} is as-

sociated with identity 0 and {·} is associated with identity 1), inverse, commutativity,

and

• Distributivity: for all a1, a2, a3 ∈ G, we have a1 · (a2 + a3) = (a1 · a2) + (a1 · a3).
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Definition 14. A subset H of a group G is a subgroup if H is itself a group under the

operation induced by G.

Definition 15. The set of all invertible n×n real matrices with determinant 1, together

with the operations of ordinary matrix multiplication and matrix inversion, is a special

linear group of degree n over a field, denoted as SLn(R).

Definition 16. Given a function f : Rm → R, a subgroup G of a special linear group

SLm(R) is an invariant group if G satisfies f(x) = f(g(x)) for all x ∈ Rm and g ∈ G.

Remark 7. We define the invariant group in terms of the special linear group rather

than the general linear group because we want to preserve the volume for linear trans-

formations.

Definition 17. A point xG is a fixed point of a group G if g(xG) = xG for all g ∈ G.

Definition 18. Given a linear space X , let Y and Z be subspaces of X . Then X is the

direct sum of Y and Z, denoted as X = Y⊕Z, if we have X = {y + z : y ∈ Y, z ∈ Z}
and Y ∩ Z = {0}.

Note that the direct sum we used throughout this paper is the internal direct sum

since Y and Z are subspaces rather than spaces. We then present a generic theory of

determining stationary points as follows. The proof is provided in Appendix 7.5.1.

Theorem 15 (Stationary Fixed Point). Suppose f has an invariant group G and G has

a fixed point xG . If we have

G(Rm)
4
= Span{g(x)− x : g ∈ G, x ∈ Rm} = Rm,

then xG is a stationary point of f .

By Theorem 15, we can find a stationary point of functions with invariant groups

given a fixed point. Refined result can be obtained for subspaces when we consider a

decomposition Rm = Y ⊕ Z, where Y and Z are orthogonal subspaces of Rm. This

naturally induces a subgroup of G as

GY = {gY : gY(y) = g(y ⊕ 0), g ∈ G, y ∈ Y, 0 ∈ Z}.
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Obviously, GY is a subgroup of a special linear group on Y. Moreover, yGY = PY(xG) ∈ Y
is a fixed point of GY , where PY is a projection operation onto Y. We then have the

following corollary immediately from Theorem 15.

Corollary 2. If yGY is a fixed point of GY and

z∗(yGY ) ∈ arg zero
z
∇zf(yGY ⊕ z),

where arg zeroz∇zf(yGY ⊕z) is the set of zero solutions of ∇zf(y⊕z) by fixing y = yGY ,

then g(yGY ⊕ z∗) is a stationary point for all g ∈ G.

Given a fixed point in a subspace, we have from Corollary 2 that the direct sum of the

fixed point and any zero solution of the partial derivative of the function with respect

to the orthogonal subspace is also a stationary point. This allows us to recursively

use Theorem 15 and Corollary 2 to find a set of stationary points. We call such a

procedure the symmetry principle of stationary point. Here, we demonstrate some

popular examples with symmetric structures.

Example 1 (Low-rank Matrix Factorization). Recall that given a PSD matrix M∗ =

UU> for some U ∈ Rn×r, the objective function with respect to variable X ∈ Rn×r

admits

f(X) =
1

4
‖XX> −M∗‖2F. (6.5)

Given g = Ψr ∈ Or, let g(X) = XΨr, then we have f(X) = f(g(X)). It is easy to see

that the rotation group G = Or is an invariant group of f and XG = 0 is a fixed point.

Theorem 15 implies that 0 is a stationary point.

The gradient of f(X) is

∇f(X) = (XX> −M∗)X.

We consider the subspace Y ⊆ LU of the column space of U and XGY = 0Y . Applying

Corollary 2 to Y = {0} and Z = LU , we have UΨr is a stationary point, where Ψr ∈ Or.

Analogously, applying Corollary 2 again to Y = LUr−s ⊆ LU and Z = LUs ⊆ LU , we

have UsΨr is a stationary point of f(X), where Ψr ∈ Or, Us = ΦΣSΘ> and Ur−s =



108

ΦΣ(I − S)Θ> given the SVD of U = ΦΣΘ>, and S is a diagonal matrix with arbitrary

s entries being 1 and the rest being 0 for all s ∈ [r]. This will be discussed in further

details in Section 6.3. Note that the degree of freedom of Ψr in UsΨr is in fact s(s−1)/2

instead of r(r − 1)/2, since Us is of rank s.

The result can be easily extended to general low-rank rectangular matrices. For

X,U ∈ Rn×r and Y, V ∈ Rm×r, we consider the function

f(X,Y ) =
1

2
‖XY > −M∗‖2F. (6.6)

Using the similar analysis for the symmetric case above, we have (X,Y ) = (0, 0) and

(X,Y ) = (UΨr, VΨr) are both stationary points. Moreover, given the SVD of UV > =

ΦΣΘ>, we have (X,Y ) = (ΦΣ1SΨr,ΘΣ2SΨr) is a stationary point, where Σ1Σ2 = Σ,

and S is a diagonal matrix with arbitrary s entries being 1 and the rest being 0, for all

s ∈ [r]. Some early works also quantify the stationary points for the low-rank matrix

factorization scenario, e.g., [221]. But as our following examples indicate, our generic

theory goes beyond the low-rank matrix factorization, which also covers a wide class of

problems.

Example 2 (Phase Retrieval). Given i.i.d. complex Gaussian vectors {ai}mi=1 in Cn

and measurements yi = |aH
i u| of complex vector u ∈ Cn for i = 1, . . . ,m, where xH is

the Hermitian transpose, a natural square error formulation of the objective of phase

retrieval with respect to variable x ∈ Cn [213,214] is

h(x) =
1

2m

m∑

i=1

(
y2
i − |aH

i x|2
)2
.

For simplicity, we consider the expected objective of h as

f(x) = E(h(x)) = ‖x‖42 + ‖u‖42 − ‖x‖22‖u‖22 − |xHu|2,

It is easy to see that f has an invariant group G =
{

eiθ : θ ∈ [0, 2π)
}

and xG = 0 is a

fixed point. Then Theorem 15 implies that 0 is a stationary point.
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The gradient of f(x) is

∇f(x) =

[
(2‖x‖22I − ‖u‖22I − uuH)x

(2‖x‖22I − ‖u‖22I − uuH)x

]
,

where x is the complex conjugate. Consider a coordinate-wise subspace Y ⊆ Cn of

degree k ≤ n, where for any ỹ ∈ Y, ỹ shares identical entire with x in certain k

coordinates and has zero entries otherwise. Applying Corollary 2 to Y = {0}, i.e.,

k = 0, we have that ueiθ is a stationary point for any θ ∈ [0, 2π). For Y 6= {0},
i.e., k > 0, we have z∗(0Y) ∈ D =

{
x ∈ Z : xHu = 0, xY = 0, ‖x‖2 = ‖u‖2/

√
2
}

.

Applying Corollary 2 again, we have xeiθ is a stationary point for any x ∈ D and

θ ∈ [0, 2π).

Example 3 (Deep Linear Neural Networks). Given data W ∈ Rn0×m and Y ∈ RnL×m,

we consider a square error objective of a feedforward deep linear neural network of L

layers [222],

f(X1, . . . , XL) =
1

2
‖XLXL−1 · · ·X1W − Y ‖2F,

where Xl ∈ Rnl×nl−1 is the weight matrix in the l-th layer for all l ∈ [L]. We can see

that for any l ∈ [L− 1], f has orthogonal groups Gl = Onl as the invariant groups and

XGl = 0 is a fixed point. Theorem 15 implies that 0 is a stationary point.

The blockwise structure naturally leads to a derivation of further stationary points

by fixing all but one block. Specifically, given some l ∈ [L − 1], we fix all the other

blocks [L− 1]\{l}, then the gradient of f(X1, . . . , XL) with respect to Xl is

∇Xlf(X1, . . . , XL) = A>(AXlB − Y )B>,

where A = XL · · ·Xl+1 and B = Xl−1 · · ·X1W . Solving ∇Xlf(X1, . . . , XL) = 0, we

have that Xl is a stationary point if Xl satisfies

Xl = (A>A)−A>Y B>(BB>)− + (I − (A>A)−A>A)Q1 +Q2(I −BB>(BB>)−),

where D− is a generalized inverse of the matrix D and Q1, Q2 ∈ Rnl×nl−1 are

arbitrary matrices. Denote the space L̃ = {(I − (A>A)−A>A)Q1 + Q2(I −
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BB>(BB>)−) : Q1, Q2 ∈ Rnl×nl−1}. We consider a subspace Y ⊂ L̃, then

Corollary 2 implies that (Xl+1Ψnl ,Ψ
>
nl
Xl) is a pair of stationary point, where Xl =

z∗(0Y) = (A>A)−A>Y B>(BB>)− + U for any U ∈ L̃\Y and Ψnl ∈ Onl . More-

over, for Y = L̃, we have z∗(0Y) = (A>A)−A>Y B>(BB>)− and Corollary 2 implies

that
(
Xl+1Ψnl ,Ψ

>
nl

(A>A)−A>Y B>(BB>)−
)

is also a pair of stationary point, where

Ψnl ∈ Onl . Extension to more general deep learning architecture is also studied [223].

6.2.2 Null Space of Hessian Matrix at Stationary Points

We now discuss the null space of the Hessian matrix at a stationary point, which can

be used to further distinguish between saddle point and local/global minimum. Our

intuition is that the null space of the Hessian matrix should contain the vectors tangent

to the invariant group G. We start with a few definitions in manifold [224] as follows.

Definition 19 (Manifold). Given positive integers m and k, we call a subsetM⊂ Rm

as a smooth k-dimensional manifold (or a smooth k-submanifold) if every point

x ∈ M has an open neighborhood X ⊂ such that X ∩M is diffeomorphic to an open

subset B ⊂ Rk, i.e., there exists a function f : X ∩M→ B such that f is bijective, and

f and f−1 are smooth.

Definition 20 (Tangent Space). Let M ⊂ Rm be a smooth k-dimensional manifold.

Given x ∈M, we call v ∈ Rm as a tangent vector of M at x if there exists a smooth

curve γ : R→M with γ(0) = x and v = γ′(0). The set of tangent vectors of M at x is

called the tangent space of M at x, denoted as

TxM =
{
γ′(0) : γ : R→M is smooth , γ(0) = v

}
.

A visualization of the manifold and the tangent space is provided in Figure 6.2. The

following theorem shows that the null space of the Hessian matrix at a stationary point

x contains the tangent space of the set G(x) = {g(x) : g ∈ G}. The proof is provided

in Appendix 7.5.1.

Theorem 16. If f has an invariant group G andHx is the Hessian matrix at a stationary
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v

Figure 6.2: A graphical illustration of a manifoldM and a tangent space TxM at some
point x on the manifold. v is a tangent vector at x and γ is the corresponding smooth
curve.

point x, then we have

TxG(x) ⊆ Null(Hx).

In the following, we demonstrate examples discussed in Section 6.2.1 to instantiate

Theorem 16.

Example 4 (Low-rank Matrix Factorization). Remind that for low-rank matrix fac-

torization in Example 1, f has an invariant group G = Or, which is also a smooth sub-

manifold in Rr×r of dimension r(r−1)/2. Given any X ∈ Rn×r, let γ : R→ Or(X) be a

smooth curve, i.e., for every t ∈ R there exists Ψr ∈ Or such that γ(t) = gt(X) = XΨr

and γ(0) = g0(X) = X. By definition, for any t ∈ R, we have

γ(t)γ(t)> = XX>.

Differentiating both sides, we have γ′(t)γ(t)> + γ(t)γ′(t)> = 0. Plugging in t = 0, we

have

γ′(0)X> +Xγ′(0)> = 0.

Then we can see that

TXOr(X) = {XE : E ∈ Rr×r, E = −E>}.
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By Example 1, we have that UsΨr is a stationary point for Y = LUr−s ⊆ LU . Theorem 16

implies that for any skew symmetric matrix E ∈ Rr×r, we have UsΨrE belongs to the

null space of the Hessian matrix at UsΨr. Similar to Ψr, the dimension of TXOr(X)

at X = UsΨrE depends on s since Us is of rank s. Specifically, the dimension of the

tangent space is at least s(s− 1)/2 + (n− (r− s))(r− s), where s(s− 1)/2 is the degree

of freedom of the set of E and (n− (r − s))(r − s) is degree of freedom of UsΨr.

Example 5 (Phase Retrieval). For phase retrieval in Example 2, f has an invariant

group G =
{

eiθ : θ ∈ [0, 2π)
}

. Given any x ∈ Cn, let γ : R→ G(x) be a smooth curve,

i.e., for every t ∈ R there exists θ ∈ [0, 2π) such that γ(t) = xeiθ and γ(0) = x. Then

for any t ∈ R, we have

‖γ(t)‖22 = ‖x‖22.

Differentiating both sides, we have γ′(t)Hγ(t) + γ(t)Hγ′(t) = 0. Plugging in t = 0, we

have

γ′(0)Hx = −xHγ′(0).

Then we can see that

TxG(x) = ix.

By Example 2, we have ueiθ is a stationary point for all θ ∈ [0, 2π). Theorem 16 implies

that iueiθ belongs to the null space of Hessian matrix at ueiθ.

Example 6 (Deep Linear Neural Networks). For the deep linear neural networks in

Example 3, f has an invariant group Gl = Onl for any l ∈ [L − 1]. Using the same

analysis in Example 4, we have that for any skew symmetric matrix E ∈ Rr×r, the

pair
(
Xl+1ΨnlE,E

>Ψ>nl(A
>A)−A>Y B>(BB>)−

)
belongs to the null space of Hessian

matrix for a stationary pair
(
Xl+1Ψnl ,Ψ

>
nl

(A>A)−A>Y B>(BB>)−
)
.
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6.3 A Geometric Analysis of Low-Rank Matrix Factoriza-

tion

We apply our generic theories to study the global landscape of the low-rank matrix

factorization problem. Our goal is to provide a comprehensive geometric perspective to

fully characterize the low-rank matrix factorization problem (6.4). Finding all stationary

points is the keystone, based on which we can further identify strict saddle points and

global minima. This scheme has been adopted in geometry based convergence rate

analyses to guarantee that iterative algorithms do not converge to the strict saddle

point [187,214–216]. The landscape of the low-rank matrix factorization problem is also

discussed briefly in [225], but no rigorous analysis is provided.

In particular, the zero of the gradient ∇F(X) and the eigenspace of the Hessian

matrix ∇2F(X) are keys to our analysis. Given ∇F(X) and ∇2F(X), our analysis

consists of the following major arguments:

(p1) identify all stationary points by finding the solutions of ∇F(X) = 0, which is

further used to identify the strict saddle point and the global minimum,

(p2) identify the strict saddle point and their neighborhood such that ∇2F(X) has a

negative eigenvalue, i.e. λmin(∇2F(X)) < 0,

(p3) identify the global minimum, their neighborhood, and the directions such that

F(X) is strongly convex, i.e. λmin(∇2F(X)) > 0, and

(p4) verify that the gradient has a sufficiently large norm outside the regions described

in (p2) and (p3).

The analysis can be further extended to other problems, such as matrix sensing and

matrix completion, which are considered as perturbed versions of (6.4). For simplicity,

we first consider the PSD matrix M∗ = UU>. Then we explain how to extend to a

rectangular matrix, which is straightforward.
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6.3.1 Warm-up: Rank 1 Case

We start with the basic case of r = 1 to obtain some insights. Specifically, suppose

M∗ = uu>, where u ∈ Rn, then we consider

min
x∈Rn

F(x), where F(x) =
1

4
‖uu> − xx>‖2F. (6.7)

The gradient and the Hessian matrix of F(x), respectively, are

∇F(x) = (xx> − uu>)x ∈ Rn and

∇2F(x) = 2xx> + ‖x‖22 · In − uu> ∈ Rn×n. (6.8)

In the rank 1 case, the invariant group is G = O1 = {1,−1}. We then provide the

key arguments for the rank 1 setting in the following theorem. The proof is provided in

Appendix 7.5.2.

Theorem 17. Consider (6.7) and define the following regions:

R1
4
=

{
y ∈ Rn : ‖y‖2 ≤

1

2
‖u‖2

}
,

R2
4
=

{
y ∈ Rn : min

ψ∈O1

‖y − uψ‖2 ≤
1

8
‖u‖2

}
, and

R3
4
=

{
y ∈ Rd : ‖y‖2 >

1

2
‖u‖2, min

ψ∈O1

‖y − uψ‖2 >
1

8
‖u‖2

}
.

Then the following properties hold.

(p1) x = 0, u and −u are the only stationary points of F(x).

(p2) x = 0 is a strict saddle point, where ∇2F(0) is negative semi-definite with

λmin(∇2F(0)) = −‖u‖22. Moreover, for any x ∈ R1, ∇2F(x) contains a nega-

tive eigenvalue, i.e.

λmin(∇2F(x)) ≤ −1

2
‖u‖22.

(p3) For x = ±u, x is a global minimum, and ∇2F(x) is positive definite with

λmin(F(x)) = ‖u‖22. Moreover, for any x ∈ R2, F(x) is locally strongly convex,
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i.e.

λmin(∇2F(x)) ≥ 1

5
‖u‖22.

(p4) For any x ∈ R3, we have

‖∇F(x)‖2 >
‖u‖32

8
.

The rank 1 setting is intuitive since there is only one strict saddle point and 2 isolated

global minima. It is also important to notice that

R1 ∪R2 ∪R3 = Rn.

Thus, the entire space Rn is parameterized by one of the regions: (I) the neighborhood

of the strict saddle point, where the Hessian matrix ∇2F(x) has negative eigenvalues;

(II) the neighborhood of the global minima, where F(x) is strongly convex; and (III)

the gradient ∇F(x) has a sufficiently large norm. To better understand the landscape,

we provide a visualization of the objective function F(x) in Figure 6.3 (a and b). We

set u = [1 − 1]>, thus M∗ = uu> =

[
1 −1

−1 1

]
. It is easy to see that x = [0 0]> is a

strict saddle point and x = ±u are global minima, which matches with our analysis.

6.3.2 General Ranks

We then consider the general setting of r ≥ 1, where M∗ = UU>, U ∈ Rn×r. Charac-

terizing the global landscape becomes much more involved as neither the strict saddle

point nor the global minimum is isolated. Recall that we consider

min
X∈Rn×r

F(X), where F(X) =
1

4
‖M∗ −XX>‖2F. (6.9)
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x(1)

x(2) F(x)

(a)

x(1)

x(2)

F(x)

(b)

X(1,1)

X(1,2) F(X)

(c)

X(1,1)

X(1,2)

F(X)

(d)

Figure 6.3: The visualization of objective functions F(X) for r = 1 (a and b) and r = 2
(c and d) using contour plots. In the case r = 1, the global minima are x = [x(1) x(2)]

> =

[1 − 1]> and [−1 1]>. In the case r = 2, the global minima are X = [X(1,1) X(1,2)]Ψ =

[1 − 1]Ψ for all Ψ ∈ O2, i.e. any X with ‖X‖2 =
√

2 is a global minimum. Note that
we can only visualize X ∈ R1×2 when r = 2. Here M∗ = UU> = [1 − 1][1 − 1]> = 2 is
not low-rank in fact, and X = [0 0] is not a strict saddle point but a local maximum.

For notational convenience, for any matrix X, we define:

ΨX
4
= arg min

Ψ∈Or
‖X − UΨ‖2 and

KX
4
=




X(∗,1)X
>
(∗,1) X(∗,2)X

>
(∗,1) · · · X(∗,r)X

>
(∗,1)

X(∗,1)X
>
(∗,2) X(∗,2)X

>
(∗,2) · · · X(∗,r)X

>
(∗,2)

...
...

. . .
...

X(∗,1)X
>
(∗,r) X(∗,2)X

>
(∗,r) · · · X(∗,r)X

>
(∗,r)



. (6.10)
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Further, we introduce two sets:

X =
{
X = ΦΣ2Θ2 : U has the SVD U = ΦΣ1Θ1, (Σ2

2 − Σ2
1)Σ2 = 0,Θ2 ∈ Or

}
and

U = {X ∈ X : Σ2 = Σ1} .

The set X contains all strict saddle points, and U is the set of all global minima,

which will be proved in the following theorem. Specifically, for any X that has a strict

subset of the column bases of U and identical corresponding singular values, X is a

strict saddle point of F . This indicates that the strict saddle points are not isolated,

and there are infinite many of them due to rotations (their measures in Rn×r are zero).

On the other hand, when X is different from U only by a rotation, X is also a global

minimum of F .

By algebraic calculation, the gradient and the Hessian matrix of F(X), respectively,

are

∇F(X) = (XX> −M∗)X ∈ Rn×r and (6.11)

∇2F(X) = KX + Ir ⊗XX> +X>X ⊗ In − Ir ⊗M∗ ∈ Rrn×rn. (6.12)

The gradient (6.11) and the Hessian matrix (6.12) for the general rank r ≥ 1 reduce

to (6.8) when r = 1. We provide the key arguments for the general rank setting in the

following theorem. The proof is provided in Appendix 7.5.3.

Theorem 18. Consider (6.9) for the general rank r ≥ 1 and define the following regions:

R1
4
=

{
Y ∈ Rn×r : σr(Y ) ≤ 1

2
σr(U), ‖Y Y >‖F ≤ 4‖UU>‖F

}
,

R2
4
=

{
Y ∈ Rn×r : min

Ψ∈Or
‖Y − UΨ‖2 ≤

σ2
r (U)

8σ1(U)

}
,

R′3
4
=

{
Y ∈ Rn×r : σr(Y ) >

1

2
σr(U), min

Ψ∈Or
‖Y − UΨ‖2 >

σ2
r (U)

8σ1(U)
,

‖Y Y >‖F ≤ 4‖UU>‖F
}
, and

R′′3
4
=
{
Y ∈ Rn×r : ‖Y Y >‖F > 4‖UU>‖F

}
.
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Then the following properties hold.

(p1) For any X ∈ X , X is a stationary point of F(X).

(p2) For any X ∈ X\U , X is a strict saddle point with λmin(∇2F(X)) ≤ −λ2
max(Σ1 −

Σ2). Moreover, for any X ∈ R1, ∇2F(X) contains a negative eigenvalue, i.e.

λmin(∇2F(X)) ≤ −σ
2
r (U)

4
.

(p3) For any X ∈ U , X is a global minimum of F(X), and ∇2F(X) is positive semidef-

inite, which has r(r− 1)/2 zero eigenvalues with the minimum nonzero eigenvalue

at least σ2
r (U). Moreover, for any X ∈ R2, we have

z>∇2F(X)z ≥ 1

5
σ2
r (U)‖z‖22

for any z ⊥ E , where E ⊆ Rn×r is a subspace spanned by all eigenvectors of

∇2F(KE) associated with negative eigenvalues, where E = X − UΨX and ΨX

and KE are defined in (6.10).

(p4) Further, we have

‖∇F(X)‖F >
σ4
r (U)

9σ1(U)
for any X ∈ R′3 and

‖∇F(X)‖F >
3

4
σ3

1(X) for any X ∈ R′′3.

The following proposition shows that any X ∈ Rn×r belongs to one of the four

regions above. The proof is provided in Appendix 7.5.7.

Proposition 3. Consider the four regions defined in Theorem 18, we have

R1 ∪R2 ∪R′3 ∪R′′3 = Rn×r.

Different from the rank 1 setting, we have one more region R′′3, where the gradient

has a sufficiently large norm. When r = 1, we have O1 = {1,−1}. Thus X reduces to

{0} and U reduces to {u,−u}, which matches with the result in Theorem 17. From (p2)
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of Theorem 18, we have that X is approximately rank deficient in R1 since σr(X) ≤
1
2σr(U). From (p3) of Theorem 18, we have that F(X) is convex at a global minimum,

rather than strongly convex. Moreover, in the neighborhood of a global minimum, F(X)

is only strongly convex along certain directions. Analogous results are also provided in

previous literature. For example, [192] (in the analysis of Theorem 3.2) show that for

any X that satisfies ‖X − UΨX‖2 ≤ c1σr(U), we have the Regularity Property:

〈∇F(X), X − UΨX〉 ≥ c2σ
2
r (U)‖X − UΨX‖2F + c3‖UU> −XX>‖2F, (6.13)

where c1, c2, and c3 are positive real constants. This indicates that when X is close

to a global minimum, F(X) is only strongly convex along the direction of E = X −
UΨX (Procrustes difference). But our results are much more general. Specifically,

we guarantee in (p3) of Theorem 18 that F(X) is strongly convex along all directions

that are orthogonal to the subspace spanned by eigenvectors associated with negative

eigenvalues of∇2F(KE) forKE = X−UΨX . As we have shown in the analysis, there are

at most r(r−1)/2 such directions potentially associated with the negative eigenvalues of

∇2F(KE). In other words, there are at least nr−r(r−1)/2 such directions, where F(X)

is strongly convex. In the following lemma, we further show that F(X) is nonconvex in

any neighborhood of a global minimum. The proof is provided in Appendix 7.5.7.

Proposition 4. Let Bε(U) = {X : ‖X − U‖2 ≤ ε} be a neighborhood of U with

radius ε > 0. Then F(X) is a nonconvex function in Bε(U).

We provide a visualization of the objective function F(X) in Figure 6.3 (c and d)

by setting r = 2 and U = [1 − 1]. The observation is that any X satisfying X = UΨ2

is a global minimum, where Ψ2 ∈ O2. Moreover, if we restrict X to be a convex

combination of any two distinct global minima, then F(X) is nonconvex, as we have

shown in Proposition 4. Note that we can only visualize the case of X ∈ R1×2, which

results in a full rank M∗ = UU> = 2 here. Thus X = [0 0] is a not strict saddle point

in this degenerated example.

6.3.3 General Rectangular Matrices

We further discuss briefly on the scenario where the low-rank matrix is a general rect-

angular matrix. Recall that for M∗ = UV > ∈ Rn×m for some U ∈ Rn×r and V ∈ Rm×r,
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we consider

min
X∈Rn×r,Y ∈Rm×r

F(X,Y ), where F(X,Y ) =
1

2
‖M∗ −XY >‖2F. (6.14)

Compared with the PSD matrix scenario (6.9) with M∗ � 0, it has one more issue

of scaling invariance for the general rectangular matrix (6.14). Specifically, in addition

to the rotation invariance as in the PSD case, when we multiply X and divide Y by an

identical (nonzero) constant, F(X,Y ) is also invariant. This results in a significantly

increasing complexity of the structure for both strict saddle points and global minima.

Moreover, the scaling issue also leads to a badly conditioned problem, e.g., when ‖X‖2F
is very small and ‖Y ‖2F is very large with XY > fixed.

For ease of discussion, we provide an example when n = m = r = 1. Suppose

M∗ = 1, then the objective in (6.14) is F(x, y) = 1
2(1 − xy)2. The corresponding

Hessian matrix is

∇2F(x, y) =

[
y2 2xy − 1

2xy − 1 x2

]
.

It is easy to see that any (x, y) satisfying xy = 1 is a global minimum, which makes the

structure of the global minimum much more complicated than the PSD matrix case with

rank r = 1 (only two global minima points in Figure 6.3). A visualization of F(x, y)

is provided in Figure 6.4 (panel a and b). On the other hand, the problem becomes

poorly conditioned, i.e., λmax(∇2F(x, y))/λmin(∇2F(x, y)) → ∞ when ‖x‖2 → 0 and

‖y‖2 →∞ with xy = 1.

To avoid such a scaling issue, we consider a regularized form as follows,

min
X∈Rn×r,Y ∈Rm×r

Fλ(X,Y ), where Fλ(X,Y ) =
1

2
‖M∗ −XY >‖2F +

λ

4
‖X>X − Y >Y ‖2F .

(6.15)

where λ > 0 is a regularization parameter. Such a regularization has been considered

in related problems of low-rank matrix factorization [192, 207], which enforces positive

curvature when X and Y have similar spectrum to avoid the scaling issue discussed

above.
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Taking the example discussed above again, we have the regularized objective as

Fλ(x, y) = 1
2(1− xy)2 + λ

4 (x2 − y2)2 and the corresponding Hessian matrix as

∇2Fλ(x, y) =

[
(1− λ)y2 + 3λx2 2(1− λ)xy − 1

2(1− λ)xy − 1 (1− λ)x2 + 3λy2

]
.

With a proper value of λ, Fλ(x, y) has strong convexity in the neighborhood of x = y = 1

and x = y = −1, resulting in a much simplified structure of global minima, analogous

to the PSD rank r = 1 case. A visualization of of Fλ(x, y) with λ = 0.5 is provided in

Figure 6.4 (panel c and d). Compared with the objective F without a regularization,

the regularized objective Fλ is much better conditioned even when one of ‖x‖2 and ‖y‖2
is very small and the other is very large.

We remark that after the initial release of our paper, [218] provide an extension of

our analysis to the case of general rectangular matrices using the lifting formulation.

Specifically, they show U>U = V >V (Lemma 3 therein) at stationary points in the

noiseless case, which implies that the stationary points are not affected by the regular-

ization function in (6.15). Beyond stationary points, careful characterization is required

to deal with the regularization, which is a fourth order polynomial on the factors (sim-

ilar to the loss function). Consequently, they achieve analogous geometric result to our

Theorem 18 for the asymmetric case.

6.4 Matrix Sensing via Factorization

We extend our geometric analysis to the matrix sensing problem, which can be consid-

ered as a perturbed version of the low-rank matrix factorization problem. For simplicity,

we first introduce the noiseless scenario and the noisy setting is discussed later, both of

which preserve the entire landscape of optimization in the matrix factorization problem.

6.4.1 Matrix Sensing as a Perturbed Matrix Factorization Problem

We start with a formal description of the matrix sensing problem. For all i ∈ [d],

suppose Ai ∈ Rn×n has i.i.d. zero mean sub-Gaussian entries with variance 1, then we
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Figure 6.4: The visualization of objective functions F(x, y) with u = v = 1 (a, b) and
Fλ(x, y) with u = v = 1 and λ = 0.5 (c, d). For f(x, y), any (x, y) that satisfies xy = 1
is a global minimum. For Fλ(x, y), x = y = 1 and x = y = −1 are the only global
minima.

observe

y(i) = 〈Ai,M∗〉,

where M∗ ∈ Rn×n is a low-rank PSD matrix with Rank(M∗) = r. Denote M∗ = UU>,

where U ∈ Rn×r, then y(i) = 〈Ai, UU>〉 and we recover U by solving

min
X

F (X), where F (X) =
1

4d

d∑

i=1

〈Ai, XX> −M∗〉2. (6.16)
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The gradient and the Hessian matrix of F (X), respectively, are

∇F (X) =
1

2d

d∑

i=1

〈Ai, XX> −M∗〉 · (Ai +A>i )X and (6.17)

∇2F (X) =
1

2d

d∑

i=1

Ir ⊗ 〈Ai, XX> −M∗〉 · (Ai +A>i )

+ vec
(

(Ai +A>i )X
)
· vec

(
(Ai +A>i )X

)>
. (6.18)

We first show the connection between the matrix sensing problem and the low-

rank matrix factorization problem in the following lemma. The proof is provided in

Appendix 7.5.7.

Lemma 4. We have E(F (X)) = F(X), E(∇F (X)) = ∇F(X), and E(∇2F (X)) =

∇2F(X).

From Lemma 4, we have that the objective (6.16), the gradient (6.17), and the

Hessian matrix (6.18) of the matrix sensing problem are unbiased estimators of the

counterparts of the low-rank matrix factorization problem in (6.9), (6.11), and (6.12) re-

spectively. We then provide a finite sample perturbation bound for the gradient and the

Hessian matrix of the matrix sensing problem. The proof is provided in Appendix 7.5.7.

Lemma 5. Suppose N ≥ max{‖XX> −M∗‖2F, ‖X‖2F, 1}. Given δ > 0, if d satisfies

d = Ω(N max{nr,√nr log(nr)}/δ),

then with high probability, we have

‖∇2F (X)−∇2F(X)‖2 ≤ δ and ‖∇F (X)−∇F(X)‖F ≤ δ.

From Lemma 5, we have that the landscape of the gradient and the Hessian matrix

of low-rank matrix factorization is preserved for matrix sensing with high probability

based on the concentrations of sub-Gaussian designs {Ai}di=1, as long as the sample size

d is sufficiently large. These further allow us to derive the key properties (p1) – (p4)

for matrix sensing directly from the counterparts of low-rank matrix factorization in
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Theorem 18. We formalize the result in the following Theorem. The proof is provided

in Appendix 7.5.4.

Theorem 19. Consider (6.16) for the general rank r ≥ 1. If d satisfies

d ≥ C ·max
{
nr2, n

√
r log(n), r

√
nr log(nr)

}
,

where C > 0 is a generic real constant, then with high probability, we have the following

properties.

(p1) For any X ∈ U ∪ {0}, X is a stationary point of F (X).

(p2) X = 0 is a strict saddle point with λmin(F (0)) ≤ −7
8‖U‖22. Moreover, for any

X ∈ R1, ∇2F (X) contains a negative eigenvalue, i.e.

λmin(∇2F (X)) ≤ −σ
2
r (U)

8
.

(p3) For any X ∈ U , X is a global minimum, and ∇2F (X) is positive semidefinite.

Moreover, for any X ∈ R2, we have

z>∇2F (X)z ≥ 1

10
σ2
r (U)‖z‖22

for any z ⊥ E , where E ⊆ Rn×r is a subspace is spanned by all eigenvectors of

∇2F(KE) associated with negative eigenvalues, where E = X − UΨX and ΨX

and KE are defined in (6.10).

(p4) Further, we have

‖∇F (X)‖F >
σ4
r (U)

18σ1(U)
for any X ∈ R′3 and

‖∇F (X)‖F >
1

4
σ3

1(X) for any X ∈ R′′3.

From Theorem 19, we have that the landscape of the low-rank matrix factorization

problem is preserved for the matrix sensing problem given a sufficiently large sample

size d. This is to say, F (X) has a negative curvature in the neighborhoods of strict
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saddle points, strong convexity along certain directions in the neighborhoods of global

minima, and a sufficiently large norm for the gradient in the rest of domain. On the

other hand, due to random perturbations by sensing matrices {Ai}di=1, the set of strict

saddle points in X\U reduces to {0}, while the rest of the points in X\U are nearly

strict saddle.

6.4.2 Noisy Observation

We further consider a noisy scenario of the matrix sensing problem. Specifically, suppose

{Ai}di=1 are random matrices described above, then we observe

y(i) = 〈Ai,M∗〉+ z(i) for all i ∈ [d],

where {z(i)}di=1 are independent zero mean sub-Gaussian random noise with variance

σ2
z . Consequently, denoting M∗ = UU>, we recover U by solving

min
X

F (X), where F (X) =
1

4d

d∑

i=1

(
〈Ai, XX> −M∗〉 − z(i)

)2
. (6.19)

We then provide the key properties (p1) – (p4) for the noisy version of the matrix

sensing problem in the following corollary. The proof is provided in Appendix 7.5.5.

Corollary 3. Consider (6.19) for the general rank r ≥ 1. Given ε > 0, if d satisfies

d ≥ Cσ2
z ·max

{
nr2, n

√
r log(n), r

√
nr log(nr)

}

ε2
,

where C > 0 is a generic real constant, then with high probability, we have that prop-

erties (p1) – (p4) in Theorem 19 hold, as well as the following estimation error

‖M̂ −M∗‖2F = O
(
ε2
)
,

where M̂ = X̂X̂> for X̂ = arg minX F (X) in (6.19).

Compared with Theorem 19, the sufficient sample complexity for preserving the key

properties (p1) – (p4) of the landscape in Corollary 3 has one more dependence on the

variance of noise, which is a natural result for noisy measurements. We remark that
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preserving the global landscape is more challenging than guaranteeing the convergence

to a local minimum within the optimal distance to the true model parameter, which

only requires a local analysis in a neighborhood of the true model parameter. Existing

results only discuss some local geometry instead of the global one as we do, such as the

strict saddle points and the neighborhood of true model parameter [188,193].

6.5 Discussion

We provide further discussion on extending our analysis for matrix sensing to achieve

the optimal sample complexity by relaxing the geometric properties as a tradeoff. In

addition, we make some comments on how the geometric analysis in this paper can

imply strong convergence guarantees for several popular iterative algorithms.

6.5.1 From Suboptimal to Optimal Sampling Complexity for Matrix

Sensing

The sampling complexity is O(nr2) for matrix sensing when we preserve the entire

landscape of the matrix factorization problem (6.9). If we relax the properties of opti-

mization landscape to be preserved, the optimal complexity O(nr) can be attained. In

specific, consider the noiseless scenario by solving (6.16). Then we have the following

geometric properties for matrix sensing. The proof is provided in Appendix 7.5.6.

Theorem 20. Consider (6.9) for the general rank r ≥ 1 and define the following regions:

R1
4
=

{
Y ∈ Rn×r : min

Ψ∈Or
‖Y − UΨ‖2 >

σr(U)

4
, ‖∇F (Y )‖F ≤

σ3
r (U)

96

}
,

R2
4
=

{
Y ∈ Rn×r : min

Ψ∈Or
‖Y − UΨ‖2 ≤

σr(U)

4

}
, and

R3
4
=

{
Y ∈ Rn×r : min

Ψ∈Or
‖Y − UΨ‖2 >

σr(U)

4
, ‖∇F (Y )‖F >

σ3
r (U)

96

}
,

If d satisfies

d ≥ C · nr,
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where C is a generic real constant, then with high probability, we have the following

properties.

(p1) For any X ∈ U ∪ {0}, X is a stationary point of F (X).

(p2) [Direct result from [219]] For any X ∈ R1, including the strict saddle point X = 0,

∇2F (X) contains a negative eigenvalue, i.e.

λmin(∇2F (X)) ≤ −1

6
σ2
r (U).

(p3) For any X ∈ U , X is a global minimum, and ∇2F (X) is positive semidefinite.

Moreover, for any X ∈ R2 with ΨX defined in (6.10), we have

〈∇F (X), X − UΨX〉 ≥
σ2
r (U)

4
‖X − UΨX‖2F +

1

20 ‖U‖2
‖∇F (X)‖2F .

(p4) Further, for any X ∈ R3, we have

‖∇F (X)‖F >
σ3
r (U)

96
.

It is immediate from Theorem 20 that we have

R1 ∪R2 ∪R3 = Rn.

When d = Ω(nr), weaker properties of optimization landscape can be obtained.

First of all, unlike R1 of Theorem 18, it is not clear whether there is (approximate)

rank deficiency in R1 from Theorem 20. Since the rank deficiency is a key reason for

generating strict saddle points, we face a gap in the geometric interpretation. Moreover,

in the neighborhood of global minima in (p3), we have the regularity property (6.13). As

we have discussed after Theorem 18, this is a weaker result than (p3) therein, which can

guarantee the strong convexity in a larger number of directions. We suspect that this

is a tradeoff between the optimal sample complexity and strong geometric properties

(though this may be a proof artifact). In addition, the characterization of both regions

R1 and R3 in Theorem 20 depend on both problem parameter X and sensing matrices
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{Ai}di=1 (embedded in ∇F (X)). This makes the regions less explicit than R1 and R3

in Theorem 19, which only on X.

We further address a brief comparison with [192,219]. Our Theorem 20 has slightly

stronger geometric guarantees than [192, 219] under the same conditions. In specific,

due to a refined analysis, our neighborhood of global minima R2 characterized via

the spectral norm of the Procrustes difference is larger than the corresponding region

in [192,219] characterized via the Frobenius norm, i.e., for all rank(U) > 1, we have

{
Y ∈ Rn×r : min

Ψ∈Or
‖Y − UΨ‖F ≤

σr(U)

4

}
⊂
{
Y ∈ Rn×r : min

Ψ∈Or
‖Y − UΨ‖2 ≤

σr(U)

4

}
.

Moreover, [192] only provide a local geometric property in the neighborhood of global

minima R2 using the regularity property. In contrast, we provide a global one in The-

orem 20.

6.5.2 Convergence of Iterative Algorithms

Here are some comments on the convergence guarantees. With the explicit geometry

of the objective function, it is straightforward to provide convergence guarantees using

many popular iterative algorithms, even without special initializations. A few examples

of recent progress on related nonconvex problems are listed as follows.

• A trust-region type of algorithm is proposed in [214] to solve a specific type of

nonconvex problem, i.,e., phase retrieval. Similar to our analysis, the authors

explicitly divide the whole domain into three overlapping regions R1, R2, and R3,

based on which they show a sufficient decrease of objective in R1 and R3 and

an overall R-quadratic convergence to a global minimum. Another closely related

algorithm is the second-order majorization type of algorithm proposed in [226],

which finds an ε-second-order stationary point xε for a predefined precision ε > 0,

i.e.,

‖∇f(xε)‖2 ≤ ε and ∇2f(xε) � −
√
βεI

for general lower bounded objective f that has a Lipschitz gradient and a 2β-

Lipschitz Hessian. The algorithm is based on iteratively solving a cubic-regularized
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quadratic approximation of the objective function using gradient descent steps,

and an overall sublinear convergence guarantee is provided.

• A gradient descent algorithm is analyzed in [215,216] for twice-continuously differ-

entiable functions with a Lipschitz gradient. The authors provide an asymptotic

convergence guarantee of Q-linear convergence to a local minimum if all saddle

points are strict saddle.

• A noisy stochastic gradient descent algorithm is proposed in [187] for so-called

strict saddle problems, i.e., any point the given objective function is in R1 (neg-

ative curvature in neighborhood of strict saddle points), R3 (the gradient has

a sufficiently large norm), or a strongly convex neighborhood containing a lo-

cal minimum. The authors show a sufficient decrease of objective for each noisy

stochastic gradient step in R1 and R3, and an overall R-sublinear convergence to

a local minimum.

The algorithms discussed above can be extended to solve the matrix factorization

type of problems considered in this paper, with convergence guarantees. Note that

for those requiring a local strong convexity, such as [187], the analysis does not apply

directly here for the matrix factorization type of problems in general. This can be

settled by applying the Polyak-Lojasiewicz condition instead [227,228].

6.5.3 Extension to Matrix Completion

Finally, we comment on a closely related problem – matrix completion, where we expect

similar global geometric properties to hold. Specifically, given a entry-wise observed

matrix PΩ(M∗) ∈ Rn×n for M∗ � 0, where PΩ(M∗i,j) = 0 if (i, j) /∈ Ω and PΩ(M∗i,j) =

M∗i,j if (i, j) ∈ Ω for some subset Ω ⊆ [n]× [n], we solve

min
X∈Rn×r

H(X) +R(X), where H(X) =
1

p
‖PΩ(M∗ −XX>)‖2F. (6.20)

where p = |Ω|/n2 is the sampling rate and R(X) is a regularization function to enforce

low coherence of X (see more details in [197, 199]). Similar to the matrix sensing

problem, (6.20) can be also considered as a perturbed version of the low-rank matrix
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factorization problem (6.4). It is easy to see that if Ω is uniformly sampled over all

subsets of [n]× [n] for a given cardinality, then we have

E(H(X)) = ‖M∗ −XX>‖2F.

However, because the entry-wise sampling model is more challenging than the random

linear measurement model and the incoherence of the low-rank matrix is generally re-

quired, the extra regularization term is inevitable for the matrix completion problem.

This leads to a much more involved perturbation analysis for (6.20) than that of matrix

sensing. For example, [197] establish the geometric analysis around the global minimiz-

ers; [199] show that there exists no spurious local optima.



Chapter 7

Proofs for All Analyses

7.1 Proofs for Chapter 2

7.1.1 Proof of Theorem 1

First, we note that in both of the steps of Algorithm 1 the prescribed observations are

functions of M only through ΦM ; stated another way, M never appears in the algorithm

in isolation from the measurement matrix Φ. Motivated by this, we introduce

M̃ , ΦM = ΦL+ ΦC = L̃+ C̃, (7.1)

to effectively subsume the action of Φ into M̃ . Now, our proof is a straightforward

consequence of assembling three intermediate probabilistic results via a union bounding

argument. The first intermediate result establishes that for M = L+C with components

L and C satisfying the structural conditions (c1)-(c4), the components L̃ and C̃ of M̃

as defined in (7.1) satisfy analogous structural conditions provided that m, the number

of rows of Φ, be sufficiently large. We state this result here as a lemma; its proof appears

in Appendix 7.1.2.

Lemma 6. Suppose M = L + C, where L and C satisfy the structural conditions

(c1)-(c4). Fix any δ ∈ (0, 1), suppose Φ is an m× n1 matrix drawn from a distribution

satisfying the distributional JL property (2.2) with m satisfying (2.5) and let M̃ = L̃+C̃

be as defined in (7.1). Then, the components L̃ and C̃ satisfy the following conditions

131
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simultaneously with probability at least 1− δ:

(c̃1) rank(L̃) = r,

(c̃2) L̃ has nL nonzero columns,

(c̃3) L̃ satisfies the column incoherence property with parameter µL, and

(c̃4) I
C̃

, {i : ‖PL̃⊥C̃:,i‖2 > 0, L̃:,i = 0} = IC , where L̃ is the linear subspace of Rm

spanned by the columns of L̃, and PL̃⊥ denotes the orthogonal projection onto the

orthogonal complement of L̃ in Rm.

The second intermediate result guarantees two outcomes – first, that Step 1 of

Algorithm 1 succeeds in identifying the correct column space of L̃ (i.e., that L̂(1) = L̃)

with high probability provided the components L̃ and C̃ of M̃ as specified in (7.1) satisfy

the structural conditions (c̃1)-(c̃4) and the column sampling probability parameter γ

be sufficiently large, and second, that the number of columns of the randomly generated

sampling matrix S be close to γn2. We also provide this result as a lemma; its proof

appears in Appendix 7.1.3.

Lemma 7. Let M̃ = L̃+C̃ be an m×n2 matrix, where the components L̃ and C̃ satisfy

the conditions (c̃1)-(c̃4) with k satisfying (2.3). Fix δ ∈ (0, 1) and suppose the column

sampling parameter γ satisfies (2.4). When λ = 3
7
√
kub

for any kub ≥ |IC̃ |, the following

hold simultaneously with probability at least 1− δ: S has |S| ≤ (3/2)γn2 columns, and

the subspace L̂(1) resulting from Step 1 of Algorithm 1 satisfies L̂(1) = L̃.

Our third intermediate result shows that the support set of the vector ĉ produced

in Step 2 of Algorithm 1 is the same as the set of salient columns of C̃, provided that

L̂(1) = L̃ and that p, the number of rows of A, is sufficiently large. We state this result

here as a lemma; its proof appears in Appendix 7.1.4.

Lemma 8. M̃ = L̃ + C̃ be an m × n2 matrix, where the components L̃ and C̃ satisfy

the conditions (c̃1)-(c̃4) for any k ≤ n2, and suppose L̂(1) = L̃, the subspace spanned

by the columns of L̃. Let ΦM = M̃ in Step 2 of Algorithm 1. Fix δ ∈ (0, 1), suppose A

is a p × n2 matrix drawn from a distribution satisfying the distributional JL property

(2.2) with p satisfying (2.6), and suppose the elements of φ are i.i.d. realizations of
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any continuous random variable. Then with probability at least 1 − δ the support

Iĉ , {i : ĉi 6= 0} of the vector ĉ produced by Step 2 of Algorithm 1 satisfies Iĉ = I
C̃

.

Our overall result follows from assembling these intermediate results via union

bound. In the event that the conclusion of Lemma 6 holds, then so do the requi-

site conditions of Lemma 7. Thus, with probability at least 1 − 2δ the conclusions of

Lemmata 6 and 7 both hold. This implies that the requisite conditions of Lemma 8

hold also with probability at least 1 − 2δ, and so it follows that the conclusions of all

three Lemmata hold with probability at least 1− 3δ.

7.1.2 Proof of Lemma 6

We proceed using the formalism of stable embeddings that has emerged from the dimen-

sionality reduction and compressive sensing literature (see, e.g., [229]).

Definition 21 (Stable Embedding). For ε ∈ [0, 1] and U ,V ⊆ Rn, we say Φ is an

ε-stable embedding of (U ,V) if

(1− ε)‖u− v‖22 ≤ ‖Φu− Φv‖22 ≤ (1 + ε)‖u− v‖22 (7.2)

for all u ∈ U and v ∈ V.

Our proof approach is comprised of two parts. First, we show that each of the four

claims in the lemma follow when Φ is an ε-stable embedding of

(L,∪i∈IC{C:,i} ∪ {0}) (7.3)

for any choice of ε < 1/2. Second, we show that for any δ ∈ (0, 1), generating Φ as a

random matrix as specified in the lemma ensures it will be a
√

2/4-stable embedding of

(7.3) with probability at least 1 − δ. The choice of
√

2/4 in the last step is somewhat

arbitrary – we choose this fixed value for concreteness here, but note that the structural

conclusions of the lemma follow using any choice of ε < 1/2 (albeit with slightly different

conditions on m).
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Part 1

Throughout this portion of the proof we assume that Φ is an ε-stable embedding of

(7.3) for some ε < 1/2, and establish each of the four claims in turn. First, to establish

that rank(ΦL) = r = rank(L), we utilize an intermediate result of [64], stated here as a

lemma (without proof) and formulated in the language of stable embeddings.

Lemma 9 (Adapted from [64], Theorem 1). Let L be an n1×n2 matrix of rank r, and

let L denote the column space of L, which is an r-dimensional linear subspace of Rn1 . If

for some ε ∈ (0, 1), Φ is an ε-stable embedding of (L, {0}) then rank(ΦL) = r = rank(L).

Here, since Φ being an ε-stable embedding of (7.3) implies it is also an ε-stable

embedding of (L, {0}), the first claim (of Lemma 6) follows from Lemma 9.

Next we show that ΦL has nL nonzero columns. Since Φ is a stable embedding of

(L, {0}), it follows that for each of the nL nonzero columns L:,i of L we have ‖ΦL:,i‖22 >
(1 − ε)‖L:,i‖22 > 0, while for each of the remaining n2 − nL columns L:,j of L that are

identically zero we have ‖ΦL:,j‖22 = 0 so that ΦL:,j = 0.

Continuing, we show next that ΦL satisfies the column incoherence property with

parameter µL. Recall from above that we write the compact SVD of L as L = UΣV ∗,

where U is n1×r, V is n2×r, and Σ is an r×r nonnegative diagonal matrix of singular

values (all of which are strictly positive). The incoherence condition on L is stated in

terms of column norms of the matrix V ∗ whose rows form an orthonormal basis for the

row space of L. Now, when the rank of ΦL is the same as that of L, which is true here

on account of Lemma 9, the row space of ΦL is identical to that of L, since each are

r-dimensional subspaces of Rn2 spanned by linear combinations of the columns of the

V ∗. Thus since the rank and number of nonzero columns of ΦL are the same as for L,

the coherence parameter of ΦL is just µL, and the third claim is established.

Finally, we establish the last claim, that the set of salient columns of ΦC is the same

as for C. Recall that the condition that a column C:,i be salient was equivalent to the

condition that ‖PL⊥C:,i‖2 > 0, where PL⊥ is the orthogonal projection operator onto

the orthogonal complement of L in Rn1 . Here, our aim is to show that an analogous

result holds in the “projected” space – that for all i ∈ IC we have ‖P(ΦL)⊥ΦC:,i‖2 > 0,

where ΦL is the linear subspace spanned by the columns of ΦL. For this we utilize

an intermediate result of [229] formulated there in terms of a “compressive interference
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cancellation” method. We state an adapted version of that result here as a lemma

(without proof).

Lemma 10 (Adapted from [229], Theorem 5). Let V1 be an r-dimensional linear sub-

space of Rn with r < n, let V2 be any subset of Rn, and let V̌2 = {PV⊥1 v : v ∈ V2},
where PV⊥1

is the orthogonal projection operator onto the orthogonal complement of V1

in Rn. If Φ is an ε-stable embedding of (V1, V̌2 ∪ {0}), then for all v̌ ∈ V̌2

‖P(ΦV1)⊥(Φv̌)‖22 ≥
(

1− ε

1− ε

)
‖v̌‖22, (7.4)

where P(ΦV1)⊥ is the orthogonal projection operator onto the orthogonal complement of

the subspace of Rn spanned by the elements of ΦV1 = {Φv : v ∈ V1}.

Before applying this result we first note a useful fact, that Φ being an ε-stable em-

bedding of (V1, V̌2∪{0}) is equivalent to Φ being an ε-stable embedding of (V1,V2∪{0}),
which follows directly from the definition of stable embeddings and the (easy to ver-

ify) fact that
{
v1 − v̌2 : v1 ∈ V1, v̌2 ∈ V̌2 ∪ {0}

}
= {v1 − v2 : v1 ∈ V1, v2 ∈ V2 ∪ {0}}.

Now, to apply Lemma 10 here, we let V1 = L, V2 = ∪i∈IC{C:,i}, and V̌2 =

∪i∈IC{PL⊥C:,i}. Since Φ is an ε-stable embedding of (7.3), we have that for all i ∈ IC:,i ,

‖P(ΦL)⊥(ΦC):,i‖22 ≥
(

1− ε
1−ε

)
‖PL⊥C:,i‖22. Since ε < 1/2, the above result implies

‖P(ΦL)⊥ΦC:,i‖2 > 0 for all i ∈ IC , while for all j /∈ IC we have C:,j = 0, imply-

ing that ΦC:,j = 0 and hence ‖P(ΦL)⊥ΦC:,j‖2 = 0. Using this, and the fact that

the nonzero columns of ΦL coincide with the nonzero columns of L, we conclude that

IΦC = {i : ‖P(ΦL)⊥ΦC:,j‖2 > 0, (ΦL):,i = 0} is the same as IC .

Part 2

Given the structural result established in the previous step, the last part of the proof

entails establishing that a random matrix Φ generated as specified in the statement

of Lemma 6 is an
√

2/4-stable embedding of (7.3). Our approach here begins with a

brief geometric discussion, and a bit of “stable embedding algebra.” Appealing to the

definition of stable embeddings, we see that Φ being an ε-stable embedding of (7.3) is

equivalent to Φ being such that

(1− ε)‖v‖22 ≤ ‖Φv‖22 ≤ (1 + ε)‖v‖22 (7.5)
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holds for all v ∈ L ∪ ⋃i∈IC L − C:,i, where L − C:,i denotes the r-dimensional affine

subspace of Rn1 comprised of all elements taking the form of a vector in L minus the

fixed vector C:,i. Thus, in words, establishing our claim here entails showing that a

random Φ (generated as specified in the lemma, with appropriate dimensions) approx-

imately preserves the lengths of all vectors in a union of subspaces comprised of one

r-dimensional linear subspace and some |IC | = k, r-dimensional affine subspaces.

Stable embeddings of linear subspaces using random matrices is, by now, well-studied

(see, e.g., [64, 229, 230], as well as a slightly weaker result [231, Lemma 10]), though

stable embeddings of affine subspaces has received less attention in the literature. For-

tunately, using a straightforward argument we may leverage results for the former in

order to establish the latter. Recall the discussion above, and suppose that rather than

establishing that (7.5) holds for all v ∈ L∪⋃i∈IC L−C:,i we instead establish a slightly

stronger result, that (7.5) holds for all v ∈ L ∪ ⋃i∈IC L
i, where for each i ∈ IC , Li

denotes the (r + 1)-dimensional linear subspace of Rn1 spanned by the columns of the

matrix [L C:,i]. (That the dimension of each Li be r + 1 follows from the assumption

that columns C:,i for i ∈ IC be outliers.) Clearly, if for some i ∈ IC the condition (7.5)

holds for all v ∈ Li, then it holds for all vectors formed as linear combinations of [L C:,i],

so it holds in particular for all vectors in the r dimensional affine subspace denoted by

L−C:,i. Further, that (7.5) holds for all v ∈ Li for any i ∈ IC implies it holds for linear

combinations that use a weight of zero on the component C:,i, so in this case (7.5) holds

also for all v ∈ L.

Based on the above discussion, we see that a sufficient condition to establish that Φ

be an ε-stable embedding of (7.3) is that (7.5) hold for all v ∈ ⋃i∈IC L
i; in other words,

that Φ preserve (up to multiplicative (1± ε) factors) the squared lengths of all vectors

in a union of (up to) k unique (r+ 1)-dimensional linear subspaces of Rn1 . To this end

we make use of another result adapted from [64], and based on the union of subspaces

embedding approach utilized in [230].

Lemma 11 (Adapted from [64], Lemma 1). Let
⋃k
i=1 V i denote a union of k linear

subspaces of Rn, each of dimension at most d. For fixed ε ∈ (0, 1) and δ ∈ (0, 1),

suppose Φ is an m× n matrix satisfying the distributional JL property with

m ≥ d log(42/ε) + log(k) + log(2/δ)

f(ε/
√

2)
(7.6)
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Then (1− ε)‖v‖22 ≤ ‖Φv‖22 ≤ (1 + ε)‖v‖22 holds simultaneously for all v ∈ ⋃k
i=1 V i with

probability at least 1− δ.

Applying this lemma here with d = r + 1 and ε =
√

2/4, and using the fact that

log(84
√

2) < 5 yields the final result.

7.1.3 Proof of Lemma 7

Our approach is comprised of two parts. In the first, we show that the two claims of

Lemma 7 follow directly when the following five conditions are satisfied

(a1) S has (1/2)γn2 ≤ |S| ≤ (3/2)γn2 columns,

(a2) L̃S has at most (3/2)γnL nonzero columns,

(a3) C̃S has at most (3/2)γk nonzero columns,

(a4) σ2
1(Ṽ ∗S) ≤ (3/2)γ, and

(a5) σ2
r (Ṽ

∗S) ≥ (1/2)γ,

where the matrix Ṽ ∗ that arises in (a4)-(a5) is the matrix of right singular vectors from

the compact SVD L̃ = Ũ Σ̃Ṽ ∗ of L̃, and σi(Ṽ
∗S) denotes the i-th largest singular value

of Ṽ ∗S. Then, in the second part of the proof we show that (a1)-(a5) hold with high

probability when S is a random subsampling matrix generated with parameter γ in the

specified range.

We briefly note that parameters (1/2) and (3/2) arising in the conditions (a1)-

(a5) are somewhat arbitrary, and are fixed to these values here for ease of exposition.

Analogous results to that of Lemma 7 could be established by replacing (1/2) with any

constant in (0, 1) and (3/2) with any constant larger than 1, albeit with slightly different

conditions on γ.

Part 1

Throughout this portion of the proof, we assume that conditions (a1)-(a5) hold. Central

to our analysis is a main result of [19], which we state as a lemma (without proof).
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Lemma 12 (Outlier Pursuit, adapted from [19]). Let M̌ = Ľ+ Č be an ň1× ň2 matrix

whose components Ľ and Č satisfy the structural conditions

(č1) rank(Ľ) = ř,

(č2) Ľ has nĽ nonzero columns,

(č3) Ľ satisfies the column incoherence property with parameter µĽ, and

(č4) |IČ | = {i : ‖PĽ⊥Č:,i‖2 > 0, Ľ:,i = 0} = ǩ, where Ľ denotes the linear subspace

spanned by columns of Ľ and PĽ⊥ is the orthogonal projection operator onto the

orthogonal complement of Ľ in Rň1 ,

with

ǩ ≤
(

1

1 + (121/9) řµĽ

)
ň2. (7.7)

For any upper bound ǩub ≥ ǩ and λ = 3

7
√
ǩub

any solutions of the outlier pursuit

procedure

{̂̌L, ̂̌C} = argmin
L(1),C(1)

‖L(1)‖∗ + λ‖C(1)‖1,2 s.t. M̌ = L(1) + C(1), (7.8)

are such that the columns of ̂̌L span the same linear subspace as the columns of Ľ,

and the set of nonzero columns of ̂̌C is the same as the set of locations of the nonzero

columns of Č.

Introducing the shorthand notation Ľ = L̃S, Č = C̃S, and ň2 = |S|, our approach

will be to show that conditions (a1)-(a5) along with the assumptions on M̃ ensure that

(č1)-(č4) in Lemma 12 are satisfied for some appropriate parameters ř, nĽ, µĽ, and ǩ

that depend on analogous parameters of M̃ .

First, note that (a5) implies that the matrix Ṽ ∗S has rank r, which in turn implies

that Ľ has rank r. Thus, (č1) is satisfied with ř = r. The condition (č2) is also satisfied

here for nĽ no larger than (3/2)γnL; this is a restatement of (a2).

We next establish (č3). To this end, note that since Ľ has rank r, it follows that the

r-dimensional linear subspace spanned by the rows of Ľ = Ũ Σ̃Ṽ ∗S is the same as that

spanned by the rows of Ṽ ∗S. Now, let ST Ṽ denote the r-dimensional linear subspace
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of Rň2 spanned by the columns of ST Ṽ and let P
ST Ṽ denote the orthogonal projection

operator onto ST Ṽ. Then, bounding the column incoherence parameter of Ľ entails

establishing an upper bound on maxi∈[ň2] ‖PST Ṽei‖22, where ei is the i-th canonical basis

vector of Rň2 . Directly constructing the orthogonal projection operator (and using that

Ṽ ∗S is a rank r matrix) we have that

max
i∈[ň2]

‖P
ST Ṽei‖

2
2 = max

i∈[ň2]

∥∥∥∥ST Ṽ
(
Ṽ ∗SST Ṽ

)−1
Ṽ ∗Sei

∥∥∥∥
2

2

(a)

≤ max
j∈[n2]

∥∥∥∥ST Ṽ
(
Ṽ ∗SST Ṽ

)−1
Ṽ ∗ej

∥∥∥∥
2

2

(b)

≤
(
σ1(Ṽ ∗S)

σ2
r (Ṽ

∗S)

)2

µL
r

nL

(c)

≤
(

6

γ

)
µL

r

nL
,

where (a) follows from the fact that for any i ∈ [ň2] the vector Sej is either the zero

vector or one of the canonical basis vectors for Rn2 , (b) follows from straightforward

linear algebraic bounding ideas and the column incoherence assumption on L̃, and (c)

follows from (a4)-(a5). Now, we let nĽ denote the number of nonzero columns of Ľ,

and write

max
i∈[ň2]

‖P
ST Ṽei‖

2
2 ≤

(
6

γ

)
µL

r

nL

(
nĽ
nĽ

)
≤ 9µL

r

nĽ
, (7.9)

where the last inequality uses (a2). Thus (č3) holds with

µĽ = 9µL. (7.10)

Next, we establish (č4). Recall from above that Ľ has rank r, and is comprised of

columns of L̃; it follows that the subspace Ľ spanned by columns of Ľ is the same as the

subspace L̃ spanned by columns of L̃. Thus, ‖PĽ⊥Č:,i‖2 = ‖PL̃⊥Č:,i‖2, so to obtain an

upper bound on ǩ we can simply count the number ǩ of nonzero columns of Č = C̃S.

By (a1), (a3), (2.3), and the fact that ř = r, we have

ǩ ≤ 3

2
γku ≤

3

2
· 2ň2

n2
ku =

3kuň2

n2
,
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which, combined with (7.10), implies

ǩ ≤
(

1

1 + (121/9) řµĽ

)
ň2 =

3kuň2

n2
,

Finally, we show that the two claims of Lemma 7 hold. The first follows directly

from (a1). For the second, note that for any kub ≥ k we have that ǩub , kub ≥ ǩ.

Thus, since λ = 3
7
√
kub

= 3

7
√
ǩub

and (č1)-(č4) hold, it follows from Lemma 12 that the

optimization (7.8) produces an estimate ̂̌L whose columns span the same linear subspace

as that of Ľ. But, since Ľ has rank r and its columns are just a subset of columns of

the rank-r matrix L̃, the subspace spanned by the columns of Ľ is the same as that

spanned by columns of L̃.

Part 2

The last part of our proof entails showing (a1)-(a5) hold with high probability when

S is randomly generated as specified. Let E1, . . . , E5 denote the events that conditions

(a1)-(a5), respectively, hold. Then Pr
( {⋂5

i=1 Ei
}c )

≤∑5
i=1 Pr(Eci ), and we consider

each term in the sum in turn.

First, since |S| is a Binomial(n2, γ) random variable, we may bound its tails us-

ing [232, Theorem 2.3 (b-c)]. This gives that Pr (|S| > 3γn2/2) ≤ exp (−3γn2/28)

and Pr (|S| < γn2/2) ≤ exp (−γn2/8) . By union bound, we obtain that Pr(Ec1) ≤
exp (−3γn2/28) + exp (−γn2/8) .

Next, observe that conditionally on |S| = s, the number of nonzero columns

present in the matrix L̃S is a hypergeometric random variable parameterized by a

population of size n2 with nL positive elements and s draws. Denoting this hy-

pergeometric distribution here by hyp(n2, nL, s) and letting H|S| ∼ hyp(n2, nL, |S|),
we have that Pr(Ec2) = Pr

(
H|S| >

(
3
2

)
γnL

)
. Using a simple conditioning argument,

Pr(Ec2) ≤∑b(4/3)γn2c
s=d(2/3)γn2e Pr

(
Hs >

(
3
2

)
γnL

)
Pr(|S| = s)+Pr

(
||S| − γn2| >

(
1
3

)
γn2

)
, and

our next step is to simplify the terms in the sum. Note that for any s in the range of
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summation, we have Pr
(
Hs >

(
3
2

)
γnL

)
= Pr

(
Hs >

(
3
2

)
γnL

(
sn2
sn2

))
, and thus

Pr

(
Hs >

(
3

2

)
γnL

)
(a)

≤ Pr

(
Hs >

(
9

8

)
s

(
nL
n2

))
(b)

≤ exp

(
−3s(nL/n2)

400

)

(c)

≤ exp
(
−γnL

200

)
,

where (a) utilizes the largest value of s to bound the term γn2/s, (b) follows from an

application of Lemma 15 in Appendix 7.1.5, and (c) results from using the smallest value

of s (within the range of summation) to bound the error term. Assembling these results,

we have that Pr(Ec2) ≤ exp (−γnL/200)+exp (−γn2/24)+exp (−γn2/18), where we use

the fact that the probability mass function of |S| sums to one, and another application

of [232, Theorem 2.3(b,c)].

To bound Pr(Ec3), we discuss the following two cases: Case 1. By construction, ǩ is

a Hypergeometric random variable, parameterized by the population size n2, the total

number of draws ň2 and the total positive elements k, denoted here by Hyp(n2, ň2, k).

Then we have that

Pr(Ec3)=Pr

(
ǩ >

3

2
γku

)
≤Pr

(
ǩ >

3

2
γk

)
≤ exp

(
− γk

200

)
.

When γ satisfies (2.4), we have Pr(Ec3) < δ
6 provided k satisfies

200

γ
log

(
6

δ

)
≤ k ≤ ku =

n2

3(1 + 121rµV)
.

Case 2. Now consider k < 200
γ log(6

δ ). Let ǩ1 and ǩ2 be Hypergeometric random

variables with distributions Hyp(n2, ň2, k1) and Hyp(n2, ň2, k2) respectively, where k1 >

k2. Our analysis relied upon a stochastic ordering property of Hypergeometric random

variables; we establish that result here as a lemma.

Lemma 13 (Adapted from Theorem 1 of [233] for Hypergeometric distribution). Let

X1 ∼ Hyp(n2, ň2, k1) and X2 ∼ Hyp(n2, ň2, k2) be Hypergeometric random variables,

whose distributions are parameterized by identical population n2 and draws ň2 with k1

and k2 positive elements respectively, where k1 > k2. Then for any x ∈ [0,∞), we have
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Pr(X2 ≤ x) ≥ Pr(X1 ≤ x). (7.11)

Proof of Lemma 13. Theorem 1 of [233] provides a general result of stochastic ordering

for Hypergeometric distributions. Specifically, for X1 ∼ Hyp(n2, ň2, k1) and X2 ∼
Hyp(n2, ň2, k2), (7.11) holds for any x ∈ [0,∞) if and only if the left tail condition

(
n2 − ň2

k2 − k∗

)(
n2

k1

)
≥
(
n2 − ň2

k1 − k∗

)(
n2

k2

)
(7.12)

and the right tail condition

(
n2 − ň2

k2 − k∗

)(
n2

k1

)
≤
(
n2 − ň2

k1 − k∗

)(
n2

k2

)
(7.13)

hold simultaneously, where k∗ and k∗ are the minimum and maximum supports of

Hyp(n2, ň2, k1) and Hyp(n2, ň2, k2) respectively, defined as

k∗ = min{k : (Hyp(n2, ň2, k1) + Hyp(n2, ň2, k2))(k) > 0}
= min{(ň2 − (n2 − k1))+, (ň2 − (n2 − k2))+},

k∗ = max{k : (Hyp(n2, ň2, k1) + Hyp(n2, ň2, k2))(k) > 0}
= max{min{ň2, k1},min{ň2, k2}}.

Here we only need to verify that if k1 > k2, then (7.12) and (7.13) hold simultaneously,

which then implies (7.11). Note that all arguments below are for the case when x is a

non-negative integer. But same results hold for any real x because a Hypergeometric

random variable is discrete and for any non-negative integer y and a real x ∈ [y, y+ 1),

a Hypergeometric random variable X satisfies Pr(X ≤ x) = Pr(X ≤ y).

We first verify (7.12) when k1 > k2. Let (x)+ = max{x, 0}. By definition we have,

k∗ = min{(ň2 − (n2 − k1))+, (ň2 − (n2 − k2))+}

=

{
ň2 + k2 − n2, if ň2 + k2 > n2

0, o.w.
.

When k∗ = ň2 + k2 − n2, we have
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(
n2 − ň2

k2 − k∗

)(
n2

k1

)
=

(
n2 − ň2

n2 − ň2

)(
n2

k1

)

=

(
n2

k1

)
> 1 >

(
n2 − ň2

n2 − ň2 + k1 − k2

)(
n2

k2

)
= 0,

where the last equality holds since n2 − ň2 < n2 − ň2 + k1 − k2 and x choose y is 0, if

x < y. When k∗ = 0, we have

(
n2 − ň2

k2 − k∗

)(
n2

k1

)

(
n2 − ň2

k1 − k∗

)(
n2

k2

) =

(
n2 − ň2

k2

)(
n2

k1

)

(
n2 − ň2

k1

)(
n2

k2

)

=
(n2 − ň2) · · · (n2 − ň2 − k2 + 1)

(n2 − ň2) · · · (n2 − ň2 − k1 + 1)
× n2 · · · (n2 − k1 + 1)

n2 · · · (n2 − k2 + 1)

=
(n2 − k2)

(n2 − ň2 − k2)
× · · · × (n2 − k1 + 1)

(n2 − ň2 − k1 + 1)
> 1

Therefore, (7.12) holds by combining the two scenarios.

To verify (7.13), we use analogous arguments. Specifically, we have from definition,

k∗ = max{min{ň2, k1},min{ň2, k2}} =

{
k1, if k1 ≤ ň2

ň2, o.w.
.

When k∗ = k1, we have

(
n2 − ň2

k1 − k∗

)(
n2

k2

)
=

(
n2 − ň2

k1 − k1

)(
n2

k2

)

=

(
n2

k2

)
> 1 >

(
n2 − ň2

k2 − k1

)(
n2

k1

)
= 0,

where the last equality holds since k1 > k2 and x choose y is 0, if y < 0.

When k∗ = ň2, we have two different cases: (i) k2 < ň2 < k1 and (ii) ň2 ≤ k2 < k1.

In Case (i), we have similar argument as when k∗ = k1. In Case (ii), we have
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(
n2 − ň2

k1 − k∗

)(
n2

k2

)

(
n2 − ň2

k2 − k∗

)(
n2

k1

) =

(
n2 − ň2

k1 − ň2

)(
n2

k2

)

(
n2 − ň2

k2 − ň2

)(
n2

k1

)

=
(n2 − ň2) · · · (n2 − ň2 − (k1 − ň2) + 1)

(n2 − ň2) · · · (n2 − ň2 − (k2 − ň2) + 1)
× n2 · · · (n2 − k2 + 1)

n2 · · · (n2 − k1 + 1)

=
(n2 − k2) · · · (n2 − k1 + 1)

(n2 − ň2 − (k2 − ň2)) · · · (n2 − ň2 − (k2 − ň2) + 1)

=
(n2 − k2) · · · (n2 − k1 + 1)

(n2 − k2) · · · (n2 − k1 + 1)
= 1.

Therefore, (7.13) holds by combining the two scenarios.

Using the general result, since (7.12) and (7.13) hold, we have Pr(X2 ≤ x) ≥
Pr(X1 ≤ x) for any x ∈ [0,∞).

Then by Lemma 13, which is based on the stochastic ordering ideas from [233], we

have Pr(ǩ2 ≤ x) ≥ Pr(ǩ1 ≤ x) for any x ∈ [0,∞). This, coupled with the analysis from

Case 1 above, implies that Pr(Ec3) < δ
6 in this case as well.

Finally, we can obtain bounds on the largest and smallest singular values of Ṽ ∗S

using the Matrix Chernoff inequalities of [234]. Namely, letting Z = Ṽ ∗S we note

that the matrix ZZ∗ may be expressed as a sum of independent positive semidefinite

rank-one r× r Hermitian matrices, as ZZ∗ = Ṽ ∗SST Ṽ =
∑n2

i=1 si(Ṽ
∗

:,i)(Ṽ
∗

:,i)
∗, where the

{si}n2
i=1 are i.i.d. Bernoulli(γ) random variables as in the statement of Algorithm 1 (and,

s2
i = si). To instantiate the result of [234], we note that λmax(si(Ṽ

∗
:,i)(Ṽ

∗
:,i)
∗) ≤ ‖Ṽ ∗:,i‖22 ≤

µLr/nL , R almost surely for all i, where the last inequality follows from the incoher-

ence assumption (c̃3) (as well as (c̃1)-(c̃2)). Further, direct calculation yields µmin ,

λmin (E [ZZ∗]) = λmin(γI) = γ and µmax , λmax (E [ZZ∗]) = λmax(γI) = γ, where the

identity matrices in each case are of size r × r. Thus, applying [234, Corollary 5.2]

(with δ = 1/2 in that formulation) we obtain that Pr(Ec4) = Pr
(
σ2

1

(
Ṽ ∗S

)
≥ 3γ/2

)
≤

r · (9/10)
γnL
rµL , and Pr(Ec5) = Pr

(
σ2
r

(
Ṽ ∗S

)
≤ γ/2

)
≤ r · (9/10)

γnL
rµL .

Putting the results together, and using a further bound on Pr(Ec1), we have

Pr
( {⋂5

i=1 Ei
}c )

≤ exp
(
−γnL

200

)
+2 exp

(
−γn2

24

)
+2 exp

(
−γn2

18

)
+r·

(
9
10

) γnL
rµL +r·

(
9
10

) γnL
rµL ,

which is no larger than δ given that γ satisfies (2.4) (in particular, this ensures each
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term in the sum is no larger than δ/5).

7.1.4 Proof of Lemma 8

First, note that since L̂(1) = L̃, we have that ‖PL̂⊥
(1)
M̃:,i‖2 > 0 for all i ∈ I

C̃
, and

‖PL̂⊥
(1)
M̃:,i‖2 = 0 otherwise. This, along with the fact that the entries of φ be i.i.d.

realizations of a continuous random variable, imply that with probability one the 1×n2

vector xT , φPL̂⊥
(1)
M̃ is nonzero at every i ∈ I

C̃
and zero otherwise. Indeed, since for

each i ∈ I
C̃

the distribution of xi = φPL̂⊥
(1)
M̃:,i is a continuous random variable with

nonzero variance, it takes the value zero with probability zero. On the other hand,

for j /∈ I
C̃

, xj = φPL̂⊥
(1)
M̃:,j = 0 with probability one. With this, we see that exact

identification of I
C̃

can be accomplished if we can identify the support of x from linear

measurements of the form y = (y(2))
T = Ax.

To proceed, we appeal to (now, well-known) results from the compressive sensing

literature. We recall one representative result of [20] that is germane to our effort below.

Here, we cast the result in the context of the stable embedding formalism introduced

above, and state it as a lemma without proof.

Lemma 14 (Adapted from Theorem 1.2 of [20]). Let x ∈ Rn and z = Ax. If A is an

ε-stable embedding of (U( n2k)
, {0}) for some ε <

√
2 − 1 where U( n2k)

denotes the union

of all
(
n
2k

)
unique 2k-dimensional linear subspaces of Rn spanned by canonical basis

vectors, and x has at most k nonzero elements, then the solution x̂ of

argmin
x
‖x‖1 s.t. z = Ax. (7.14)

is equal to x.

Now, a straightforward application of Lemma 11 above provides that for any δ ∈
(0, 1), if

p ≥ 2k log(42/ε) + log
(
n
2k

)
+ log(2/δ)

f(ε/
√

2)
(7.15)

then the randomly generated p×n2 matrixA will be an ε-stable embedding of (U( n2k)
, {0})

with probability at least 1 − δ. This, along with the well-known bound
(
n
2k

)
≤
(
en
2k

)2k

and some straightforward simplifications, imply that the condition that p satisfy (2.6) is
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sufficient to ensure that with probability at least 1− δ, A is a (
√

2/4)-stable embedding

of (U( n2k)
, {0}). Since

√
2/4 <

√
2− 1, the result follows.

7.1.5 An Upper Tail Bound for the Hypergeometric Distribution

Let hyp(N,M,n) denote the hypergeometric distribution parameterized by a population

of size N with M positive elements and n draws, so H ∼ hyp(N,M,n) is a random

variable whose value corresponds to the number of positive elements acquired from n

draws (without replacement). The probability mass function of H ∼ hyp(N,M,n) is

Pr(H = k) =
(
M
k

)(
N−M
n−k

)
/
(
N
n

)
for k ∈ {max{0, n + M − N}, . . . ,min{M,n}}, and its

mean value is E[H] = nM/N .

It is well-known that the tails of the hypergeometric distribution are similar to

those of the binomial distribution for n trials and success probability p = M/N . For

example, [235] established that for all t ≥ 0, Pr(H − np ≥ nt) ≤ e−2t2n, a result

that follows directly from Hoeffding’s work [236], and exhibits the same tail behavior

as predicted by the Hoeffding Inequality for a Binomial(n, p) random variable (see,

e.g., [232]). Below we provide a lemma that yields tighter bounds on the upper tail of

H when the fraction of positive elements in the population is near 0 or 1. Our result is

somewhat analogous to [232, Theorem 2.3(b)] for the Binomial case.

Lemma 15. Let H ∼ hyp(N,M,n), and set p = M/N . For any ε ≥ 0,

Pr(H ≥ (1 + ε)np) ≤ e−
ε2np

2(1+ε/3) . (7.16)

Proof. We begin with an intermediate result of [235], that for any t ≥ 0 and h ≥ 1,

Pr(H − pn ≥ tn) ≤
(
h−(p+t)(1− p+ hp)

)n
. (7.17)

Now, for the specific choices t = εp and h = 1 + ε we have

Pr(H − np ≥ εnp) ≤
(

(1 + ε)−(1+ε)p(1 + εp)
)n (a)

≤
(

(1 + ε)−(1+ε)eε
)np (b)

≤ e
− ε2np

2(1+ε/3) ,

where (a) follows from the inequality 1 + x ≤ ex (with x = εp), and (b) follows directly

from [232, Lemma 2.4].
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7.2 Proofs for Chapter 3

7.2.1 Proof of Theorem 3

From the main result in [107], we have that (3.8) holds if m and s satisfy

m & ε−2(log3m)(log5 n)γ2
2(V, ρFin) + ε−2(log4m)(log5 n) (pV + logN (V, ρFin, ε0)) ,

s &

(
α̃2 log2N (V, ρFin, ε0) + ε2

0pV log
1

ε0
+

[∫ ε0

0
(logN (V, ρFin, t))

1/2 dt

]2
)

· (log4m)(log5 n)ε−2 + ε−2(log6m)(log4 n),

which can be obtained from (3.10) and (3.11).

7.2.2 Proof of Theorem 4

We start with an illustration that the set T can be reparameterized to the following set

with respect to tensors with orthogonal factors:

T =
⋃

E∈V
{x ∈ E : ‖x‖2 = 1} , where V =

⋃

W̃

{span[Av1 , Av2 ]} and

W̃ = {v1, v2 ∈ Bp2 with 〈v1, v2〉 = 0} .

Suppose 〈v1, v2〉 6= 0, then let v2 = αv1+βz for some α, β ∈ R and a unit vector z ∈ Rp2 ,

where 〈v1, z〉 = 0. Then we have

Ax−Ay
‖Ax−Ay‖2

=
Av1u1 −Av2u2

‖Av1u1 −Av2u2‖2
=

Av1u1 −Aαv1+βzu2

‖Av1u1 −Aαv1+βzu2‖2

=
Av1u1 −Aαv1u2 −Aβzu2

‖Av1u1 −Aαv1u2 −Aβzu2‖2
=

Av1(u1 − αu2)−Az(βu2)

‖Av1(u1 − αu2)−Az(βu2)‖2
,

which is equivalent to 〈v1, v2〉 = 0 by reparameterizing z as v2.

Next, by Theorem 3, we need to upper bound ρV , γ2
2(V, ρFin), and N (V, ρFin, ε0).

These will be addressed separately as follows.

Part 1: Bound pV . For notational convenience, we denote Av1,v2 = [Av1 , Av2 ]. It is
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straightforward that

pV = sup
v1,v2∈Bp2 ,〈v1,v2〉=0

dim {span (Av1,v2)} ≤ 2p1. (7.18)

Part 2: Bound γ2
2(V, ρFin). By the definition of γ2-functional in (3.7) for the Finsler

metric, we have

γ2(V, ρFin) = inf
{Vk}∞k=0

sup
Av1,v2∈V

∞∑

k=0

2k/2 · ρFin(Av1,v2 ,Vk),

where Vk is an εk-net of Vk, i,e., for any Av1,v2 ∈ V there exist v1, v2 ∈ Bp2 with 〈v1, v2〉 =

0, ‖v1−v1‖2 ≤ ηk, and ‖v2−v2‖2 ≤ ηk, such that Av1,v2 ∈ Vk and ρFin(Av1,v2 , Av1,v2) ≤
εk.

From Lemma 20, we have ρFin(Av1,v2 ,Vk) ≤ 2κ(A)ηk for ‖v1 − v1‖2 ≤ ηk and

‖v2 − v2‖2 ≤ ηk. On the other hand, we have that ρFin(Av1,v2 ,Vk) ≤ 1 always holds.

Therefore, we have

ρFin(Av1,v2 ,Vk) ≤ min{2κ(A)ηk, 1}.

Let k′ be the smallest integer such that 2κ(A)ηk′ ≤ 1. Then we have

γ2(V, ρFin) ≤
∞∑

k=0

2k/2ρFin(Av1,v2 ,Vk) ≤
k′∑

k=0

2k/2 +
∞∑

k=k′+1

2k/2ρFin(Av1,v2 ,Vk). (7.19)

Suppose that η0 = 1. Then we have |V0| = 1. For k ≥ 1, we have ηk < 1 and

|Vk| ≤ (3/ηk)
p2 [237]. By the definition of admissible sequences in the γ2-functional,

we require |Vk| ≤ 22k . Without loss of generality, suppose that for all k ≤ k′, we have

|Vk| ≤ 22k ≤ (3/ηk)
p2 . Then we have 2k/2 ≤

√
p2 log 3

ηk
, which implies

k′∑

k=0

2k/2 =
2k
′/2

√
2− 1

.

√
p2 log

1

ηk′
. (7.20)
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For k > k′, suppose we choose ηk+1 = η2
k. Then we have

(
3

ηk+1

)p2

≤
(

3

ηk

)2p2

≤
(

22k
)2

= 22k+1
, (7.21)

which implies |Vk+1| ≤ 22k+1
as long as |Vk+1| ≤ (3/ηk+1)p2 holds. In other words, we

have |Vk| ≤ 22k if we choose ηk+1 = η2
k for all k > k′. Suppose k′ is the smallest integer

such that when we choose ηk′+1 = 1
4κ(A) , then

(
3

ηk′+1

)p2 ≤ 22k
′+1

holds. This implies

(7.21) holds and ρFin(Av1,v2 ,Vk) ≤ (1/2)2k−k
′

for all k > k′. Then we have

∞∑

k=k′+1

2k/2 · ρFin(Av1,v2 ,Vk) = 2k
′/2 ·

∞∑

t=1

2t/2 ·
(

1

2

)2t

≤ 2k
′/2 .

√
p2 log

1

ηk′
, (7.22)

where the first inequality is from the Cauchy condensation test
∑∞

t=0 2t/2 ·
(

1
2

)2t ≤
2 ·∑∞t=0

(
1
2

)t
= 1 and the second inequality is from (7.20).

Combining (7.19), (7.20), and (7.22), we have

γ2
2(V, ρFin) . p2 log

1

ηk′
. (7.23)

From Lemma 20, suppose we choose a small enough ε0 such that ε0 ≤ 2κ(A)ηk′ .

Then (7.23) implies

γ2
2(V, ρFin) . p2 log

κ(A)

ε0
. (7.24)

Part 3: Bound N (V, ρFin, ε0). From our choice from Part 2, ε0 ∈ (0, 1) is a constant.

Then it is straightforward that

N (V, ρFin, ε0) ≤
(

3

ε0

)2p2

. (7.25)
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This implies

∫ ε0

0
[logN (V, ρFin, t)]

1/2dt ≤
∫ ε0

0
(log (3/t)p2)1/2 dt (7.26)

.
√
p2

∫ ε0

0
(− log t)1/2 dt

(
Let w = (− log t)1/2

)

=
√
p2

∫ (− log ε0)1/2

−∞
2w2e−w

2
dw =

√
p2

([
w · e−w2

](− log ε0)1/2

−∞
−
∫ (− log ε0)1/2

−∞
e−w

2
dw

)

≤ √p2

[
w · e−w2

](− log ε0)1/2

−∞
= ε0

√
p2 log

1

ε0
. (7.27)

From Lemma 18, we have

α̃2 = max
i∈[n]

`2i (A
v1,v2) ≤ max

i∈[n]
`2i (A) ≤ 1/p2

2. (7.28)

Combining (7.18), (7.24)–(7.28), and Theorem 3, we have that the claim holds if

m & ε−2

(
p2 log

κ(A)

ε0
+ p1 + p2 log

1

ε0

)
(log4m)(log5 n),

s & ε−2

(
log2 1

ε0
+ ε2

0(p1 + p2) log
1

ε0

)
(log6m)(log5 n).

Taking ε0 = 1/(p1 + p2), we finish the proof. Note that since 2κ(A)ηk′ ≥ 1/2, we only

require ρFin(Av1,v2 ,Vk′) ≤ 1/2 in Part 2. Thus the choice ε0 = 1/(p1 + p2) is valid here.

7.2.3 Proof of Theorem 5

Denote A

{
v

(r)
i

}
=

[
A

{
v

(r)
1

}
, A

{
v

(r)
2

}]
∈ Rn×2Rp1 . We illustrate that the set T can be

reparameterized to the following set with respect to tensors with partial orthogonal

factors:

T =
⋃

E∈V
{x ∈ E : ‖x‖2 = 1} , where V =

⋃

W̃

span

(
A

{
v

(r)
i

})
and

W̃ =
{
∀i ∈ [2], r, q ∈ [R], q 6= r, v

(r)
i ∈ Bp2 , 〈v

(r)
1 , v

(r)
2 〉 = 〈v(r)

i , v
(q)
i 〉 = 0

}
.
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Suppose for all r ∈ [R], v
(r)
2 = α(r)v

(r)
1 +β(r)z(r) for some α(r), β(r) ∈ R and unit vectors

z(r) ∈ Rp2 , where 〈v(r)
1 , z(r)〉 = 0. Then we have

Ax−Ay =
R∑

r=1

(
Av

(r)
1 · u(r)

1 −Av
(r)
2 · u(r)

2

)
=

R∑

r=1

(
Av

(r)
1 · u(r)

1 −Aα
(r)v

(r)
1 +β(r)z(r) · u(r)

2

)

=
R∑

r=1

(
Av

(r)
1 · u(r)

1 −Aα
(r)v

(r)
1 · u(r)

2 −Aβ
(r)z(r) · u(r)

2

)

=
R∑

r=1

(
Av

(r)
1 ·

(
u

(r)
1 − α(r)u

(r)
2

)
−Az(r) ·

(
β(r)u

(r)
2

))
.

which is equivalent to 〈v(r)
1 , v

(r)
2 〉 = 0 by reparameterizing z(r) as v

(r)
2 .

Using a similar argument, we show the general scenario. For any r ∈ [R], r ≥ 2,

w.l.o.g., suppose

v
(r)
1 = α

(r,1)
1 v

(1)
1 +

r∑

i=2

α
(r,i)
1 z

(i)
1 and v

(r)
2 = β

(r,1)
1 v

(1)
1 +

r∑

i=2

β
(r,i)
1 z

(i)
1 +

r∑

j=1

β
(r,j)
2 z

(j)
2 .

where α
(r,i)
1 , β

(r,i)
1 , β

(r,j)
2 ∈ R are real coefficients and 〈v(1)

1 , z
(i)
1 〉 = 〈v(1)

1 , z
(i)
2 〉 =

〈z(i)
1 , z

(j)
2 〉 = 0 for any i, j ∈ [r]. For R = 1, the argument is identical to the one

above. For 2 ≤ R ≤ p2/2, we have

Ax−Ay =
R∑

r=1

(
Av

(r)
1 · u(r)

1 −Av
(r)
2 · u(r)

2

)

=
R∑

r=2

(
Aα

(r,1)
1 v

(1)
1 +

∑r
i=2 α

(r,i)
1 z

(i)
1 · u(r)

1 −Aβ
(r,1)
1 v

(1)
1 +

∑r
i=2 β

(r,i)
1 z

(i)
1 +

∑r
j=1 β

(r,j)
2 z

(j)
2 · u(r)

2

)

+Av
(1)
1 · u(r)

1 −A
(
β

(1,1)
1 v

(1)
1 +β

(1,1)
2 z

(1)
2

)
· u(r)

2

=

R∑

r=2

(
Av

(1)
1 ·

(
α

(r,1)
1 u

(1)
1 − β

(r,1)
1 u

(1)
2

)
+

r∑

i=2

Az
(i)
1 ·

(
α

(r,i)
1 u

(i)
1 − β

(r,i)
1 u

(i)
2

)

−
r∑

j=1

Az
(j)
2 ·

(
β

(r,j)
2 u

(j)
2

))
+Av

(1)
1 · u(r)

1 −A
(
β

(1,1)
1 v

(1)
1 +β

(1,1)
2 z

(1)
2

)
· u(r)

2 ,

which is equivalent to 〈v(r)
i , v

(q)
i 〉 = 0 and 〈v(r)

1 , v
(r)
2 〉 = 0 for all i ∈ [2], r ∈ [R], and
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q 6= r by reparameterizing z
(i)
1 as v

(i)
1 and z

(j)
2 as v

(j)
2 .

Next, analogous to Theorem 4, we analyze upper bounds on ρV , γ2
2(V, ρFin), and

N (V, ρFin, ε0), and obtain the result from Theorem 3.

Part 1: Bound pV . It is straightforward that

pV = sup
W̃

dim

{
span

(
A

{
v

(r)
i

})}
≤ 2Rp1. (7.29)

Part 2: Bound γ2
2(V, ρFin). The γ2-functional in this case is

γ2
2(V, ρFin) = inf

{Vk}∞k=0

sup

A

{
v
(r)
i

}
∈V

∞∑

k=0

2r/2 · ρFin

(
A

{
v

(r)
i

}
,Vk

)
,

where Vk is an εk-net of Vk.
Following the same argument in Part 2 of the proof for Theorem 4, we have from

Lemma 21 that if k′ is the smallest integer such that 2Rκ(A)ηk′ ≤ 1 and we choose

ηk′+1 = 1
4Rκ(A) , then we choose a small enough ε0 such that ε0 ≤ 2Rκ(A)ηk′ ,

γ2
2(V, ρFin) . Rp2 log

Rκ(A)

ε0
. (7.30)

Part 3: Bound N (V, ρFin, ε0). It is straightforward that

N (V, ρFin, ε0) ≤
(

3

ε0

)2Rp2

.

Following the same argument in Part 3 of the proof for Theorem 4, we have

∫ ε0

0
[logN (V, ρFin, t)]

1/2dt . ε0

√
Rp2 log

1

ε0
. (7.31)

From Lemma 19, we have

α̃2 = max
i∈[n]

`2i

(
A

{
v

(r)
i

})
≤ max

i∈[n]
`2i (A) ≤ 1/(R2p2

2). (7.32)
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Combining (7.29) – (7.32) and Theorem 3, we have that the claim holds if

m & ε−2R

(
p2 log

Rκ(A)

ε0
+ p1 + p2 log

1

ε0

)
(log4m)(log5 n),

s & ε−2

(
log2 1

ε0
+ ε2

0R(p1 + p2) log
1

ε0

)
(log6m)(log5 n).

We finish the proof by taking ε0 = 1
R(p1+p2) . Note that this choice of ε satisfies the

requirement in Part 2.

7.2.4 Proof of Theorem 6

Denote ϑ\1 = θD⊗· · ·⊗θ2, ϕ\1 = φD⊗· · ·⊗φ2 and Aϑ\1,ϕ\1 =
[
A{θ\1}, A{φ\1}

]
∈ Rn×2p1 .

We illustrate that the set T can be reparameterized to the following set with respect to

tensors with partial orthogonal factors:

T =
⋃

E∈V
{x ∈ E : ‖x‖2 = 1} , where V =

⋃

W̃

span
(
Aϑ\1,ϕ\1

)
and

W̃ = {∀d ∈ [D]\{1}, θd, φd ∈ Bpd , ∃i ∈ [D]\{1} s.t. 〈θi, φi〉 = 0} ,

W.l.o.g., suppose φD = αθD + βz for some α, β ∈ R and a unit vector z ∈ RpD , where

〈θD, z〉 = 0. Then we have

Aϑ−Aϕ = A{θ\1}θ1 −A{φ\1}φ1 = A(θD ⊗ · · · ⊗ θ2 ⊗ Ip1)θ1 −A(φD ⊗ · · · ⊗ φ2 ⊗ Ip1)φ1

= A(θD ⊗ · · · ⊗ θ2 ⊗ Ip1)θ1 −A((αθD + βz)⊗ φD−1 ⊗ · · · ⊗ φ2 ⊗ Ip1)φ1

= A(θD ⊗ · · · ⊗ θ2 ⊗ Ip1)θ1 −A(αθD ⊗ · · · ⊗ φ2 ⊗ Ip1)φ1 −A(βz ⊗ · · · ⊗ φ2 ⊗ Ip1)φ1

= AθD (θD−1 ⊗ · · · ⊗ θ1 − αφD−1 ⊗ · · · ⊗ φ1)−Az (φD−1 ⊗ · · · ⊗ φ1) ,

This is equivalent to 〈θD, φD〉 = 0 by reparameterizing z as φD.

Next, analogous to Theorem 4, we analyze upper bounds on ρV , γ2
2(V, ρFin), and

N (V, ρFin, ε0), and obtain the result from Theorem 3.

Part 1: Bound pV . It is straightforward that

pV = sup
W̃

dim
{

span
(
Aϑ\1,ϕ\1

)}
≤ 2p1. (7.33)
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Part 2: Bound γ2
2(V, ρFin). The γ2-functional in this case is

γ2
2(V, ρFin) = inf

{Vk}∞k=0

sup
A
ϑ\1,ϕ\1∈V

∞∑

k=0

2r/2 · ρFin

(
Aϑ\1,ϕ\1 ,Vk

)
,

where Vk is an εk-net of Vk.
Following the same argument in Part 2 of the proof of Theorem 4, we have from

Lemma 22 that if k′ is the smallest integer such that 2κ(A)
(
(1 + ηk′)

D − 1
)
≤ 1, then

we choose ε0 small enough such that

ε ≤ 2κ(A)Dηk′ ≤ 2κ(A)
(
(1 + ηk′)

D − 1
)
.

where the second inequality is from the binomial expansion. Then we have

γ2
2(V, ρFin) .

D∑

d=2

pd · log
Dκ(A)

ε0
. (7.34)

Part 3: Bound N (V, ρFin, ε0). It is straightforward that

N (V, ρFin, ε0) ≤
(

3

ε0

)2
∑D
d=2 pd

.

Following the same argument in Part 3 of the proof for Theorem 4, we have

∫ ε0

0
[logN (V, ρFin, t)]

1/2dt . ε0

√√√√
D∑

d=2

pd log
1

ε0
. (7.35)

From Lemma 18, we have

α̃2 = max
i∈[n]

`2i

(
Aϑ\1,ϕ\1

)
≤ max

i∈[n]
`2i (A) ≤ 1/

(
D∑

d=2

pd

)2

. (7.36)
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Combining (7.33) – (7.36) and Theorem 3, we have that the claim holds if

m & ε−2

(
p1 +

D∑

d=2

pd · log
Dκ(A)

ε0

)
(log4m)(log5 n),

s & ε−2

(
log2 1

ε0
+ ε2

0

D∑

d=1

pd log
1

ε0

)
(log6m)(log5 n).

We finish the proof by taking ε0 = 1∑D
d=1 pd

. Note that this choice of ε satisfies the

requirement in Part 2.

7.2.5 Proof of Theorem 7

Denote A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

}
=

[
A

{
θ
(r)
\1

}
, A

{
φ

(r)
\1

}]
. We illustrate that the set T can be reparam-

eterized to the following set with respect to tensors with partial orthogonal factors:

T =
⋃

E∈V
{x ∈ E : ‖x‖2 = 1} , where V =

⋃

Ŵ

span

(
A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

})
,

W̃ =
{
∀r ∈ [R], d ∈ [D]\{1}, θ(r)

d , φ
(r)
d ∈ Bpd ;∀r, q ∈ [R],∃i ∈ [D]\{1} s.t.〈θ(r)

i , φ
(q)
i 〉 = 0;

∀r ∈ [R− 1], q ∈ [R]\[r], ∃j, k ∈ [D]\{1} s.t. 〈θ(r)
j , θ

(q)
j 〉 = 〈φ(r)

k , φ
(q)
k 〉 = 0

}
.

For R = 1, the argument is identical to the analysis in Theorem 6. For any r ∈ [R],

r ≥ 2, w.l.o.g., suppose

θ
(r)
D = α

(r,1)
1 θ

(1)
D +

r∑

i=2

α
(r,i)
1 z

(i)
1 and φ

(r)
D = β

(r,1)
1 θ

(1)
D +

r∑

i=2

β
(r,i)
1 z

(i)
1 +

r∑

j=1

β
(r,j)
2 z

(j)
2 ,

where α
(r,i)
1 , β

(r,i)
1 , β

(r,j)
2 ∈ R are real coefficients and 〈θ(1)

D , z
(i)
1 〉 = 〈θ(1)

D , z
(i)
2 〉 =
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〈z(i)
1 , z

(j)
2 〉 = 0 for any i, j ∈ [r]. Then for 2 ≤ R ≤ p2/2, we have

Aϑ−Aϕ = A ·
R∑

r=1

(
θ

(r)
D ⊗ · · · ⊗ θ

(r)
2 ⊗ Ip1

)
θ

(r)
1 −A ·

R∑

r=1

(
φ

(r)
D ⊗ · · · ⊗ φ

(r)
2 ⊗ Ip1

)
φ

(r)
1

= A ·
R∑

r=2

((
α

(r,1)
1 θ

(1)
D +

r∑

i=2

α
(r,i)
1 z

(i)
1

)
⊗ · · · ⊗ θ(r)

1

)
+A ·

(
θ

(1)
D ⊗ · · · ⊗ θ

(1)
1

)

−A ·
R∑

r=2




β(r,1)

1 θ
(1)
D +

r∑

i=2

β
(r,i)
1 z

(i)
1 +

r∑

j=1

β
(r,j)
2 z

(j)
2


⊗ · · · ⊗ φ(r)

1




−A ·
((
β

(1,1)
1 θ

(1)
D + β

(1,1)
2 z

(1)
2

)
⊗ · · · ⊗ φ(1)

1

)

=

R∑

r=r

Aθ
(1)
D

(
α

(r,1)
1 θ

(r)
D−1 ⊗ · · · ⊗ θ

(r)
1 − β

(r,1)
1 φ

(r)
D−1 ⊗ · · · ⊗ φ

(r)
1

)

+

R∑

r=2

r∑

i=2

Az
(1)
1

(
α

(r,i)
1 θ

(r)
D−1 ⊗ · · · ⊗ θ

(r)
1 − β

(r,i)
1 φ

(r)
D−1 ⊗ · · · ⊗ φ

(r)
1

)

−
R∑

r=1

r∑

j=1

Az
(j)
2

(
β

(r,j)
2 φ

(r)
D−1 ⊗ · · · ⊗ φ

(r)
1

)

where α
(,1)
1 = 1. This is equivalent to 〈θ(r)

D , φ
(r)
D 〉 = 0, 〈θ(r)

D , θ
(q)
D 〉 = 0, and 〈φ(r)

D , φ
(q)
D 〉 = 0

for all r ∈ [R] and q 6= [R]\[r], by reparameterizing z
(i)
1 and z

(j)
2 as θ

(i)
D and φ

(j)
D properly.

The remaining pairs of orthogonality in W̃ can be checked analogously by repeating the

argument above.

Part 1: Bound pV . It is straightforward that

pV = sup
W̃

dim

{
span

(
A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

})}
≤ 2Rp1. (7.37)

Part 2: Bound γ2
2(V, ρFin). The γ2-functional in this case is

γ2
2(V, ρFin) = inf

{Vk}∞k=0

sup

A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

}
∈V

∞∑

k=0

2r/2 · ρFin

(
A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

}
,Vk

)
,

where Vk is an εk-net of Vk.
Following the same argument in Part 2 of the proof for Theorem 4, we have from
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Lemma 23 that if k′ is the smallest integer such that 2Rκ(A)
(
(1 + ηk′)

D − 1
)
≤ 1, then

we choose ε0 small enough such that

ε ≤ 2RDκ(A)ηk′ ≤ 2Rκ(A)
(
(1 + ηk′)

D − 1
)
,

where the second inequality follows from the binomial expansion. Then we have

γ2
2(V, ρFin) .

D∑

d=2

pd · log
RDκ(A)

ε0
. (7.38)

Part 3: Bound N (V, ρFin, ε0). It is straightforward that

N (V, ρFin, ε0) ≤
(

3

ε0

)2R
∑D
d=2 pd

.

Following the same argument in Part 3 of the proof for Theorem 4, we have

∫ ε0

0
[logN (V, ρFin, t)]

1/2dt . ε0

√√√√R
D∑

d=2

pd log
1

ε0
. (7.39)

From Lemma 18, we have

α̃2 = max
i∈[n]

`2i

(
Aϑ\1,ϕ\1

)
≤ max

i∈[n]
`2i (A) ≤ 1/

(
R

D∑

d=2

pd

)2

. (7.40)

Combining (7.37) – (7.40) and Theorem 3, we have that the claim holds if

m & ε−2R

(
p1 +

D∑

d=2

pd · log
RDκ(A)

ε0

)
(log4m)(log5 n),

s & ε−2

(
log2 1

ε0
+ ε2

0R

D∑

d=1

pd log
1

ε0

)
(log6m)(log5 n).

We finish the proof by taking ε0 = 1
R
∑D
d=1 pd

. Note that this choice of ε satisfies the

requirement in Part 2.
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7.2.6 Proof of Theorem 8

Denote A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}
=

[
A

{
θ
{rd}
\1

}
, A

{
φ
{rd}
\1

}]
. We illustrate that the set T can be

reparameterized to the following set with respect to tensors with partial orthogonal

factors:

T =
⋃

E∈V
{x ∈ E : ‖x‖2 = 1} , where V =

⋃

Ŵ

span

(
A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

})
and

W̃ =
{
∀rd ∈ [Rd], d ∈ [D]\{1}, θ(rd)

d , φ
(rd)
d ∈ Bpd ;∀rd, qd ∈ [Rd], ∃d ∈ [D]\{1}

s.t. 〈θ(rd)
d , φ

(qd)
d 〉 = 0;∀rd ∈ [Rd − 1], qd ∈ [Rd]\[rd], ∃d, t ∈ [D]\{1}

s.t. 〈θ(rd)
d , θ

(qd)
d 〉 = 〈φ(rd)

t , φ
(qd)
t 〉 = 0

}
.

Repeating the argument in the proof of Theorem 7, we have the equivalence of T
and the set above.

Part 1: Bound pV . It is straightforward that

pV = sup
W̃

dim

{
span

(
A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

})}
≤ 2R1p1. (7.41)

Part 2: Bound γ2
2(V, ρFin). The γ2-functional in this case is

γ2
2(V, ρFin) = inf

{Vk}∞k=0

sup

A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}
∈V

∞∑

k=0

2r/2 · ρFin

(
A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}
,Vk

)
,

where Vk is an εk-net of Vk.
Following the same argument as in Part 2 of the proof for Theorem 4,

we have from Lemma 24 that if k′ is the smallest integer such that

2κ(A)
(
(1 + ηk′)

D − 1
)√∏D

d=2Rd ≤ 1, then we choose ε0 small enough such that

ε ≤ 2Dκ(A)ηk′

√√√√
D∏

d=2

Rd ≤ 2κ(A)
(
(1 + ηk′)

D − 1
)
√√√√

D∏

d=2

Rd,
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where the second inequality follows from the binomial theorem. Then we have

γ2
2(V, ρFin) .

(
D∑

d=2

Rdpd +
D∏

d=1

pd

)
· log

Dκ(A)
√∏D

d=2Rd

ε0
. (7.42)

Part 3: Bound N (V, ρFin, ε0). It is straightforward that

N (V, ρFin, ε0) ≤
(

3

ε0

)2(
∑D
d=2Rdpd+

∏D
d=1 pd)

.

Following the same argument in Part 3 of the proof for Theorem 4, we have

∫ ε0

0
[logN (V, ρFin, t)]

1/2dt . ε0

√√√√
(

D∑

d=2

Rdpd +

D∏

d=1

pd

)
log

1

ε0
. (7.43)

From Lemma 18, we have

α̃2 = max
i∈[n]

`2i

(
Aϑ\1,ϕ\1

)
≤ max

i∈[n]
`2i (A) ≤ 1/

(
D∑

d=2

Rdpd +
D∏

d=1

pd

)2

. (7.44)

Combining (7.37) – (7.40) and Theorem 3, we have that the claim holds if

m & ε−2


R1p1 +

(
D∑

d=2

Rdpd +

D∏

d=1

pd

)
· log

Dκ(A)
√∏D

d=2Rd

ε0


 (log4m)(log5 n),

s & ε−2

(
log2 1

ε0
+ ε2

0

(
D∑

d=1

Rdpd +

D∏

d=1

pd

)
log

1

ε0

)
(log6m)(log5 n).

We finish the proof by taking ε0 = 1∑D
d=1Rdpd+

∏D
d=1 pd

. Note that this choice of ε satisfies

the requirement in Part 2.
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7.2.7 Proof of Lemma 1

Given a unit vector y ∈ Rn, let Zjk = HjkΣkkyk for all j ∈ [n]. Then from the

independence of Hjk and Σkk, we have

E(Zjk) = E(HjkΣkkyk) = E(Hjk) · E(Σkk) · yk = 0,

Var(Zjk) ≤ E(H2
jkΣ

2
kky

2
k) = E(H2

jk) · E(Σ2
kk) · y2

k =
y2
k

n
.

From the Azuma-Hoeffding inequality, for any t > 0 we have

P

(∣∣∣∣∣
n∑

k=1

Zjk

∣∣∣∣∣ > t

)
≤ 2 exp

(
− nt2

2
∑n

k=1 y
2
k

)
= 2 exp

(
−nt

2

2

)
.

By taking t =

√
2 log( 2nr

δ )
n , we have

P



∣∣∣∣∣
n∑

k=1

Zjk

∣∣∣∣∣ >

√
2 log

(
2nr
δ

)

n


 ≤ 2 exp

(
log

(
δ

2nr

))
=

δ

nr
.

By a union bound, we have

P


‖HΣy‖∞ >

√
2 log

(
2nr
δ

)

n


 = P


max
j∈[n]

∣∣∣∣∣
n∑

k=1

Zjk

∣∣∣∣∣ >

√
2 log

(
2nr
δ

)

n


 ≤ δ

r
.

Suppose A = UQ, where U ∈ Rn×r has orthonormal columns. Then we have for all

i ∈ [n] and k ∈ [r],

`2i (HΣA) = `2i (HΣU) ≤ r ·
(
e>i HΣUek

)2
.

Using a union bound again, we finish the proof by

P

(
max
i∈[n]

`2i (HΣA) >
2r log

(
2nr
δ

)

n

)
≤ P

(
max
i∈[n]

r ·
∥∥∥e>i HΣUek

∥∥∥
2

∞
>

2r log
(

2nr
δ

)

n

)
≤ δ.
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7.2.8 Intermediate Results

Here we introduce all intermediate results applied in our main analysis.

Lemma 16. Suppose for A = [A(1), A(2), . . . , A(m)] ∈ Rn×mp, each A(i) ∈ Rn×p is a

column-wise sub-matrix of A. Given a vector v ∈ Rm, we have

∥∥∥∥∥
m∑

i=1

A(i)vi

∥∥∥∥∥
2

≤ ‖A‖2‖v‖2.

Proof. This is an extension of the Cauchy-Schwartz inequality. We have
∑m

i=1A
(i)vi =

A(v ⊗ Ip), where ⊗ is the Kronecker product. This implies

∥∥∥∥∥
m∑

i=1

A(i)vi

∥∥∥∥∥
2

= ‖A(v ⊗ Ip)‖2 ≤ ‖A‖2‖v ⊗ Ip‖2 = ‖A‖2‖v‖2.

Lemma 17. Given two sequences of unit vectors {φi}ni=1 and {ψi}ni=1, where φi, ψi ∈
Rpi with ‖φi − ψi‖2 ≤ ε for all i ∈ [n], we have

‖φ1 ⊗ φ2 ⊗ · · · ⊗ φn − ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn‖2 ≤ (1 + ε)n − 1.

Proof. Suppose for all i ∈ [n], we have ψi = φ1 + xi for some vector xi ∈ Rpi . Then we

have

‖φ1 ⊗ · · · ⊗ φn − ψ1 ⊗ · · · ⊗ ψn‖2 = ‖φ1 ⊗ · · · ⊗ φn − (φ1 + xi)⊗ · · · ⊗ (ψn + xn)‖2

≤
n∑

i=1

‖φ1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ φn‖2 +
n∑

i=1

n∑

j=1,j 6=i
‖φ1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xj ⊗ · · · ⊗ φn‖2

+ · · ·+ ‖x1 ⊗ · · · ⊗ xn‖2

≤
(
n

1

)
ε+

(
n

2

)
ε2 + · · ·+

(
n

n

)
εn = (1 + ε)n − 1,

where the last inequality is from the fact that ‖v ⊗ u‖2 = ‖v‖2‖u‖2 for any vectors v

and u.
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Lemma 18. Suppose that A ∈ Rn×
∏2
d=1 pd has leverage scores `2i (A) for all i ∈ [n].

Then for any v1, v2 ∈ Rp2 , the leverage scores of Av1,v2 = [Av1 , Av2 ] ∈ Rn×2p1 are

bounded by `2i (A
v1,v2) ≤ `2i (A).

Proof. Let Z have orthonormal columns and have the same span as the column space of

A. Then we have `2i (A) = ‖e>i Z‖22 for all i ∈ [n]. Since the column space of Av1,v2 is a

subspace of the column space of A, we can always find a column sub-matrix Z1 ∈ Rn×2p1

of Z such that Z1 spans the column space of Av1,v2 . Therefore, for each i ∈ [n], we have

`2i (A
v1,v2) = ‖e>i Z1‖22 ≤ ‖e>i Z‖22 = `2i (A).

Lemma 19. Suppose A ∈ Rn×
∏2
d=1 pd has leverage scores `2i (A) for all i ∈ [n]. Then

for any v
(r)
i ∈ Rp2 , i ∈ [2], r ∈ [R] with R ≤ p2/2, the leverage scores of A

{
v

(r)
i

}
=[

Av
(1)
1 , . . . , Av

(R)
1 , Av

(1)
2 , . . . , Av

(R)
2

]
∈ Rn×2Rp1 are bounded by `2i

(
A

{
v

(r)
i

})
≤ `2i (A).

Proof. Let Z have orthonormal columns and have the same span as the column space

of A. Then we have `2i (A) = ‖e>i Z‖22 for all i ∈ [n]. Since the column space of A

{
v

(r)
i

}
is a subspace of the column space of A, as the column space of each Av

(r)
i is a subspace

of the column space of A, we can always find a column sub-matrix Z1 ∈ Rn×2Rp1 of Z

such that Z1 spans the column space of A

{
v

(r)
i

}
. Therefore, for each i ∈ [n], we have

`2i

(
A

{
v

(r)
i

})
= ‖e>i Z1‖22 ≤ ‖e>i Z‖22 = `2i (A).

Lemma 20. For any v1, v2 ∈ Bp2 , suppose 〈v1, v2〉 = 0, and v1, v2 ∈ Bp2 are vectors

such that ‖v1 − v1‖2 ≤ η0 and ‖v2 − v2‖2 ≤ η0. Then we have

ρFin([Av1 , Av2 ], [Av1 , Av2 ]) ≤ 2κ(A)η0.
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Proof. Denote Av1,v2 = [Av1 , Av2 ]. From a perturbation bound for orthogonal projec-

tions given in [238], we have

ρFin(Av1,v2 , Av1,v2) ≤ ‖A
v1,v2 −Av1,v2‖2
σmin(Av1,v2)

. (7.45)

We first provide an upper bound on the numerator as

‖Av1,v2 −Av1,v2‖2 =

∥∥∥∥∥

[
p2∑

i=1

A(i)(v1,i − v1,i),

p2∑

i=1

A(i)(v2,i − v2,i)

]∥∥∥∥∥
2

≤
∥∥∥∥∥

p2∑

i=1

A(i)(v1,i − v1,i)

∥∥∥∥∥
2

+

∥∥∥∥∥

p2∑

i=1

A(i)(v2,i − v2,i)

∥∥∥∥∥
2

≤ 2σmax(A)η0, (7.46)

where the last inequality is from Lemma 16.

Next, we provide a lower bound on the denominator. Let [u>1 , u
>
2 ]> be a unit vector

corresponding to the smallest singular value of Av1,v2 , where u1, u2 ∈ Rp1 . Then we

have

σmin(Av1,v2) =

∥∥∥∥∥A
v1,v2

[
u1

u2

]∥∥∥∥∥
2

= ‖A(v1 ⊗ u1 + v2 ⊗ u2)‖2

≥ σmin(A)‖v1 ⊗ u1 + v2 ⊗ u2‖2

= σmin(A)
√
‖v1 ⊗ u1‖22 + ‖v2 ⊗ u2‖22 + 2〈v1 ⊗ u1, v2 ⊗ u2〉

= σmin(A)

√√√√‖u1‖22 + ‖u2‖22 + 2

p2∑

i=1

p1∑

j=1

v1,iu1,jv2,iu2,j

= σmin(A)
√

1 + 2〈v1, v2〉〈u1, u2〉 = σmin(A), (7.47)

where the last equality is from the condition 〈v1, v2〉 = 0. We finish the proof by

combining (7.45), (7.46), and (7.47).

Lemma 21. For all i ∈ [2] and r ∈ [R], v
(r)
i ∈ Bp2 . Suppose for all i ∈ [2], r ∈ [R],

q ∈ [R]\{r}, we have 〈v(r)
i , v

(q)
i 〉 = 〈v(r)

1 , v
(r)
2 〉 = 0. Further suppose for all i ∈ [2]

and r ∈ [R], v
(r)
i ∈ Bp2 is a vector such that ‖v(r)

i − v
(r)
i ‖2 ≤ η0. Denote A

{
v

(r)
i

}
=
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Av

(1)
1 , . . . , Av

(R)
1 , Av

(1)
2 , . . . , Av

(R)
2

]
. Then we have

ρFin

(
A

{
v

(r)
i

}
, A

{
v

(r)
i

})
≤ 2Rκ(A)η0.

Proof. From the perturbation bound for orthogonal projection given in [238], we have

ρFin

(
A

{
v

(r)
i

}
, A

{
v

(r)
i

})
≤

∥∥∥∥A
{
v

(r)
i

}
−A

{
v

(r)
i

}∥∥∥∥
2

σmin

(
A

{
v

(r)
i

}) . (7.48)

We first upper bound the numerator as

∥∥∥∥A
{
v

(r)
i

}
−A

{
v

(r)
i

}∥∥∥∥
2

=

∥∥∥∥∥

[
p2∑

j=1

Aj

(
v

(1)
1,j − v

(1)
1,j

)
, . . . ,

p2∑

j=1

Aj

(
v

(R)
1,j − v

(R)
1,j

)
,

p2∑

j=1

Aj

(
v

(1)
2,j − v

(1)
2,j

)
, . . . ,

p2∑

j=1

Aj

(
v

(R
2,j − v

(R)
2,j

)]∥∥∥∥∥
2

≤
R∑

r=1

∥∥∥∥∥∥

p2∑

j=1

Aj

(
v

(r)
1,j − v

(r)
1,j

)
∥∥∥∥∥∥

2

+

R∑

r=1

∥∥∥∥∥∥

p2∑

j=1

Aj

(
v

(r)
2,j − v

(r)
2,j

)
∥∥∥∥∥∥

2

≤ 2Rσmax(A)η0, (7.49)

where the last inequality is from Lemma 16.

Next, we provide a lower bound on the denominator. Let[
u

(1)>
1 , . . . , u

(R)>
1 , u

(1)>
2 , . . . , u

(R)>
2

]>
∈ R2Rp1 be a unit vector corresponding to

the smallest singular value of A

{
v

(r)
i

}
, where u

(r)
i ∈ Rp1 for all i ∈ [2] and r ∈ [R]. Then
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we have

σmin

(
A

{
v

(r)
i

})
=

∥∥∥∥A
{
v

(r)
i

} [
u

(1)>
1 , . . . , u

(R)>
1 , u

(1)>
2 , . . . , u

(R)>
2

]>∥∥∥∥
2

=

∥∥∥∥∥A ·
(

R∑

r=1

v
(r)
1 ⊗ u

(r)
1 + v

(r)
2 ⊗ u

(r)
2

)∥∥∥∥∥
2

≥ σmin(A)

∥∥∥∥∥
R∑

r=1

(
v

(r)
1 ⊗ u

(r)
1 + v

(r)
2 ⊗ u

(r)
2

)∥∥∥∥∥
2

= σmin(A)

√√√√
R∑

r=1

(∥∥∥u(r)
1

∥∥∥
2

2
+
∥∥∥u(r)

2

∥∥∥
2

2

)
+ 2

R∑

r=1

p2∑

j=1

p1∑

k=1

v
(r)
1,ju

(r)
1,kv

(r)
2,ju

(r)
2,k

+2

2∑

i=1

R−1∑

r=1

R∑

q=r+1

p2∑

j=1

p1∑

k=1

v
(r)
i,j u

(r)
i,kv

(q)
i,j u

(q)
i,k

= σmin(A)

√√√√1 + 2
R∑

r=1

〈v(r)
1 , v

(r)
2 〉〈u

(r)
1 , u

(r)
2 〉+ 2

2∑

i=1

R−1∑

r=1

R∑

q=r+1

〈v(r)
i , v

(q)
i 〉〈u

(r)
i , u

(q)
i 〉

= σmin(A), (7.50)

where the last equality uses the conditions that for all i ∈ [2] and r ∈ [R], 〈v(r)
i , v

(q)
i 〉 =

〈v(r)
1 , v

(r)
2 〉 = 0 for q ∈ [R]\{r}. We finish the proof by combining (7.48), (7.49), and

(7.50).

Lemma 22. For all d ∈ [D]\{1}, θd, φd ∈ Bpd . Suppose there exists an i ∈ [D]\{1}
such that 〈θi, φi〉 = 0. Further suppose for all d ∈ [D]\{1}, θd, φd ∈ Bpd are vectors such

that ‖θd − θd‖2 ≤ η0 and ‖φd − φd‖2 ≤ η0. Then we have

ρFin

([
A{θ\1}, A{φ\1}

]
,
[
A{θ\1}, A{φ\1}

])
≤ 2κ(A)

(
(1 + η0)D−1 − 1

)
.

Proof. Let Aϑ\1,ϕ\1 =
[
A{θ\1}, A{φ\1}

]
∈ Rn×2p1 . From the perturbation bound for

orthogonal projection given in [238], we have

ρFin

(
Aϑ\1,ϕ\1 , Aϑ,ϕ

)
≤

∥∥∥Aϑ\1,ϕ\1 −Aϑ,ϕ
∥∥∥

2

σmin(Aϑ\1,ϕ\1)
. (7.51)
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We denote
∑

j2···jD =
∑pD

jD=1 · · ·
∑p2

j2=1. We first provide an upper bound on the

numerator:

∥∥∥Aϑ\1,ϕ\1 −Aϑ,ϕ
∥∥∥

2

=

∥∥∥∥∥

[ ∑

j2···jD

A(jD,...,j2) ·
(
θD,jD · · · θ2,j2 − θD,jD · · · θ2,j2

)
,

∑

j2···jD

A(jD,...,j2) ·
(
φD,jD · · ·φ2,j2 − φD,jD · · ·φ2,j2

)
]∥∥∥∥∥

2

≤

∥∥∥∥∥∥
∑

j2···jD

A(jD,...,j2) ·
(
θD,jD · · · θ2,j2 − θD,jD · · · θ2,j2

)
∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
∑

j2···jD

A(jD,...,j2) ·
(
φD,jD · · ·φ2,j2 − φD,jD · · ·φ2,j2

)
∥∥∥∥∥∥

2

≤ σmax(A) ·
(∥∥θD ⊗ · · · ⊗ θ2 − θD ⊗ · · · ⊗ θ2

∥∥
2

+
∥∥φD ⊗ · · · ⊗ φ2 − φD ⊗ · · · ⊗ φ2

∥∥
2

)

≤ 2σmax(A)
(
(1 + η0)D−1 − 1

)
, (7.52)

where the second inequality is from Lemma 16 and the last inequality is from Lemma 17.

Next, we provide a lower bound on the denominator. Let [u>1 , u
>
2 ]> be a unit vector

corresponding to the smallest singular value of Aϑ\1,ϕ\1 , where u1, u2 ∈ Rp1 . Then we

have

σmin

(
Aϑ\1,ϕ\1

)
=

∥∥∥∥∥A
ϑ\1,ϕ\1

[
u1

u2

]∥∥∥∥∥
2

= ‖A (θD ⊗ · · · ⊗ θ2 ⊗ u1 + φD ⊗ · · · ⊗ φ2 ⊗ u2) ‖2

≥ σmin(A)‖θD ⊗ · · · ⊗ θ2 ⊗ u1 + φD ⊗ · · · ⊗ φ2 ⊗ u2‖2

= σmin(A)
√
‖θD ⊗ · · · ⊗ θ2 ⊗ u1‖22 + ‖φD ⊗ · · · ⊗ φ2 ⊗ u2‖22

+2〈θD ⊗ · · · ⊗ θ2 ⊗ u1, φD ⊗ · · · ⊗ φ2 ⊗ u2〉

= σmin(A)

√√√√‖u1‖22 + ‖u2‖22 + 2
∑

j2···jD

p1∑

j1=1

θD,jD · · · θ2,j2u1,j1 · φD,jD · · ·φ2,j2u2,j1

= σmin(A)
√

1 + 2〈θD, φD〉 · · · 〈θ2, φ2〉〈u1, u2〉 = σmin(A), (7.53)

where the last inequality is from 〈θi, φi〉 = 0 for some i ∈ {2, . . . , D}. We finish the
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proof by combining (7.51), (7.52) and (7.53).

Lemma 23. For all d ∈ [D]\{1} and r ∈ [R], θ
(r)
d , φ

(r)
d ∈ Bpd . Suppose that for any

r, q ∈ [R], there exists an i ∈ [D]\{1} such that 〈θ(r)
i , φ

(q)
i 〉 = 0, and further, for all

r ∈ [R − 1], q ∈ [R]\[r], there exist j, k ∈ [D]\{1} such that 〈θ(r)
j , θ

(q)
j 〉 = 0 and

〈φ(r)
k , φ

(q)
k 〉 = 0. Further suppose for all d ∈ [D]\{1} and r ∈ [R], θ

(r)
d , φ

(r)
d ∈ Bpd are

vectors such that ‖θ(r)
d − θ

(r)
d ‖2 ≤ η0 and ‖φ(r)

d − φ
(r)
d ‖2 ≤ η0. Then we have

ρFin

([
A

{
θ
(r)
\1

}
, A

{
φ

(r)
\1

}]
,

[
A

{
θ
(r)
\1

}
, A

{
φ

(r)
\1

}])
≤ 2Rκ(A)

(
(1 + η0)D−1 − 1

)
.

Proof. Denote A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

}
=

[
A

{
θ
(r)
\1

}
, A

{
φ

(r)
\1

}]
∈ Rn×2Rp1 . From the perturbation

bound on orthogonal projection given in [238], we have

ρFin

(
A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

}
, A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

})
≤

∥∥∥∥∥A
{
ϑ

(r)
\1 ,ϕ

(r)
\1

}
−A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

}∥∥∥∥∥
2

σmin

(
A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

}) . (7.54)
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We denote
∑

j2···jD =
∑pD

jD=1 · · ·
∑p2

j2=1. We first upper bound the numerator as

∥∥∥∥∥A
{
ϑ

(r)
\1 ,ϕ

(r)
\1

}
−A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

}∥∥∥∥∥
2

=

∥∥∥∥∥∥


 ∑

j2···jD

A(jD,...,j2) ·
(
θ

(1)
D,jD

· · · θ(1)
2,j2
− θ(1)

D,jD
· · · θ(1)

2,j2

)
, . . . ,

∑

j2···jD

A(jD,...,j2) ·
(
θ

(R)
D,jD

· · · θ(R)
2,j2
− θ(R)

D,jD
· · · θ(R)

2,j2

)
,

∑

j2···jD

A(jD,...,j2) ·
(
φ

(1)
D,jD

· · ·φ(1)
2,j2
− φ(1)

D,jD
· · ·φ(1)

2,j2

)
, . . . ,

∑

j2···jD

A(jD,...,j2) ·
(
φ

(R)
D,jD

· · ·φ(R)
2,j2
− φ(R)

D,jD
· · ·φ(R)

2,j2

)


∥∥∥∥∥∥

2

≤
R∑

r=1

∥∥∥∥∥∥
∑

j2···jD

A(jD,...,j2) ·
(
θ

(r)
D,jD

· · · θ(r)
2,j2
− θ(r)

D,jD
· · · θ(r)

2,j2

)
∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
∑

j2···jD

A(jD,...,j2) ·
(
φ

(r)
D,jD

· · ·φ(r)
2,j2
− φ(r)

D,jD
· · ·φ(r)

2,j2

)
∥∥∥∥∥∥

2

≤ σmax(A) ·
(

R∑

r=1

∥∥∥θ(r)
D ⊗ · · · ⊗ θ

(r)
2 − θ

(r)
D ⊗ · · · ⊗ θ

(r)
2

∥∥∥
2

+
∥∥∥φ(r)

D ⊗ · · · ⊗ φ
(r)
2 − φ

(r)
D ⊗ · · · ⊗ φ

(r)
2

∥∥∥
2

)

≤ 2Rσmax(A)
(
(1 + η0)D−1 − 1

)
, (7.55)

where the second inequality is from Lemma 16 and the last inequality is from Lemma 17.

Next, we lower bound the denominator. Let
[
u

(1)>
1 , . . . , u

(R)>
1 , u

(1)>
2 , . . . , u

(R)>
2

]>
∈

R2Rp1 be a unit vector corresponding to the smallest singular value of A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

}
, where
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u
(r)
i ∈ Rp1 for all i ∈ [2] and r ∈ [R]. Then we have

σmin

(
A

{
ϑ

(r)
\1 ,ϕ

(r)
\1

})
=

∥∥∥∥A
{
ϑ

(r)
\1 ,ϕ

(r)
\1

} [
u

(1)>
1 , . . . , u

(R)>
1 , u

(1)>
2 , . . . , u

(R)>
2

]>∥∥∥∥
2

=

∥∥∥∥∥A ·
(

R∑

r=1

θ
(r)
D ⊗ · · · ⊗ θ

(r)
2 ⊗ u

(r)
1 + φ

(r)
D ⊗ · · · ⊗ φ

(r)
2 ⊗ u

(r)
2

)∥∥∥∥∥
2

≥ σmin(A)

∥∥∥∥∥
R∑

r=1

θ
(r)
D ⊗ · · · ⊗ θ

(r)
2 ⊗ u

(r)
1 + φ

(r)
D ⊗ · · · ⊗ φ

(r)
2 ⊗ u

(r)
2

∥∥∥∥∥
2

= σmin(A)

√√√√
R∑

r=1

(∥∥∥u(r)
1

∥∥∥
2

2
+
∥∥∥u(r)

2

∥∥∥
2

2

)
+ 2

R∑

r=1

R∑

q=1

∑

j1···jD

θ
(r)
D,jD

· · · θ(r)
2,j2

u
(r)
1,j1

·φ(q)
D,jD

· · ·φ(q)
2,j2

u
(q)
2,j1

+ 2

R−1∑

r=1

R∑

q=r+1

∑

j1···jD

(
θ

(r)
D,jD

· · · θ(r)
2,j2

u
(r)
1,j1
· θ(q)
D,jD

· · · θ(q)
2,j2

u
(q)
1,j1

+φ
(r)
D,jD

· · ·φ(r)
2,j2

u
(r)
2,j1
· φ(q)

D,jD
· · ·φ(q)

2,j2
u

(q)
2,j1

)

= σmin(A)

√√√√1 + 2

R∑

r=1

R∑

q=1

〈θ(r)
D , φ

(q)
D 〉 · · · 〈θ

(r)
2 , φ

(q)
2 〉〈u

(r)
1 , u

(q)
2 〉

+2

R−1∑

r=1

R∑

q=r+1

(
〈θ(r)
D , θ

(q)
D 〉 · · · 〈θ

(r)
2 , θ

(q)
2 〉〈u

(r)
1 , u

(q)
1 〉+ 〈φ(r)

D , φ
(q)
D 〉 · · · 〈φ

(r)
2 , φ

(q)
2 〉〈u

(r)
2 , u

(q)
2 〉
)

= σmin(A), (7.56)

where the last inequality is from the conditions on θ
(r)
d and φ

(r)
d . We finish the proof by

combining (7.54), (7.55), and (7.56).

Lemma 24. For all d ∈ [D]\{1} and r ∈ [R], θ
(rd)
d , φ

(rd)
d ∈ Bpd . Suppose that for any

rd, qd ∈ [Rd], d ∈ [R]\{1}, there exists an i ∈ [D]\{1} such that 〈θ(r)
i , φ

(q)
i 〉 = 0, and

for all r ∈ [R − 1], q ∈ [R]\[r], there exist j, k ∈ [D]\{1} such that 〈θ(r)
j , θ

(q)
j 〉 = 0 and

〈φ(r)
k , φ

(q)
k 〉 = 0. Further suppose for all d ∈ [D]\{1} and r ∈ [R], θ

(r)
d , φ

(r)
d ∈ Bpd are

vectors such that ‖θ(r)
d − θ

(r)
d ‖2 ≤ η0 and ‖φ(r)

d − φ
(r)
d ‖2 ≤ η0. Then we have

ρFin

([
A

{
θ
(r)
\1

}
, A

{
φ

(r)
\1

}]
,

[
A

{
θ
(r)
\1

}
, A

{
φ

(r)
\1

}])
≤ 2κ(A)

(
(1 + η0)D−1 − 1

)
√√√√

D∏

d=2

Rd.
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Proof. Denote A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}
=

[
A

{
θ
{rd}
\1

}
, A

{
φ
{rd}
\1

}]
∈ Rn×2R1p1 . From the perturba-

tion bound for orthogonal projection given in [238], we have

ρFin

(
A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}
, A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

})
≤

∥∥∥∥∥A
{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}
−A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}∥∥∥∥∥
2

σmin

(
A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}) . (7.57)
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We denote
∑

j2···jD =
∑pD

jD=1 · · ·
∑p2

j2=1. We first upper bound the numerator as

∥∥∥∥∥A
{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}
−A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}∥∥∥∥∥
2

=

∥∥∥∥∥∥


 ∑

j2···jD

A(jD,...,j2) ·
(
θ

(1)
D,jD

· · · θ(1)
2,j2
− θ(1)

D,jD
· · · θ(1)

2,j2

)
, . . . ,

∑

j2···jD

A(jD,...,j2) ·
(
θ

(1)
D,jD

· · · θ(R2)
2,j2
− θ(1)

D,jD
· · · θ(R2)

2,j2

)
, . . . ,

∑

j2···jD

A(jD,...,j2) ·
(
φ

(RD)
D,jD

· · ·φ(1)
2,j2
− φ(RD)

D,jD
· · ·φ(1)

2,j2

)
, . . . ,

∑

j2···jD

A(jD,...,j2) ·
(
φ

(RD)
D,jD

· · ·φ(R2)
2,j2
− φ(RD)

D,jD
· · ·φ(R2)

2,j2

)


∥∥∥∥∥∥

2

≤
R2∑

r2=1

· · ·
RD∑

rD=1

∥∥∥∥∥∥
∑

j2···jD

A(jD,...,j2) ·
(
θ

(rD)
D,jD

· · · θ(r2)
2,j2
− θ(rD)

D,jD
· · · θ(r2)

2,j2

)
∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
∑

j2···jD

A(jD,...,j2) ·
(
φ

(rD)
D,jD

· · ·φ(r2)
2,j2
− φ(rD)

D,jD
· · ·φ(r2)

2,j2

)
∥∥∥∥∥∥

2

≤ σmax(A) ·
(

R2∑

r2=1

· · ·
RD∑

rD=1

∥∥∥θ(rD)
D ⊗ · · · ⊗ θ(r2)

2 − θ(rD)
D ⊗ · · · ⊗ θ(r2)

2

∥∥∥
2

+
∥∥∥φ(rD)

D ⊗ · · · ⊗ φ(r2)
2 − φ(rD)

D ⊗ · · · ⊗ φ(r2)
2

∥∥∥
2

)

≤ 2
D∏

d=2

Rd · σmax(A)
(
(1 + η0)D−1 − 1

)
, (7.58)

where the second inequality is from Lemma 16 and the last inequality is from Lemma 17.

Next, we provide a lower bound on the denominator. Let[
u

(1)>
1 , . . . , u

(R1)>
1 , u

(1)>
2 , . . . , u

(R1)>
2

]>
∈ R2R1p1 be a unit vector corresponding to

the smallest singular value of A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

}
, where u

(r1)
i ∈ Rp1 for all i ∈ [2] and
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r1 ∈ [R1]. Denote
∑

r1,...,rD
=
∑R1

r1=1 · · ·
∑RD

rD=1. Then we have

σmin

(
A

{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

})
=

∥∥∥∥∥A
{
ϑ
{rd}
\1 ,ϕ

{rd}
\1

} [
u

(1)>
1 , . . . , u

(R1)>
1 , u

(1)>
2 , . . . , u

(R1)>
2

]>
∥∥∥∥∥

2

=

∥∥∥∥∥A ·
( ∑

r1,...,rD

θ
(rD)
D ⊗ · · · ⊗ θ(r2)

2 ⊗ u(r1)
1 + φ

(rD)
D ⊗ · · · ⊗ φ(r2)

2 ⊗ u(r1)
2

)∥∥∥∥∥
2

≥ σmin(A)

∥∥∥∥∥
∑

r1,...,rD

θ
(rD)
D ⊗ · · · ⊗ θ(r2)

2 ⊗ u(r1)
1 + φ

(rD)
D ⊗ · · · ⊗ φ(r2)

2 ⊗ u(r1)
2

∥∥∥∥∥
2

= σmin(A)

√√√√
∑

r1,...,rD

(∥∥∥u(r1)
1

∥∥∥
2

2
+
∥∥∥u(r1)

2

∥∥∥
2

2

)
+ 2

∑

r1,...,rD

∑

q1,...,qD

∑

j1···jD

θ
(rD)
D,jD

· · · θ(r2)
2,j2

u
(r1)
1,j1

·φ(qD)
D,jD

· · ·φ(q2)
2,j2

u
(q1)
2,j1

+
∑

r1,...,rD

∑

q1,...,qD

∑

j1···jD

(
θ

(rD)
D,jD

· · · θ(r2)
2,j2

u
(r1)
1,j1
· θ(qD)
D,jD

· · · θ(q2)
2,j2

u
(q1)
1,j1

+φ
(rD)
D,jD

· · ·φ(r2)
2,j2

u
(r1)
2,j1
· φ(qD)

D,jD
· · ·φ(q2)

2,j2
u

(q1)
2,j1

)

= σmin(A)

√√√√
D∏

d=2

Rd + 2
∑

r1,...,rD

∑

q1,...,qD

〈θ(rD)
D , φ

(qD)
D 〉 · · · 〈θ(r2)

2 , φ
(q2)
2 〉〈u(r1)

1 , u
(q1)
2 〉

+
∑

r1,...,rD

∑

q1,...,qD

(
〈θ(rD)
D , θ

(qD)
D 〉 · · · 〈θ(r2)

2 , θ
(q2)
2 〉〈u(r1)

1 , u
(q1)
1 〉+ 〈φ(rD)

D , φ
(qD)
D 〉 · · ·

(
〈φ(r2)

2 , φ
(q2)
2 〉〈u(r1)

1 , u
(q1)
2 〉

= σmin(A)

√√√√
D∏

d=2

Rd, (7.59)

where the last inequality is from the conditions on θ
(r)
d and φ

(r)
d . We finish the proof by

combining (7.57), (7.58), and (7.59).
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7.3 Proofs for Chapter 4

7.3.1 Proof of Lemma 2

Part 1. We first show the claim on λ. By y = Xθ∗ + ε and (7.64), we have

∇L(θ∗) =
X>(Xθ∗ − y)√
n‖y −Xθ∗‖2

= − X>ε√
n‖ε‖2

. (7.60)

Since ε has i.i.d. sub-Gaussian entries with E[εi] = 0 and E[ε2i ] = σ2 for all i = 1, . . . , n,

then from [239] we have

P
[
‖ε‖22 ≤

1

4
nσ2

]
≤ exp

(
− n

32

)
, (7.61)

By [134], we have the following result.

Lemma 25. Assume X satisfies ‖xj‖2 ≤
√
n for all j ∈ {1, . . . , d} and ε has i.i.d.

zero-mean sub-Gaussian entries with E[w2
i ] = σ2 for all i = 1, . . . , n, then we have

P
[

1
n‖X>ε‖∞ ≥ 2σ

√
log d
n

]
≤ 2d−1.

Combining (7.60), (7.61) and Lemma 25, we have ‖∇L(θ∗)‖∞ ≤ 4
√

log d/n with

probability at least 1− 2d−1 − exp
(
− n

32

)
.

Part 2. Next, we show that LRSC, LRSS, and LRHS holds. First, for correlated

sub-Gaussian random design with the covariance satisfying the bounded eigenvalues, we

have from [240] that the design matrix X satisfies the RE condition with high probability

given n ≥ cs∗ log d, i.e.,

ψmin‖v‖22 − ϕmin
log d

n
‖v‖21 ≤

‖Xv‖22
n

ψmax‖v‖22 + ϕmax
log d

n
‖v‖21 ≥

‖Xv‖22
n

, (7.62)

where ψmin, ψmax, ϕmin, ϕmax ∈ (0,∞) are generic constants. The RE condition has

been extensively studied for sparse recovery [133,166,241].

We divide the proof into three steps.
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Step 1. When X satisfies the RE condition, i.e.

ψmin‖v‖22 − ϕmin
log d

n
‖v‖21 ≤

‖Xv‖22
n

≤ ψmax‖v‖22 + ϕmax
log d

n
‖v‖21,

Denote s = s∗ + 2s̃. Since ‖v‖0 ≤ s, which implies ‖v‖21 ≤ s‖v‖22, then we have

(
ψmin − ϕmin

s log d

n

)
‖v‖22 ≤

‖Xv‖22
n

≤
(
ψmax + ϕmax

s log d

n

)
‖v‖22,

Then there exists a universal constant c1 such that if n ≥ c1s
∗ log d, we have

1

2
ψmin‖v‖22 ≤

‖Xv‖22
n

≤ 2ψmax‖v‖22. (7.63)

Step 2. Conditioning on (7.63), we show that L satisfies LRSC and LRSS with high

probability. The gradient of L(θ) is

∇L(θ) =
1√
n

((
∂‖y −Xθ‖2
∂(y −Xθ)

)>(∂(y −Xθ)
∂θ

)>)>
=

X>(Xθ − y)√
n‖y −Xθ‖2

. (7.64)

The Hessian of L(θ) is

∇2L(θ) =
1

n

∂(−X>z̃)
∂θ

=
1√

n‖y −Xθ‖2
X>

(
I− (y −Xθ)(y −Xθ)>

‖y −Xθ‖22

)
X. (7.65)

For notational convenience, we define ∆ = v − w for any v, w ∈ B∗s . Also denote

the residual of the first order Taylor expansion as δL(w + ∆, w) = L(w + ∆)−L(w)−
∇L(w)>∆. Using the first order Taylor expansion of L(θ) at w and the Hessian of L(θ)

in (7.65), we have from mean value theorem that there exists some α ∈ [0, 1] such that

δL(w+∆, w) = 1√
n‖ξ‖2

∆>X>
(
I− ξξ>

‖ξ‖22

)
X∆, where ξ = y−X(w+α∆). For notational

simplicity, let‘s denote ż = X(v − θ∗) and z̈ = X(w − θ∗), which can be considered as

two fixed vectors in Rn. Without loss of generality, assume ‖ż‖2 ≤ ‖z̈‖2. Then we have

‖ż‖22 ≤ ‖z̈‖22 ≤ 2ψmaxn‖w − θ∗‖22 ≤
nσ2

4
.
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Further, we have

ξ = y −X(w + α∆) = ε−X(w + α∆− θ∗) = ε− αż − (1− α)z̈, and X∆ = ż − z̈.

We have from [239] that

P
[
‖ε‖22 ≤ nσ2(1− δ)

]
≤ exp

(
−nδ

2

16

)
, (7.66)

Then by taking δ = 1/3 in (7.66), we have with probability 1− exp
(
− n

144

)
,

‖ξ‖2 ≥ ‖ε‖2 − α‖ż‖2 − (1− α)‖z̈‖2≥‖ε‖2 − ‖z̈‖2≥
4

5

√
nσ − 1

2

√
nσ ≥ 1

4

√
nσ. (7.67)

We first discuss the RSS property. From (7.67), we have

δL(w + ∆, w) =
∆>X>

(
I− ξξ>

‖ξ‖22

)
X∆

√
n‖ξ‖2

=

(
‖X∆‖22 − (ξ>X∆)2

‖ξ‖22

)

√
n‖ξ‖2

≤ ‖X∆‖22√
n‖ξ‖2

≤ 8ψmax

σ
‖∆‖22

Next, we verify the RSC property. We want to show that with high probability, for

any constant a ∈ (0, 1)

∣∣∣∣
ξ>

‖ξ‖2
X∆

∣∣∣∣ ≤
√

1− a‖X∆‖2. (7.68)

Consequently, we have

∆>X>
(

I− ξξ>

‖ξ‖22

)
X∆ = ‖X∆‖22 −

(
ξ>

‖ξ‖2
X∆

)2

≥ a‖X∆‖22.

This further implies

δL(w + ∆, w) =
1√
n‖ξ‖2

∆>X>
(

I− ξξ>

‖ξ‖22

)
X∆ ≥ aψmin

2‖ξ‖2/
√
n
‖∆‖22. (7.69)
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Since ‖ż‖2 ≤ ‖z̈‖2, then for any real constant a ∈ (0, 1),

P
[∣∣∣∣

ξ>

‖ξ‖2
X∆

∣∣∣∣ ≤
√

1− a‖X∆‖2
]

= P
[∣∣∣∣

(ε− αż − (1− α)z̈)>

‖ε− αż − (1− α)z̈‖2
(ż − z̈)

∣∣∣∣ ≤
√

1− a‖ż − z̈‖2
]

(i)

≥ P
[∣∣∣∣

(ε− ż)>(ż − z̈)
‖ε− ż‖2

∣∣∣∣ ≤
√

1− a‖ż − z̈‖2
]

= P
[(
ε>(ż − z̈)− ż>(ż − z̈)

)2
≤ (1− a)‖ε− ż‖22‖ż − z̈‖22

]

(ii)
= P

[∣∣∣∣∣

(
ε>(ż − z̈)
‖ż − z̈‖2

)2

+ ‖ż‖22 − 2ε>ż

∣∣∣∣∣ ≤ (1− a)(‖ε‖22 + ‖ż‖22 − 2ε>ż)

]
, (7.70)

where (ii) is from dividing both sides by ‖v‖22, and (i) is from a geometric inspection and

the randomness of ε, i.e., for any α ∈ [0, 1] and ‖ż‖2 ≤ ‖z̈‖2, we have
∣∣∣ −ż>‖−ż‖2 (ż − z̈)

∣∣∣ ≤∣∣∣ (−αż−(1−α)z̈)>

‖−αż−(1−α)z̈‖2 (ż − z̈)
∣∣∣. The random vector ε with i.i.d. entries does not affect the

inequality above. Let‘s first discuss one side of the probability in (7.70),

P

[(
ε>(ż − z̈)
‖ż − z̈‖2

)2

+ ‖ż‖22 − 2ε>ż ≤ (1− a)(‖ε‖22 + ‖ż‖22 − 2ε>ż)

]

= P

[
(1− a)‖ε‖22 ≥

(
ε>(ż − z̈)
‖ż − z̈‖2

)2

+ a(‖ż‖22 − 2ε>ż)

]
. (7.71)

Since ε has i.i.d. sub-Gaussian entries with E[εi] = 0 and E[ε2i ] = σ2 for all i =

1, . . . , n, then ε>(ż−z̈)
‖ż−z̈‖2 and ε>ż are also zero-mean sub-Gaussians with variances σ2 and

σ2‖ż‖22 respectively. We have from [239] that

P
[
‖ε‖22 ≤ nσ2(1− δ)

]
≤ exp

(
−nδ

2

16

)
, (7.72)

P

[(
ε>(ż − z̈)
‖ż − z̈‖2

)2

≥ nσ2δ2

]
≤ exp

(
−nδ

2

2

)
, (7.73)

P
[
ε>ż ≤ −nσ2δ

]
≤ exp

(
−n

2σ2δ2

2‖ż‖22

)
. (7.74)

Combining (7.72) – (7.74) with ‖ż‖22 ≤ nσ2/4, we have from union bound that with
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probability at least 1− exp
(
− n

144

)
− exp

(
− n

128

)
− exp

(
− n

128

)
≥ 1− 3 exp

(
− n

144

)
,

‖ε‖22 ≥
2

3
nσ2,

(
ε>(ż − z̈)
‖ż − z̈‖2

)2

≤ 1

64
nσ2, − ε>ż ≤ 1

16
nσ2.

This implies for a ≤ 3/5, we have ξ>

‖ξ‖2X∆ ≤
√

1− a‖X∆‖2. For the other side of

(7.70), we have

P

[(
ε>(ż − z̈)
‖ż − z̈‖2

)2

+ ‖ż‖22 − 2ε>ż ≥ −(1− a)(‖ε‖22 + ‖ż‖22 − 2ε>ż)

]

= P

[
(1− a)‖ε‖22 ≥ −

(
ε>(ż − z̈)
‖ż − z̈‖2

)2

− (2− a)(‖ż‖22 − 2ε>ż)

]

≥ P

[
(1− a)‖ε‖22 ≥

(
ε>(ż − z̈)
‖ż − z̈‖2

)2

+ a(‖ż‖22 − 2ε>ż)

]
. (7.75)

Combining (7.70), (7.71) and (7.75), we have (7.68) holds with high probability, i.e.,

for any r > 0,

P
[∣∣∣∣

ξ>

‖ξ‖2
X∆

∣∣∣∣ ≤
√

1− a‖X∆‖2
]
≥ 1− 6 exp

(
− n

144

)
.

Now wo bound ‖ξ‖2 to obtain the desired result. From [239], we have

P
[
‖ε‖22 ≥ nσ2(1 + δ)

]
≤ exp

(
−nδ

2

18

)
= exp

(
− n

72

)
, (7.76)

where we take δ = 1/2. From ξ = ε− αż − (1− α)z̈, we have

‖ξ‖2 ≤ ‖ε‖2 + α‖ż‖2 + (1− α)‖z̈‖2
(i)

≤ ‖ε‖2 + ‖z̈‖2
(ii)

≤
√

3n

2
σ +

1

2

√
nσ. (7.77)

where (i) is from ‖ż‖2 ≤ ‖z̈‖2 and (ii) is from (7.76) and ‖ż‖22 ≤ nσ2/4. Then by

the union bound setting a = 1/2, with probability at least 1 − 7 exp
(
− n

144

)
, we have

δL(w + ∆, w) ≥ ψmin
8σ ‖∆‖22. Moreover, we also have r = σ2

8ψmax
> s∗ (64σλ/ψmin)2 ≥

s∗
(
8λ/ρ−s∗+s̃

)2
for large enough n ≥ c1s

∗ log d, where λ = 24
√

log d/n.

Step 3. Given the proposed conditions, we have that L satisfies the LRHS property

by combining the analysis in [242].
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7.3.2 Intermediate Results of Theorem 9

We introduce some important implications of the proposed assumptions. Recall that

S∗ = {j : θ∗j 6= 0} be the index set of non-zero entries of θ∗ with s∗ = |S∗| and

S∗ = {j : θ∗j = 0} be the complement set. Lemma 2 implies RSC and RSS hold

with parameter ρ−s∗+2s̃ and ρ+
s∗+2s̃ respectively. By [243], the following conditions are

equivalent to RSC and RSS, i.e., for any v, w ∈ Rd satisfying ‖v − w‖0 ≤ s∗ + 2s̃,

ρ−s∗+2s̃‖v − w‖22 ≤ (v − w)>∇L(w) ≤ ρ+
s∗+2s̃‖v − w‖22, (7.78)

1

ρ+
s∗+2s̃

‖∇L(v)−∇L(w)‖22 ≤ (v − w)>∇L(w) ≤ 1

ρ−s∗+2s̃

‖∇L(v)−∇L(w)‖22. (7.79)

From the convexity of `1 norm, we have

‖v‖1 − ‖w‖1 ≥ (v − w)>g, (7.80)

where g ∈ ∂‖w‖1. Combining and (7.78) and (7.80), we have for any v, w ∈ Rd satisfying

‖v − w‖0 ≤ s∗ + 2s̃,

Fλ(v)−Fλ(w)− (v − w)>∇Fλ(w) ≥ ρ−s∗+2s̃‖v − w‖22, (7.81)

Remark 8. For any t and k, the line search satisfies

L̃(t) ≤ L(t) ≤ Lmax, L ≤ L̃(t) ≤ L(t) ≤ 2L and ρ+
s∗+2s̃ ≤ L̃(t) ≤ L(t) ≤ 2ρ+

s∗+2s̃, (7.82)

where L = min{L : ‖∇L(v)−∇L(w)‖2 ≤ L‖x− y‖2,∀v, w ∈ Rd}.

We first show that when θ is sparse and the approximate KKT condition is satisfied,

then both estimation error and objective error, w.r.t. the true model parameter, are

bounded. This is formalized in Lemma 26, and its proof is deferred to Appendix 7.3.8.

Lemma 26. Suppose conditions in Lemma 2 hold. If θ satisfies ‖θS∗‖0 ≤ s̃ and the
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approximate KKT condition ming∈∂‖θ‖1 ‖∇L(θ) + λg‖∞ ≤ λ/2, then we have

‖(θ − θ∗)S∗‖1 ≤ 5‖(θ − θ∗)S∗‖1, (7.83)

‖θ − θ∗‖2 ≤
2λ
√
s∗

ρ−s∗+2s̃

, (7.84)

‖θ − θ∗‖1 ≤
12λs∗

ρ−s∗+2s̃

, (7.85)

Fλ(θ)−Fλ(θ∗) ≤ 6λ2s∗

ρ−s∗+2s̃

. (7.86)

Next, we show that if θ is sparse and the objective error is bounded, then the

estimation error is also bounded. This is formalized in Lemma 27, and its proof is

deferred to Appendix 7.3.8.

Lemma 27. Suppose conditions in Lemma 2 hold. If θ satisfies ‖θS∗‖0 ≤ s̃ and the

objective satisfies Fλ(θ)−Fλ(θ∗) ≤ 6λ2s∗

ρ−
s∗+2s̃

, then we have

‖θ − θ∗‖2 ≤
4λ
√

3s∗

ρ−s∗+2s̃

, (7.87) ‖θ − θ∗‖1 ≤
24λs∗

ρ−s∗+2s̃

. (7.88)

We then show that if θ is sparse and the objective error is bounded, then each

proximal-gradient update preserves solution to be sparse. This is formalized in

Lemma 28, and its proof is deferred to Appendix 7.3.8.

Lemma 28. Suppose conditions in Lemma 2 hold. If θ satisfies ‖θS∗‖0 ≤ s̃, L sat-

isfies L < 2ρ+
s∗+2s̃, and the objective satisfies Fλ(θ) − Fλ(θ∗) ≤ 6λ2s∗

ρ−
s∗+2s̃

, then we have

‖ (TL,λ(θ))S∗ ‖0 ≤ s̃.

Moreover, we show that if θ satisfies the approximate KKT condition, then the

objective has a bounded error w.r.t. the regularizaSuppose conditions in Lemma 2

holdtion parameter λ. This characterizes the geometric decrease of the objective error

when we choose a geometrically decreasing sequence of regularization parameters. This

is formalized in Lemma 29, and its proof is deferred to Appendix 7.3.8.

Lemma 29. . If θ satisfies ωλ(θ) ≤ λ/2, then for θ = argminθ Fλ(θ), we have Fλ(θ)−
Fλ(θ) ≤ 24λωλ(θ)s∗

ρ−
s∗+2s̃

.
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Furthermore, we show a local linear convergence rate if the initial value θ(0) is

sparse and satisfies the approximate KKT condition with adequate precision. Besides,

the estimation after each proximal gradient update is also sparse. This is the key

result in demonstrating the overall geometric convergence rate of the algorithm. This

is formalized in Lemma 30, and its proof is deferred to Appendix 7.3.8.

Lemma 30. Suppose conditions in Lemma 2 holds. If the initialization θ(0) satisfies

‖θ(0)‖0 ≤ s̃. Then with θ = argminθ Fλ(θ), for any t = 1, 2, . . ., we have ‖θ(t)‖0 ≤ s̃ and

Fλ(θ(t))−Fλ(θ) ≤
(

1− 1
8κs∗+2s̃

)t (
Fλ(θ(0))−Fλ(θ)

)
.

Finally, we introduce two results characterizing the proximal gradient mapping op-

eration, adapted from [123] and [130] without proof. The first lemma describes sufficient

descent of the objective by proximal gradient method.

Lemma 31 (Adapted from Theorem 2 in [123]). For any L > 0,

Qλ (TL,λ(θ), θ) ≤ Fλ (θ)− L

2
‖TL,λ(θ)− θ‖22.

Besides, if L(θ) is convex, we have

Qλ (TL,λ(θ), θ) ≤ min
x
Fλ (x) +

L

2
‖x− θ‖22. (7.89)

Further, we have for any L ≥ L,

Fλ (TL,λ(θ)) ≤ Qλ (TL,λ(θ), θ) ≤ Fλ (θ)− L

2
‖TL,λ(θ)− θ‖22. (7.90)

The next lemma provides an upper bound of the optimal residue ω(·).

Lemma 32 (Adapted from Lemma 2 in [130]). For any L > 0, if L is the Lipschitz

constant of ∇L, then

ωλ (TL,λ(θ)) ≤ (L+ SL(θ)) ‖TL,λ(θ)− θ‖2 ≤ 2L‖TL,λ(θ)− θ‖2,

where SL(θ) =
‖∇L(TL,λ(θ))−∇L(θ)‖2

‖TL,λ(θ)−θ‖2 is a local Lipschitz constant, which satisfies SL(θ) ≤
L.
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7.3.3 Proof of Theorem 9

We demonstrate the linear rate when the initial value θ(0) satisfies ωλ(θ(0)) ≤ λ
2 with

‖(θ(0))S∗‖0 ≤ s̃. The proof is provided in Appendix 7.3.6.

Theorem 21. Suppose conditions in Lemma 2 hold. Let θ = argminθ Fλ(θ) be the

optimal solution with regularization parameter λ. If the initial value θ(0) satisfies

ωλ(θ(0)) ≤ λ
2 with ‖(θ(0))S∗‖0 ≤ s̃, then for any t = 1, 2, . . ., we have ‖(θ(t))S∗‖0 ≤ s̃,

‖θ(t) − θ‖22 ≤
(

1− 1

8κs∗+2s̃

)t 24λs∗ωλ(θ(t))

(ρ−s∗+2s̃)
2

and

Fλ(θ(t))−Fλ(θ) ≤
(

1− 1

8κs∗+2s̃

)t 24λs∗ωλ(θ(t))

ρ−s∗+2s̃

, (7.91)

In addition, to achieve the approximate KKT condition ωλ(θ(t)) ≤ ε, the number of

proximal gradient steps is no more than

log
(

96 (1 + κs∗+2s̃)
2 λ2s∗κs∗+2s̃/ε

2
)

log (8κs∗+2s̃/(8κs∗+2s̃ − 1))
. (7.92)

From basic inequalities, since κs∗+2s̃ ≥ 1, we have log
(

8κs∗+2s̃

8κs∗+2s̃−1

)
≥

log
(

1 + 1
8κs∗+2s̃−1

)
≥ 1

8κs∗+2s̃
. Then (7.92) can be simplified as

O
(
κs∗+2s̃

(
log
(
κ3
s∗+2s̃λ

2s∗/ε2
)))

.

As can be seen from Theorem 21, when the initial value θ(0) satisfies ωλ(θ(0)) ≤ λ
2

with ‖(θ(0))S∗‖0 ≤ s̃, then we can guarantee the geometric convergence rate of the

estimated objective value towards the minimal objective.

Next, we need to show that when θ(0) ∈ Br, the approximate KKT holds for θ(1),

which is also sparse. We demonstrate this result in Lemma 33 and provide its proof in

Appendix 7.3.7.

Lemma 33. Suppose conditions in Lemma 2 hold.s. If
ρ−
s∗+s̃
8

√
r
s∗ > λ and ‖θ−θ∗‖22 ≤ r

holds, then we have ωλ(θ) ≤ 4
√
r and ‖θS∗‖0 ≤ s̃.

Combining the results above, we finish the proof.
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7.3.4 Proof of Theorem 10

We present a few important intermediate results that are key components of our main

proof. The first result shows that in a neighborhood of the true model parameter θ∗,

the sparsity of the solution is preserved when we use a sparse initialization. The proof

is provided in Appendix 7.4.3.

Lemma 34 (Sparsity Preserving Lemma). Suppose conditions in Lemma 2 hold with

ε ≤ λ
8 . Given θ(t) ∈ B (θ∗, R) and ‖θ(t)

S ‖0 ≤ s̃, there exists a generic constant C1 such

that

‖θ(t+1)

S ‖0 ≤ s̃, ‖θ(t+1) − θ∗‖2 ≤
C1λ
√
s∗

ρ−s∗+2s̃

and Fλ(θ(t)) ≤ Fλ(θ∗) +
15λ2s∗

4ρ−s∗+2s̃

..

Denote B(θ, r)=
{
φ ∈ Rd : ‖φ− θ‖2 ≤ r

}
. We then show that every step of prox-

imal Newton updates within each stage has a quadratic convergence rate to a local

minimizer, if we start with a sparse solution in the refined region. The proof is provided

in Appendix 7.4.3.

Lemma 35. Suppose conditions in Lemma 2 hold. If θ(t) ∈ B (θ∗, r) and
∥∥θ(t)

S
∥∥

0
≤ s̃,

then for each stage K ≥ 2, we have

‖θ(t+1) − θ‖2 ≤
Ls∗+2s̃

2ρ−s∗+2s̃

‖θ(t) − θ‖22.

In the following, we need to use the property that the iterates θ(t) ∈ B(θ, 2r) in-

stead of θ(t) ∈ B (θ∗, r) for convergence analysis of the proximal Newton method. This

property holds since we have θ(t) ∈ B (θ∗, r) and θ ∈ B (θ∗, r) simultaneously. Thus

θ(t) ∈ B
(
θ, 2r

)
, where 2r =

ρ−
s∗+2s̃

Ls∗+2s̃
is the radius for quadratic convergence region of the

proximal Newton algorithm.

The following lemma demonstrates that the step size parameter is simply 1 if the

the sparse solution is in the refined region. The proof is provided in Appendix 7.4.3.

Lemma 36. Suppose conditions in Lemma 2 hold. If θ(t) ∈ B(θ, 2r) and ‖θ(t)
S‖0 ≤ s̃

at each stage K ≥ 2 with 1
4 ≤ α < 1

2 , then ηt = 1. Further, we have

Fλ(θ(t+1)) ≤ Fλ(θ(t)) +
1

4
γt.
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Moreover, we present a critical property of γt. The proof is provided in Ap-

pendix 7.4.3.

Lemma 37. Denote ∆θ(t) = θ(t) − θ(t+1) and

γt = ∇L
(
θ(t)
)>
·∆θ(t) + ‖λ

(
θ(t) + ∆θ(t)

)
‖1 − ‖λ

(
θ(t)
)
‖1.

Then we have γt ≤ −‖∆θ(t)‖2∇2L(θ(t))
.

In addition, we present the sufficient number of iterations for each convex relax-

ation stage to achieve the approximate KKT condition. The proof is provided in Ap-

pendix 7.4.3.

Lemma 38. Suppose conditions in Lemma 2 hold. To achieve the approximate KKT

condition ωλ
(
θ(t)
)
≤ ε for any ε > 0 at each stage K ≥ 2, the number of iteration for

proximal Newton updates is at most

log log

(
3ρ+

s∗+2s̃

ε

)
.

Combining the results above, we have desired results in Theorem 10.

7.3.5 Proof of Theorem 11

Part 1. We first show that estimation errors are as claimed. We have that ωλ(θ̂(0)) ≤
λ/2. By Theorem 21, we have for any t = 1, 2, . . ., ‖(θ(t)

[K+1])S∗‖0 ≤ s̃. Applying

Lemma 26 recursively, we have

‖θ̂ − θ∗‖2 ≤
2λ
√
s∗

ρ−s∗+2s̃

and ‖θ̂ − θ∗‖1 ≤
12λs∗

ρ−s∗+2s̃

.

Applying Lemma 2 with λ = 24
√

log d/n and ρ−s∗+2s̃ = ψmin
8σ , then by union bound, with

probability at least 1− 8 exp
(
− n

144

)
− 2d−1, we have

‖θ̂ − θ∗‖2 ≤
384σ

√
s∗ log d/n

ψmin
and ‖θ̂ − θ∗‖1 ≤

2304σs∗
√

log d/n

ψmin
.
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Part 2. Next, we demonstrate the result of the estimation of variance. Let θ =

argminθ Fλ(θ) be the optimal solution. Apply the argument in Part recursively, we have

‖θ − θ∗‖1 ≤
2304σs∗

√
log d/n

ψmin
. (7.93)

Denote c1, c2, . . . as positive universal constants. Then we have

L(θ)− L(θ∗) ≤ λ(‖θ∗‖1 − ‖θ‖1) ≤ λ(‖θ∗S∗‖1 − ‖(θ)S∗‖1 − ‖(θ)S∗‖1)

≤ λ‖(θ − θ∗)S∗‖1 ≤ λ‖θ − θ∗‖1
(ii)

≤ c1
σs∗ log d

n
, (7.94)

where (i) is from the value of λ and `1 error bound in (7.93).

On the other hand, from the convexity of L(θ), we have

L(θ)− L(θ∗) ≥ (θ − θ∗)>∇L(θ∗) ≥ −‖∇L(θ∗)‖∞‖θ̂ − θ‖1
(i)

≥ −c2λ‖θ − θ‖1
(ii)

≥ −c3
σs∗ log d

n
, (7.95)

where (i) is from Lemma 2 and (ii) value of λ and `1 error bound in (7.93). By definition,

we have

L(θ)− L(θ∗) =
‖y −Xθ‖2√

n
− ‖ε‖2√

n
. (7.96)

From [239], we have for any δ > 0,

P
[∣∣∣∣
‖ε‖22
n
− σ2

∣∣∣∣ ≥ σ2δ

]
≤ 2 exp

(
−nδ

2

18

)
. (7.97)

Combining (7.94), (7.95), (7.96) and (7.97) with δ2 = c3s∗ log d
n , we have with high

probability,

∣∣∣∣
‖y −Xθ‖2√

n
− σ

∣∣∣∣ = O
(
σs∗ log d

n

)
. (7.98)

From Part 1, for n ≥ c4s
∗ log d, with high probability, we have ‖θ − θ∗‖2 ≤

384σ
√
s∗ log d/n

ψmin
≤ σ

2
√

2ψmax
, then θ ∈ Bs∗+s̃r and ‖θ̂ − θ‖0 ≤ s∗ + 2s̃. Then from the
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analysis of Theorem 21, we have

ωλ(θ(t+1)) ≤ (1 + κs∗+2s̃)
√

4ρ+
s∗+2s̃

(
Fλ(θ(t))−Fλ(θ)

)
≤ ε.

This implies

Fλ(θ(t))−Fλ(θ) ≤ ε2

4ρ+
s∗+2s̃ (1 + κs∗+2s̃)

2 . (7.99)

On the other hand, from the LRSC property of L, convexity of `1 norm and optimality

of θ, we have

Fλ(θ(t))−Fλ(θ) ≥ ρ−s∗+2s̃‖θ̂ − θ‖22. (7.100)

Combining (7.99), (7.100) and Lemma 2, we have

‖X(θ̂ − θ)‖2√
n

≤

√
8ρ+

s∗+2s̃

σ
‖θ̂ − θ∗‖2 ≤

√
2

σρ−s∗+2s̃

ε

(1 + κs∗+2s̃)
≤ 4ε

(1 + κs∗+2s̃)
√
ψmin

.

(7.101)

Combining (7.98) and (7.101), we have

∣∣∣∣∣
‖y −Xθ̂‖2√

n

∣∣∣∣∣ ≤
∣∣∣∣
‖y −Xθ‖2√

n

∣∣∣∣+
‖X(θ̂ − θ)‖2√

n
≤
∣∣∣∣
‖y −Xθ‖2√

n

∣∣∣∣+
4ε

(1 + κs∗+2s̃)
√
ψmin

.

If ε ≤ c5
σs∗ log d

n for some constant c5, then we have the desired result.

7.3.6 Proof of Theorem 21

Note that the RSS property implies that line search terminate when L̃(t) satisfies

ρ+
s∗+2s̃ ≤ L̃(t) ≤ 2ρ+

s∗+2s̃. (7.102)

Since the initialization θ(0) satisfies ωλ(θ(0)) ≤ λ
2 with ‖(θ(0))S∗‖0 ≤ s̃, then by

Lemma 26, we have Fλ(θ(0)) − Fλ(θ∗) ≤ 6λ2s∗

ρ−
s∗+2s̃

. Then by Lemma 28, we have

‖(θ(1))S∗‖0 ≤ s̃.
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By monotone decrease of Fλ(θ(t)) from (7.90) in Lemma 31 and recursively applying

Lemma 28, ‖(θ(t))S∗‖0 ≤ s̃ holds in (7.91) for all t = 1, 2, . . ..

For the objective error, we have

Fλ(θ(t))−Fλ(θ)
(i)

≤
(

1− 1

8κs∗+2s̃

)t (
Fλ(θ(0))−Fλ(θ)

)

(ii)

≤
(

1− 1

8κs∗+2s̃

)t 24λs∗ωλ(θ(t)

ρ−s∗+2s̃

, (7.103)

where (i) is from Lemma 30, and (ii) is from Lemma 29 and ωλ(θ(t+1)) ≤ λ/2 ≤ λ,

which results in (7.91).

Combining (7.103), (7.81) with ∇Fλ(θ) = 0, we have

‖θ(t) − θ‖22 ≤
1

ρ−s∗+2s̃

(
Fλ(θ(t))−Fλ(θ)−∇Fλ(θ)

)
≤
(

1− 1

8κs∗+2s̃

)t 24λs∗ωλ(θ(t))

(ρ−s∗+2s̃)
2

For ωλ(θ(t+1)) of (t+ 1)-th iteration, we have

ωλ(θ(t+1))

(i)

≤
(
L̃(t) + SL̃(t)(θ

(t))
)
‖θ(t+1) − θ(t)‖2

(ii)

≤
(
L̃(t) + ρ+

s∗+2s̃

)
‖θ(t+1) − θ(t)‖2

(iii)

≤ L̃(t)

(
1 +

ρ+
s∗+2s̃

ρ−s∗+2s̃

)
‖θ(t+1) − θ(t)‖2

(iv)

≤ L̃(t)

(
1 +

ρ+
s∗+2s̃

ρ−s∗+2s̃

)√
2
(
Fλ(θ(t))−Fλ(θ(t+1))

)

L̃(t)

(v)

≤ (1 + κs∗+2s̃)
√

4ρ+
s∗+2s̃

(
Fλ(θ(t))−Fλ(θ)

)

(vi)

≤ (1 + κs∗+2s̃)

√
96λ2s∗κs∗+2s̃

(
1− 1

8κs∗+2s̃

)t
, (7.104)

where (i) is from Lemma 32, (ii) is from SL̃(t)(θ(t)) ≤ ρ+
s∗+2s̃, (iii) is from ρ−s∗+2s̃ ≤ L̃(t)

in (7.102), (iv) is from (7.90) in Lemma 31, (v) is from L̃(t) ≤ 2ρ+
s∗+2s̃ in (7.102) and

monotone decrease of Fλ(θ(t)) from (7.90) in Lemma 31, and (vi) is from (7.103) and

κs∗+2s̃ =
ρ+
s∗+2s̃

ρ−
s∗+2s̃

.

Then we need ωλ(θ̂) ≤ ε ≤ λ/4. Set the R.H.S. of (7.104) to be no greater than

ε, which is equivalent to require the number of iterations k to be an upper bound of

(7.92).
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7.3.7 Proof of Lemma 33

Part 1. We first show that given ‖θ(0) − θ∗‖22 ≤ r, ωλ(θ(1)) ≤ 4
√
r holds. From

Lemma 32, we have

ωλ(θ(1)) ≤ 2L‖θ(1) − θ(0)‖2 ≤ 4‖θ(1) − θ∗‖2 ≤ 4
√
r.

Part 2. We next demonstrate the sparsity of θ. From λ ≥ 6‖∇L(θ∗)‖∞, then we

have

∣∣∣∣
{
i ∈ S∗ : |∇iL(θ∗)| ≥ λ

6

}∣∣∣∣ = 0. (7.105)

Denote Š1 =
{
i ∈ S∗ : |∇iL(θ)−∇iL(θ∗)| ≥ 2λ

3

}
and š1 = |Š1|. Then there exists

some b ∈ Rd such that ‖b‖∞ = 1, ‖b‖0 ≤ š1 and b>(∇L(θ) − ∇L(θ∗)) ≥ 2λš1
3 . Then

by the mean value theorem, we have for some θ̌ = (1 − α)θ + αθ∗ with α ∈ [0, 1],

∇L(θ)−∇L(θ∗) = ∇2L(θ̌)∆, where ∆ = θ − θ∗. Then we have

2λš1

3
≤ b>∇2L(θ̌)∆

(i)

≤
√
b>∇2L(θ̌)b

√
∆>∇2L(θ̌)∆

(ii)

≤
√
š1ρ

+
š1

√
∆>(∇L(θ)−∇L(θ∗)), (7.106)

where (i) is from the generalized Cauchy-Schwarz inequality, (ii) is from the definition

of RSS and the fact that ‖b‖2 ≤
√
š1‖b‖∞ =

√
š1. Let g achieve ming∈∂‖θ‖1 Fλ(θ).

Further, we have

∆>(∇L(θ)−∇L(θ∗)) ≤ ‖∆‖1‖∇L(θ)−∇L(θ∗)‖∞ ≤ ‖∆‖1(‖∇L(θ∗)‖∞ + ‖∇L(θ)‖∞)

≤ ‖∆‖1(‖∇L(θ∗)‖∞ + ‖∇L(θ) + λg‖∞ + λ‖g‖∞)
(i)

≤ 28λs∗

3ρ−s∗+s̃
(
λ

6
+
λ

4
+ λ) ≤ 14λ2s∗

ρ−s∗+s̃
,

(7.107)

where (i) is from ‖∆̃S∗‖1 ≤ 5
2‖∆̃S∗‖1 and ‖∆̃S∗‖1 ≤ 8λs∗

3ρ−
s∗+s̃

, condition on λ, ap-

proximate KKT condition and ‖g‖∞ ≤ 1. Combining (7.106) and (7.107), we have
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2
√
š1

3 ≤
√

14ρ+
š1
s∗

ρ−
s∗+s̃

, which further implies

š1 ≤
32ρ+

š1
s∗

ρ−s∗+s̃
≤ 32κs∗+2s̃s

∗ ≤ s̃. (7.108)

For any v ∈ Rd that satisfies ‖v‖0 ≤ 1, we have

Š2 =

{
i ∈ S∗ :

∣∣∣∣∇iL(θ) +
λ

4
vi

∣∣∣∣ ≥
5λ

6

}
⊆
{
i ∈ S∗ : |∇iL(θ∗)| ≥ λ

6

}⋃
Š1.

Then we have |Š2| ≤ |Š1| ≤ s̃. Since for any i ∈ S∗ and
∣∣∇iL(θ) + λ

4vi
∣∣ < 5λ

6 , we can

find gi that satisfies |gi| ≤ 1 such that ∇iL(θ) + λ
4vi + λgi = 0 which implies θi = 0,

then we have

∣∣∣∣
{
i ∈ S∗ :

∣∣∣∣∇iL(θ) +
λ

4
vi

∣∣∣∣ <
5λ

6

}∣∣∣∣ = 0.

This implies ‖θS∗‖0 ≤ |Š2| ≤ s̃.

7.3.8 Proofs of Intermediate Lemmas in Appendix 7.3.2

Proof of Lemma 26

We first bound the estimation error. From Lemma 2, we have the RSC property, which

indicates

L(θ) ≥ L(θ∗) + (θ − θ∗)>∇L(θ∗) + (ρ−s∗+2s̃/2)‖θ − θ∗‖22, (7.109)

L(θ∗) ≥ L(θ) + (θ∗ − θ)>∇L(θ) + (ρ−s∗+2s̃/2)‖θ − θ∗‖22, (7.110)

Adding (7.110) and (7.109), we have

(θ − θ∗)>∇L(θ) ≥ (θ − θ∗)>∇L(θ∗) + ρ−s∗+2s̃‖θ − θ∗‖22. (7.111)

Let g ∈ ∂‖θ‖1 be the subgradient that achieves the approximate KKT condition,
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then

(θ − θ∗)> (∇L(θ) + λg) ≤ ‖θ − θ∗‖1 ‖∇L(θ) + λg‖∞ ≤
1

2
λ‖θ − θ∗‖1. (7.112)

On the other hand, we have from (7.111)

(θ − θ∗)> (∇L(θ) + λg)≥(θ − θ∗)>∇L(θ∗) + ρ−s∗+2s̃‖θ − θ∗‖22 + λg>(θ − θ∗), (7.113)

Since ‖θ − θ∗‖1 = ‖(θ − θ∗)S∗‖1 + ‖(θ − θ∗)S∗‖1, then

(θ − θ∗)>∇L(θ∗) ≥ −‖(θ − θ∗)S∗‖1‖L(θ∗)‖∞ − ‖(θ − θ∗)S∗‖1‖L(θ∗)‖∞. (7.114)

Besides, we have

(θ − θ∗)>g = g>S∗(θ − θ∗)S∗ + g>S∗(θ − θ
∗)S∗

(i)

≥ −‖gS∗‖∞‖(θ − θ∗)S∗‖1 + g>S∗θS
∗

(ii)

≥ −‖(θ − θ∗)S∗‖1 + ‖gS∗‖1
(iii)
= −‖(θ − θ∗)S∗‖1 + ‖(θ − θ∗)S∗‖1, (7.115)

where (i) and (iii) is from θ∗S∗ = 0, (ii) is from ‖gS∗‖∞ ≤ 1 and g ∈ ∂‖θ‖1.

Combining (7.112), (7.113), (7.114) and (7.115), we have

1

2
λ‖θ − θ∗‖1 ≥ ρ−s∗+2s̃‖θ − θ∗‖22 − (λ+ ‖L(θ∗)‖∞)‖(θ − θ∗)S∗‖1

+ (λ− ‖L(θ∗)‖∞)‖(θ − θ∗)S∗‖1.

This implies

ρ−s∗+2s̃‖θ − θ∗‖22 + (
1

2
λ− ‖L(θ∗)‖∞)‖(θ − θ∗)S∗‖1

≤
(

3

2
λ+ ‖L(θ∗)‖∞

)
‖(θ − θ∗)S∗‖1, (7.116)

which results in (7.83) from ρ−s∗+2s̃ > 0 and Lemma 2 as

‖(θ − θ∗)S∗‖1 ≤
3
2λ+ ‖L(θ∗)‖∞
1
2λ− ‖L(θ∗)‖∞

‖(θ − θ∗)S∗‖1.
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Combining 1
2λ − ‖L(θ∗)‖∞ ≥ 0, 3

2λ + ‖L(θ∗)‖∞ ≤ 2λ and (7.116), we have estimation

errors in (7.84) and (7.85) as

ρ−s∗+2s̃‖θ − θ∗‖22 ≤ 2λ‖(θ − θ∗)S∗‖1 ≤ 2λ
√
s∗‖θ − θ∗‖2 and

‖θ − θ∗‖1 ≤ 6‖(θ − θ∗)S∗‖1 ≤ 6
√
s∗‖θ − θ∗‖2.

Next, we bound the objective error in (7.86). We have

Fλ(θ)−Fλ(θ∗)
(i)

≤ −(∇L(θ) + λg)>(θ∗ − θ) ≤ ‖∇L(θ) + λg‖∞‖θ∗ − θ‖1 ≤
1

2
λ‖θ∗ − θ‖1

=
1

2
λ(‖(θ∗ − θ)S∗‖1 + ‖(θ∗ − θ)S∗‖1)

(ii)

≤ 3λ‖(θ∗ − θ)S∗‖1

≤ 3λ
√
s∗‖(θ∗ − θ)S∗‖2

(iii)

≤ 6λ2s∗

ρ−s∗+2s̃

,

where (i) is from the convexity of Fλ(θ) with subgradient ∇L(θ)+λg, (ii) is from (7.83),

and (iii) is from (7.84).

Proof of Lemma 27

Assumption Fλ(θ)−Fλ(θ∗) ≤ 6λ2s∗/ρ−s∗+2s̃ implies

L(θ)− L(θ∗) + λ(‖θ‖1 − ‖θ∗‖1) ≤ 6λ2s∗

ρ−s∗+2s̃

. (7.117)

We have from the RSC property that

L(θ) ≥ L(θ∗) + (θ − θ∗)>∇L(θ∗) +
ρ−s∗+2s̃

2
‖θ − θ∗‖22, (7.118)

Then we have (7.117) and (7.118),

ρ−s∗+2s̃

2
‖θ − θ∗‖22≤

6λ2s∗

ρ−s∗+2s̃

− (θ − θ∗)>∇L(θ∗) + λ(‖θ∗‖1 − ‖θ‖1). (7.119)
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Besides, we have

(θ − θ∗)>∇L(θ∗) ≥ −‖(θ − θ∗)S∗‖1‖L(θ∗)‖∞ − ‖(θ − θ∗)S∗‖1‖L(θ∗)‖∞, and (7.120)

‖θ∗‖1 − ‖θ‖1 = ‖θ∗S∗‖1 − ‖θS∗‖1 − ‖(θ − θ∗)S∗‖1
≤ ‖(θ − θ∗)S∗‖1 − ‖(θ − θ∗)S∗‖1. (7.121)

Combining (7.119), (7.120) and (7.121), we have

ρ−s∗+2s̃

2
‖θ − θ∗‖22 ≤

6λ2s∗

ρ−s∗+2s̃

+ (‖∇L(θ∗)‖∞ + λ)‖(θ − θ∗)S∗‖1

+ (‖∇L(θ∗)‖∞ − λ)‖(θ − θ∗)S∗‖1. (7.122)

We discuss two cases as following:

Case 1. We first assume ‖θ − θ∗‖1 ≤ 12λs∗

ρ−
s∗+2s̃

. Then (7.122) implies

ρ−s∗+2s̃

2
‖θ − θ∗‖22

(i)

≤ 6λ2s∗

ρ−s∗+2s̃

+ (‖∇L(θ∗)‖∞ + λ)‖(θ − θ∗)S∗‖1

(ii)

≤ 6λ2s∗

ρ−s∗+2s̃

+
3

2
λ‖(θ − θ∗)S∗‖1 ≤

24λ2s∗

ρ−s∗+2s̃

.

where (i) is from ‖∇L(θ∗)‖∞ − λ ≤ 0 and (ii) is from ‖∇L(θ∗)‖∞ + λ ≤ 3
2λ. This

indicates

‖θ − θ∗‖2 ≤
4
√

3s∗λ

ρ−s∗+2s̃

. (7.123)

Case 2. Next, we assume ‖θ − θ∗‖1 > 12λs∗

ρ−
s∗+2s̃

. Then (7.122) implies

ρ−s∗+2s̃

2
‖θ − θ∗‖22

≤ (‖∇L(θ∗)‖∞ + λ)‖(θ − θ∗)S∗‖1 + (‖∇L(θ∗)‖∞ − λ)‖(θ − θ∗)S∗‖1 +
1

2
λ‖θ − θ∗‖1

= (‖∇L(θ∗)‖∞ +
3

2
λ)‖(θ − θ∗)S∗‖1 + (‖∇L(θ∗)‖∞ −

1

2
λ)‖(θ − θ∗)S∗‖1

(i)

≤ 2λ‖(θ − θ∗)S∗‖1 ≤ 2
√
s∗λ‖(θ − θ∗)S∗‖2, (7.124)
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where (i) is from ‖∇L(θ∗)‖∞ + 3
2λ ≤ 2λ and ‖∇L(θ∗)‖∞ − 1

2λ ≤ 0. This indicates

‖θ − θ∗‖2 ≤
4
√
s∗λ

ρ−s∗+2s̃

. (7.125)

Besides, we have

‖θ − θ∗‖1
(i)

≤ 6‖(θ − θ∗)S∗‖1 ≤ 6
√
s∗‖(θ − θ∗)S∗‖2 ≤

24λs∗

ρ−s∗+2s̃

, (7.126)

where (i) is from ‖∇L(θ∗)‖∞ + 3
2λ ≤ 2λ and (7.124).

Combining (7.123) and (7.125), we have desired result (7.87). Combining the as-

sumption in Case 1 and (7.126), we have desired result (7.88).

Proof of Lemma 28

Recall that the proximal-gradient update can be computed by the soft-thresholding

operation,

(TL,λ(θ))i = sign(θ̌i) max
{
|θ̌i| − λ/L, 0

}
∀i = 1, . . . , d,

where θ̌ = θ −∇L(θ)/L. To bound ‖ (TL,λ(θ))S∗ ‖0, we consider

θ̌ = θ − 1

L
∇L(θ) = θ − 1

L
∇L(θ∗) +

1

L
(∇L(θ∗)−∇L(θ)) .

We then consider the following three events:

A1 =
{
i ∈ S∗ : |θi| ≥ λ/(3L)

}
, (7.127)

A2 =
{
i ∈ S∗ : |(∇L(θ∗)/L)i| > λ/(6L)

}
, (7.128)

A3 =
{
i ∈ S∗ : |(∇L(θ∗)/L−∇L(θ)/L)i| ≥ λ/(2L)

}
, (7.129)



193

Event A1. Note that for any i ∈ S∗, |θi| = |θi − θ∗i |, then we have

|A1| ≤
∑

i∈S∗

3L

λ
|θi − θ∗i | · 1(|θi − θ∗i | ≥ λ/(3L)) ≤ 3L

λ

∑

i∈S∗
|θi − θ∗i | ≤

3L

λ
‖θ − θ∗‖1

(i)

≤ 72Ls∗

ρ−s∗+2s̃

, (7.130)

where (i) is from (7.88) in Lemma 27.

Event A2. By Lemma 2, we have

0 ≤ |A2| ≤
∑

i∈S∗

6L

λ
|(∇L(θ∗)/L)i| · 1(|(∇L(θ∗)/L)i| > λ/(6L))

=
∑

i∈S∗

6L

λ
|(∇L(θ∗)/L)i| · 0 = 0, (7.131)

which indicates that |A2| = 0.

Event A3. Consider the event Ã = {i : |(∇L(θ∗)−∇L(θ))i| ≥ λ/2}, which satisfies

A3 ⊆ Ã. We will provide an upper bound of |Ã|, which is also an upper bound of |A3|.
Let v ∈ Rd be chosen such that, vi = sign {(∇L(θ∗)/L−∇L(θ)/L)i} for any i ∈ Ã, and

vi = 0 for any i /∈ Ã. Then we have

v> (∇L(θ∗)−∇L(θ)) =
∑

i∈Ã

vi (∇L(θ∗)/L−∇L(θ)/L)i =
∑

i∈Ã

|(∇L(θ∗)−∇L(θ))i|

≥ λ|Ã|/2. (7.132)

On the other hand, we have

v> (∇L(θ∗)−∇L(θ)) ≤ ‖v‖2‖∇L(θ∗)−∇L(θ)‖2
(i)

≤
√
|Ã| · ‖∇L(θ∗)−∇L(θ)‖2

(ii)

≤ ρ+
s∗+2s̃

√
|Ã| · ‖θ − θ∗‖2, (7.133)

where (i) is from ‖v‖2 ≤
√
|Ã|max{i : |Ai|} ≤

√
|Ã|, and (ii) is from (7.78) and (7.79).

Combining (7.165) and (7.166), we have

λ|Ã| ≤ 2ρ+
s∗+2s̃

√
|Ã| · ‖θ − θ∗‖2

(i)

≤ 8λκs∗+2s̃

√
3s∗|Ã|
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where (i) is from (7.87) in Lemma 27 and definition of κs∗+2s̃ =
ρ+
s∗+2s̃

ρ−
s∗+2s̃

. Considering

A3 ⊆ Ã, this implies

|A3| ≤ |Ã| ≤ 196κ2
s∗+2s̃s

∗. (7.134)

Now combining Even A1, A2, A3 and L ≤ 2ρ+
s∗+2s̃ in assumption, we close the proof

as

‖ (TL,λ(θ))S∗ ‖0 ≤ |A1|+ |A2|+ |A3| ≤
72Ls∗

ρ−s∗+2s̃

+ 196κ2
s∗+2s̃s

∗

≤ (144κs∗+2s̃ + 196κ2
s∗+2s̃)s

∗ ≤ s̃.

Proof of Lemma 29

Let g = argming∈∂‖θ‖1 L+ λ‖θ‖1, then ωλ = ‖∇L+ λg‖∞. By the optimality of θ and

convexity of Fλ, we have

Fλ(θ)−Fλ(θ) ≤ (∇L+ λg)> (θ − θ) ≤ ‖∇L+ λg‖∞‖θ − θ‖1
≤ (ωλ(θ)) ‖θ − θ‖1. (7.135)

Besides, we have

‖θ − θ‖1 ≤ ‖θ − θ∗‖1 + ‖θ − θ∗‖1
(i)

≤ 6
(
‖(θ − θ∗)S∗‖1 + ‖(θ − θ∗)S∗‖1

)

≤ 6
√
s∗
(
‖(θ − θ∗)S∗‖2 + ‖(θ − θ∗)S∗‖2

) (ii)

≤ 24λs∗

ρ−s∗+2s̃

. (7.136)

where (i) and (ii) are from (7.83) and (7.84) in Lemma 26 respectively. Combining

(7.135) and (7.136), we have desired result.

Proof of Lemma 30

Our analysis has two steps. In the first step, we show that {θ(t)}∞t=0 converges to the

unique limit point θ. In the second step, we show that the proximal gradient method

has linear convergence rate.
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Step 1. Note that θ(t+1) = TL,λ(θ(t)). Since Fλ(θ) is convex in θ (but not strongly

convex), the sub-level set {θ : Fλ(θ) ≤ Fλ(θ(0))} is bounded. By the monotone decrease

of Fλ(θ(t)) from (7.90) in Lemma 31, {θ(t)}∞t=0 is also bounded. By BolzanoWeierstrass

theorem, it has a convergent subsequence and we will show that θ is the unique accu-

mulation point.

Since Fλ(θ) is bounded below,

lim
k→∞

‖θ(t+1) − θ(t)‖2 ≤
2

L(t)
· lim
k→∞

[
Fλ
(
θ(t+1)

)
−Fλ

(
θ(t)
)]

= 0.

By Lemma 32, we have limk→∞ ωλ(θ(t)) = 0. This implies limk→∞ θ
(t) satisfies the KKT

condition, hence is an optimal solution.

Let θ be an accumulation point. Since θ = argminθ Fλ(θ), then there exists some

g ∈ ∂‖θ‖1 such that

∇Fλ(θ) = Lλ(θ) + λg = 0. (7.137)

By Lemma 28, every proximal update is sparse, hence ‖θS∗‖0 ≤ s̃. By RSC property in

(4.10), if ‖θS∗‖0 ≤ s̃, i.e.,‖(θ − θ)S∗‖0 ≤ s̃ , then we have

L(θ)− L(θ) ≥ (θ − θ)>∇L(θ) +
ρ−s∗+2s̃

2
‖θ − θ‖22, (7.138)

From the convexity of ‖θ‖1 and g ∈ ∂‖θ‖1, we have

‖θ‖1 − ‖θ‖1 ≥ (θ − θ)>g. (7.139)

Combining (7.138) and (7.139), we have for any ‖θS∗‖0 ≤ s̃,

Fλ(θ)−Fλ(θ) = L(θ) + λ‖θ‖1 −
(
L(θ)− λ‖θ‖1

)

≥ (θ − θ)>
(
L(θ) + λg

)
+
ρ−s∗+2s̃

2
‖θ − θ‖22

(i)
=
ρ−s∗+2s̃

2
‖θ − θ‖22 ≥ 0, (7.140)

where (i) is from (7.137). Therefore, θ is the unique accumulation point, i.e.

limk→∞ θ
(t) = θ.
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Step 2. The objective Fλ(θ(t+1)) satisfies

Fλ(θ(t+1))
(i)

≤ Qλ
(
θ(t+1), θ(t)

)

(ii)
= min

θ
L(θ(t)) +∇L(θ(t))>(θ − θ(t)) +

L̃
(t)
λ

2
‖θ − θ(t)‖22 + λ‖θ‖1. (7.141)

where (i) is from (7.90) in Lemma 31, (ii) is from the definition of Oλ in (4.6). To

further bound R.H.S. of (7.141), we consider the line segment S(θ, θ(t)) = {θ : θ =

αθ + (1 − α)θ(t), α ∈ [0, 1]}. Then we restrict the minimization over the line segment

S(θ, θ(t)),

Fλ(θ(t+1)) ≤ min
θ∈S(θ,θ(t))

L(θ(t)) +∇L(θ(t))>(θ − θ(t)) +
L̃

(t)
λ

2
‖θ − θ(t)‖22 + λ‖θ‖1. (7.142)

Since ‖θS∗‖0 ≤ s̃ and ‖θ(t)

S∗
‖0 ≤ s̃, then for any θ ∈ S(θ, θ(t)), we have ‖θS∗‖0 ≤ s̃ and

‖(θ − θ(t))S∗‖0 ≤ 2s̃. By RSC property, we have

L(θ) ≥ L(θ(t)) +∇L(θ(t))>(θ − θ(t)) +
ρ−s∗+2s̃

2
‖θ − θ(t)‖22

≥ L(θ(t)) +∇L(θ(t))>(θ − θ(t)). (7.143)

Combining (7.142) and (7.143), we have

Fλ(θ(t+1)) ≤ min
θ∈S(θ,θ(t))

L(θ) +
L̃

(t)
λ

2
‖θ − θ(t)‖22 + λ‖θ‖1

= min
α∈[0,1]

Fλ(αθ + (1− α)θ(t)) +
α2L̃

(t)
λ

2
‖θ − θ(t)‖22

(i)

≤ min
α∈[0,1]

αFλ(θ) + (1− α)Fλ(θ(t)) +
α2L̃

(t)
λ

2
‖θ − θ(t)‖22

(ii)

≤ min
α∈[0,1]

Fλ(θ(t))− α
(
Fλ(θ(t))−Fλ(θ)

)
+
α2L̃

(t)
λ

ρ−s∗+2s̃

(
Fλ(θ(t))−Fλ(θ)

)

= min
α∈[0,1]

Fλ(θ(t))− α
(

1− αL̃
(t)
λ

ρ−s∗+2s̃

)(
Fλ(θ(t))−Fλ(θ)

)
, (7.144)

where (i) is from the convexity of Fλ and (ii) is from (7.140).
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Minimize the R.H.S. of (7.144) w.r.t. α, the optimal value α =
ρ−
s∗+2s̃

2L̃
(t)
λ

results in

Fλ(θ(t+1)) ≤ Fλ(θ(t))− ρ−s∗+2s̃

4L̃
(t)
λ

(
Fλ(θ(t))−Fλ(θ)

)
. (7.145)

Subtracting both sides of (7.145) by Fλ(θ), we have

Fλ(θ(t+1))−Fλ(θ) ≤
(

1− ρ−s∗+2s̃

4L̃
(t)
λ

)(
Fλ(θ(t))−Fλ(θ)

)

(i)

≤
(

1− ρ−s∗+2s̃

8ρ+
s∗+2s̃

)(
Fλ(θ(t))−Fλ(θ)

)
, (7.146)

where (i) is from Remark 8. Apply (7.146) recursively, we have the desired result.

7.3.9 Proof of Intermediate Results for Theorem 10

We also introduce an important notion as follows, which is closely related with the SE

properties.

Definition 22. We denote the local `1 cone as

C(s, ϑ, r)=
{
v, θ : S ⊆M, |M| ≤ s, ‖vM⊥‖1 ≤ ϑ‖vM‖1, ‖θ − θ∗‖2 ≤ r

}
.

Then we define the largest and smallest localized restricted eigenvalues (LRE) as

ψ+
s,ϑ,r = sup

u,θ

{
v>∇2L(θ)v

v>v
: (v, θ) ∈ C(s, ϑ, r)

}
,

ψ−s,ϑ,r = inf
u,θ

{
v>∇2L(θ)v

v>v
: (v, θ) ∈ C(s, ϑ, r)

}
.

The following proposition demonstrates the relationships between SE and LRE. The

proof can be found in [244], thus is omitted here.

Proposition 5. Given any θ, θ′ ∈ C(s, ϑ, r) ∩ B(θ∗, r), we have

c1ψ
−
s,ϑ,r ≤ ρ−s ≤ c2ψ

−
s,ϑ,r, and c3ψ

+
s,ϑ,r ≤ ρ+

s ≤ c4ψ
+
s,ϑ,r.
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where c1, c2, c3, and c4 are constants.

Proof of Lemma 44

We first demonstrate the sparsity of the update. Since θ(t+1) is the minimizer to the

proximal Newton problem, we have

∇2L(θ(t))(θ(t+1) − θ(t)) +∇L(θ(t)) + λξ(t+1) = 0,

where ξ(t+1) ∈ ∂‖θ(t+1)‖1.

It follows from [153] that if conditions in Lemma 2 holds, then we have min
j∈S′{λj} ≥

λ/2 for some set S ′ ⊃ S with |S ′| ≤ 2s∗. Then the analysis of sparsity of can be

performed through λ directly.

We then consider the following decomposition

∇2L(θ(t))(θ(t+1) − θ(t)) +∇L(θ(t))

= ∇2L(θ(t))(θ(t+1) − θ∗)︸ ︷︷ ︸
V1

+∇2L(θ(t))(θ∗ − θ(t))︸ ︷︷ ︸
V2

+∇L(θ(t))−∇L(θ∗)︸ ︷︷ ︸
V3

+∇L(θ∗)︸ ︷︷ ︸
V4

.

Consider the following sets: Ai =
{
j ∈ S ′ : |(Vi)j | ≥ λ/4

}
, for all i ∈ {1, 2, 3, 4}.

Set A2. Suppose we choose a vector v ∈ Rd such that vj =

sign
{

(∇2L(θ(t))(θ∗ − θ(t)))j
}

for all j ∈ A2 and vj = 0 for j /∈ A2. Then we have

v>∇2L(θ(t))(θ∗ − θ(t)) =
∑

j∈A2

vj(∇2L(θ(t))(θ∗ − θ(t)))j

=
∑

j∈A2

|(∇2L(θ(t))(θ∗ − θ(t)))j | ≥ λ|A2|/4. (7.147)

On the other hand, we have

v>∇2L(θ(t))(θ∗ − θ(t)) ≤ ‖v(∇2L(θ(t)))1/2‖2‖(∇2L(θ(t)))1/2(θ∗ − θ(t))‖2
(i)

≤ ρ+
s∗+2s̃‖v‖2‖θ∗ − θ(t)‖2

(ii)

≤
√
|A2|ρ+

s∗+2s̃‖θ∗ − θ(t)‖2
(iii)

≤ C ′
√
|A2|κs∗+2s̃λ

√
s∗, (7.148)
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where (i) is from the SE properties, (ii) is from the definition of v, and (iii) is from ‖θ(t)−
θ∗‖2 ≤ C ′λ

√
s∗/ρ−s∗+2s̃. Combining (7.147) and (7.163), we have |A2| ≤ C2κ

2
s∗+2s̃s

∗.

Set A3. Consider the event Ã =
{
i :
∣∣(∇L(θ(t))−∇L(θ∗)

)
i

∣∣ ≥ λ/4
}

, which satisfies

A3 ⊆ Ã. We will provide an upper bound of |Ã|, which is also an upper bound of |A3|.
Let v ∈ Rd be chosen such that vi = sign

{(
∇L(θ(t))−∇L(θ∗)

)
i

}
for any i ∈ Ã, and

vi = 0 for any i /∈ Ã. Then we have

v>
(
∇L(θ(t))−∇L(θ∗)

)
=
∑

i∈Ã

vi

(
∇L(θ(t))−∇L(θ∗)

)
i

=
∑

i∈Ã

∣∣∣
(
∇L(θ(t))−∇L(θ∗)

)
i

∣∣∣

≥ λ|Ã|/4. (7.149)

On the other hand, we have

v>
(
∇L(θ(t))−∇L(θ∗)

)
≤ ‖v‖2‖∇L(θ(t))−∇L(θ∗)‖2

(i)

≤
√
|Ã| · ‖∇L(θ(t))−∇L(θ∗)‖2

(ii)

≤ ρ+
s∗+2s̃

√
|Ã| · ‖θ(t) − θ∗‖2, (7.150)

where (i) is from ‖v‖2 ≤
√
|Ã|max{i : |Ai|} ≤

√
|Ã|, and (ii) is from the mean value

theorem and the SE properties.

Combining (7.149) and (7.150), we have

λ|Ã| ≤ 4ρ+
s∗+2s̃

√
|Ã| · ‖θ − θ∗‖2

(i)

≤ 8λκs∗+2s̃

√
3s∗|Ã|

where (i) is from ‖θ(t)−θ∗‖2 ≤ C ′λ
√
s∗/ρ−s∗+2s̃ and definition of κs∗+2s̃ = ρ+

s∗+2s̃/ρ
−
s∗+2s̃.

Considering A3 ⊆ Ã, this implies |A3| ≤ |Ã| ≤ C3κ
2
s∗+2s̃s

∗.

Set A4. By conditions in Lemma 2 and λ ≥ 4‖∇L(θ∗)‖∞, we have

0 ≤ |V4| ≤
∑

i∈S∗

4

λ
|(∇L(θ∗))i| · 1(|(∇L(θ∗))i| > λ/(4)) =

∑

i∈S∗

4

λ
|(∇L(θ∗))i| · 0 = 0,
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Set A1. From Lemma 50, we have Fλ(θ(t+1)) ≤ Fλ(θ∗) + λ
4‖θ(t+1) − θ∗‖1. This implies

L(θ(t+1))− L(θ∗) ≤ λ(‖θ∗‖1 − ‖θ(t+1)‖1) +
λ

4
‖θ(t+1) − θ∗‖1

= λ(‖θ∗S′‖1 − ‖θ
(t+1)
S′ ‖1 − ‖θ(t+1)

S′⊥
‖1) +

λ

4
‖θ(t+1) − θ∗‖1

≤ 5λ

4
‖θ(t+1)
S′ − θ∗S′‖1 −

3λ

4
‖θ(t+1)
S′⊥

− θ∗S′⊥‖1. (7.151)

where the equality holds since θ∗S′⊥
= 0. On the other hand, we have

L(θ(t+1))− L(θ∗)
(i)

≥ ∇L(θ∗)(θ(t+1) − θ∗) ≥ −‖cL(θ∗)‖∞‖θ(t+1) − θ∗‖1
(ii)

≥ −λ
4
‖θ(t+1) − θ∗‖1 = −λ

4
‖θ(t+1)
S′ − θ∗S′‖1 −

λ

4
‖θ(t+1)
S′⊥

− θ∗S′⊥‖1,
(7.152)

where (i) is from the convexity of L and (ii) is from conditions of Lemma 2. Combining

(7.168) and (7.169), we have

‖θ(t+1)
S′⊥

− θ∗S′⊥‖1 ≤ 3‖θ(t+1)
S′ − θ∗S′‖1,

which implies that (θ(t+1) − θ∗, θ(t+1)) ∈ C(s∗, 3, r) with respect to the set S ′. Then we

choose a vector v ∈ Rd such that vj = sign
{

(∇2L(θ(t))(θ(t+1) − θ∗))j
}

for all j ∈ A1

and vj = 0 for j /∈ A1. Then we have

v>∇2L(θ(t))(θ(t+1) − θ∗) =
∑

j∈A2

vj(∇2L(θ(t))(θ(t+1) − θ∗))j

=
∑

j∈A2

|(∇2L(θ(t))(θ(t+1) − θ∗))j | ≥ λ|A1|/4. (7.153)

On the other hand, we have

v>∇2L(θ(t))(θ(t+1) − θ∗) ≤ ‖v(∇2L(θ(t)))1/2‖2‖(∇2L(θ(t)))1/2(θ(t+1) − θ∗)‖2
(i)

≤ c1ρ
+
s∗+2s̃‖v‖2‖θ(t+1) − θ∗‖2

(ii)

≤ c1

√
|A2|ρ+

s∗+2s̃‖θ(t+1) − θ∗‖2
(iii)

≤ c2

√
|A1|κs∗+2s̃λ

√
s∗, (7.154)
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where (i) is from the SE properties and Proposition 6, (ii) is from the definition of v,

and (iii) is from ‖θ(t+1) − θ∗‖2 ≤ C ′λ
√
s∗/ρ−s∗+2s̃. Combining (7.153) and (7.170), we

have |A1| ≤ C1κ
2
s∗+2s̃s

∗.

Combining the results for Set A1 ∼ A4, we have that there exists some constant C0

such that

‖θ(t+1)

S ‖0 ≤ C0κ
2
s∗+2s̃s

∗ ≤ s̃.

This finishes the first part. The estimation error follows directly from Lemma 51.

Proof of Lemma 45

For notational simplicity, we introduce the following proximal operator,

proxH,gr (θ) = argminθ′r(θ
′) + g>(θ′ − θ) +

1

2
‖θ′ − θ‖2H .

Then we have

θ(t+1) = prox
∇2L(θ(t)),∇L(θ(t))
R`1λ (θ(t))

(
θ(t)
)
.

By Lemma 44, we have

‖θ(t+1)

S ‖0 ≤ s̃.

By the KKT condition of function minFλ, i.e., −∇L(θ) ∈ ∂R`1λ (θ), we also have

θ = prox
∇2L(θ(t)),∇L(θ)

R`1λ (θ)

(
θ
)
.

By monotonicity of sub-gradient of a convex function, we have the strictly non-

expansive property: for any θ, θ′ ∈ R, let u = proxH,gr (θ) and v = proxH,g
′

r (θ′), then

(u− v)>H(θ − θ′)− (u− v)>
(
g − g′

)
≥ ‖u− v‖2H .
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Thus by the strictly non-expansive property of the proximal operator, we obtain

‖θ(t+1) − θ‖2∇2L(θ)
≤
(
θ(t+1) − θ

)> [
∇2L(θ(t))

(
θ(t) − θ

)
+
(
∇L(θ)−∇L(θ(t))

)]

≤ ‖θ(t+1) − θ‖2
∥∥∥∇2L(θ(t))

(
θ(t) − θ

)
+
(
∇L(θ)−∇L(θ(t))

)∥∥∥
2
. (7.155)

Note that both ‖θ(t+1)‖0 ≤ s̃ and ‖θ‖0 ≤ s̃. On the other hand, from the SE properties,

we have

‖θ(t+1) − θ‖2∇2L(θ)
= (θ(t+1) − θ)>∇2L(θ)(θ(t+1) − θ) ≥ ρ−s∗+2s̃‖θ(t+1) − θ‖22. (7.156)

Combining (7.171) and (7.172), we have

∥∥∥θ(t+1) − θ
∥∥∥

2
≤ 1

ρ−s∗+2s̃

∥∥∥∇2L(θ(t))
(
θ(t) − θ

)
+
(
∇L(θ)−∇L(θ(t))

)∥∥∥
2

=
1

ρ−s∗+2s̃

∥∥∥∥
∫ 1

0

[
∇2L

(
θ(t) + τ

(
θ − θ(t)

))
−∇2L

(
θ(t)
)]
·
(
θ − θ(t)

)
dτ

∥∥∥∥
2

≤ 1

ρ−s∗+2s̃

∫ 1

0

∥∥∥
[
∇2L

(
θ(t) + τ

(
θ − θ(t)

))
−∇2L

(
θ(t)
)]
·
(
θ − θ(t)

)∥∥∥
2
dτ

≤ Ls∗+2s̃

2ρ−s∗+2s̃

∥∥∥θ(t) − θ
∥∥∥

2

2
,

where the last inequality is from the local restricted Hessian smoothness of L. Then we

finish the proof by the definition of r.

Proof of Lemma 46

Suppose the step size ηt < 1. Note that we do not need the step size to be ηt = 1 in

Lemma 44 and Lemma 45. We denote ∆θ(t) = θ(t+1/2) − θ(t). Then we have

∥∥∥∆θ(t)
∥∥∥

2

(i)

≤
∥∥∥θ(t) − θ

∥∥∥
2

+
∥∥∥θ(t+1/2) − θ

∥∥∥
2

(ii)

≤
∥∥∥θ(t) − θ

∥∥∥
2

+
Ls∗+2s̃

2ρ−s∗+2s̃

∥∥∥θ(t) − θ
∥∥∥

2

2

(iii)

≤ 3

2

∥∥∥θ(t) − θ
∥∥∥

2
, (7.157)

where (i) is from triangle inequality, (ii) is from Lemma 45, and (iii) is from∥∥θ(t) − θ
∥∥

2
≤ r ≤ ρ−

s∗+2s̃

Ls∗+2s̃
.
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By Lemma 44, we have
∥∥∆θ(t)

S
∥∥

0
≤ 2s̃. To show ηt = 1, it is now suffice to

demonstrate that

Fλ(θ(t+1/2))−Fλ(θ(t)) ≤ 1

4
γt.

By expanding Fλ, we have

Fλ(θ(t) + ∆θ(t))−Fλ(θ(t)) = L(θ(t) + ∆θ(t))− L(θ(t)) +R`1λ (θ(t) + ∆θ(t))−R`1λ (θ(t))

(i)

≤ ∇L(θ(t))>∆θ(t) +
1

2
∆(θ(t))>∇2L(θ)∆θ(t) +

Ls∗+2s̃

6

∥∥∥∆θ(t)
∥∥∥

3

2

+R`1λ (θ(t) + ∆θ(t))−R`1λ (θ(t))

(ii)

≤ γt −
1

2
γt +

Ls∗+2s̃

6

∥∥∥∆θ(t)
∥∥∥

3

2

(iii)

≤ 1

2
γt +

Ls∗+2s̃

6ρ−s∗+2s̃

∥∥∥∆θ(t)
∥∥∥
∇2L(θ)

∥∥∥∆θ(t)
∥∥∥

2

(iv)

≤
(

1

2
− Ls∗+2s̃

6ρ−s∗+2s̃

∥∥∥∆θ(t)
∥∥∥

2

)
γt

(v)

≤ 1

4
γt,

where (i) is from the restricted Hessian smooth condition, (ii) and (iv) are from

Lemma 47, (iii) is from the same argument of (7.172), and (v) is from (7.173), γt < 0,

and
∥∥θ(t) − θ

∥∥
2
≤ r ≤ ρ−

s∗+2s̃

Ls∗+2s̃
. This implies θ(t+1) = θ(t+1/2).

Proof of Lemma 47

We denote H = ∇2L(θ(t)). Since ∆θ(t) is the solution for

min
∆θ(t)

∇L
(
θ(t)
)>
·∆θ(t) +

1

2

∥∥∥∆θ(t)
∥∥∥

2

H
+R`1λ

(
θ(t) + ∆θ(t)

)

then for any ηt ∈ (0, 1], we have

ηt∇L
(
θ(t)
)>
·∆θ(t) +

η2
t

2

∥∥∥∆θ(t)
∥∥∥

2

H
+R`1λ

(
θ(t) + ηt∆θ

(t)
)

≥ ∇L
(
θ(t)
)>
·∆θ(t) +

1

2

∥∥∥∆θ(t)
∥∥∥

2

H
+R`1λ

(
θ(t) + ∆θ(t)

)



204

By the convexity of R`1λ , we have

ηt∇L
(
θ(t)
)>
·∆θ(t) +

η2
t

2

∥∥∥∆θ(t)
∥∥∥

2

H
+ ηtR`1λ

(
θ(t) + ∆θ(t)

)
+ (1− ηt)R`1λ (θ(t))

≥ ∇L
(
θ(t)
)>
·∆θ(t) +

1

2

∥∥∥∆θ(t)
∥∥∥

2

H
+R`1λ

(
θ(t) + ∆θ(t)

)
.

Rearranging the terms, we obtain

(1− ηt)
(
∇L

(
θ(t)
)>
·∆θ(t) +R`1λ

(
θ(t) −∆θ(t)

)
−R`1λ (θ(t))

)
+

1− η2
t

2

∥∥∥∆θ(t)
∥∥∥

2

H
≤ 0

Canceling the (1 − ηt) factor from both sides and let ηt → 1, we obtain the desired

inequality,

γt ≤ −
∥∥∥∆θ(t)

∥∥∥
2

H
.

Proof of Lemma 48

We first demonstrate an upper bound of the approximate KKT parameter ωλ. Given

the solution θ(t−1) from the (t − 1)-th iteration, the optimal solution at t-th iteration

satisfies the KKT condition:

∇2L(θ(t−1))(θ(t) − θ(t−1)) +∇L(θ(t−1)) + λξ(t) = 0,

where ξ(t) ∈ ∂‖θ(t)‖1. Then for any vector v with ‖v‖2 ≤ ‖v‖1 = 1 and ‖v‖0 ≤ s∗ + 2s̃,

we have

(∇L(θ(t)) + λξ(t))>v = (∇L(θ(t)))>v − (∇2L(θ(t−1))(θ(t) − θ(t−1)) +∇L(θ(t−1)))>v

= (∇L(θ(t))−∇L(θ(t−1)))>v − (∇2L(θ(t−1))(θ(t) − θ(t−1)))>v

(i)

≤
∥∥∥(∇2L(θ̃))1/2(θ(t) − θ(t−1))

∥∥∥
2
·
∥∥∥v>(∇2L(θ̃))1/2

∥∥∥
2

+
∥∥∥(∇2L(θ(t−1)))1/2(θ(t) − θ(t−1))

∥∥∥
2
·
∥∥∥v>(∇2L(θ(t−1)))1/2

∥∥∥
2

(ii)

≤ 2ρ+
s∗+2s̃

∥∥∥θ(t) − θ(t−1)
∥∥∥

2
, (7.158)
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where (i) is from mean value theorem with some θ̃ = (1 − a)θ(t−1) + aθ(t) for some

a ∈ [0, 1] and Cauchy-Schwarz inequality, and (ii) is from the SE properties. Take the

supremum of the L.H.S. of (7.174) with respect to v, we have

∥∥∥∇L(θ(t)) + λξ(t)
∥∥∥
∞
≤ 2ρ+

s∗+2s̃

∥∥∥θ(t) − θ(t−1)
∥∥∥

2
. (7.159)

Then from Lemma 45, we have

∥∥∥θ(t+1) − θ
∥∥∥

2
≤
(
Ls∗+2s̃

2ρ−s∗+2s̃

)1+2+4+...+2t−1 ∥∥∥θ(0) − θ
∥∥∥

2>

2
≤
(
Ls∗+2s̃

2ρ−s∗+2s̃

∥∥∥θ(0) − θ
∥∥∥

2

)2t

.

By (7.175) and (7.173) by taking ∆θ(t−1) = θ(t) − θ(t−1), we obtain

ωλ

(
θ(t)
)
≤ 2ρ+

s∗+2s̃

∥∥∥θ(t) − θ(t−1)
∥∥∥

2
≤ 3ρ+

s∗+2s̃

∥∥∥θ(t−1) − θ
∥∥∥

2

≤ 3ρ+
s∗+2s̃

(
Ls∗+2s̃

2ρ−s∗+2s̃

∥∥∥θ(0) − θ
∥∥∥

2

)2t

.

By requiring the R.H.S. equal to ε we obtain

t = log

log

(
3ρ+
s∗+2s̃

ε

)

log

(
2ρ−
s∗+2s̃

Ls∗+2s̃‖θ(0)−θ‖
2

) = log log

(
3ρ+

s∗+2s̃

ε

)
− log log

(
2ρ−s∗+2s̃

Ls∗+2s̃

∥∥θ(0) − θ
∥∥

2

)

(i)

≤ log log

(
3ρ+

s∗+2s̃

ε

)
− log log 4 ≤ log log

(
3ρ+

s∗+2s̃

ε

)
,

where (i) is from the fact that
∥∥θ(0) − θ

∥∥
2
≤ r =

ρ−
s∗+2s̃

2Ls∗+2s̃
.

Lemma 39. Given ωλ(θ(t)) ≤ λ
4 , we have

Fλ(θ(t)) ≤ Fλ(θ∗) +
λ

4
‖θ(t) − θ∗‖1.
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Proof. For some ξ(t) = argminξ∈∂‖θ(t)‖1 ‖∇L(θ(t)) + λξ‖∞, we have

Fλ(θ∗)
(i)

≥ Fλ(θ(t))− (∇L(θ(t)) + λξ(t))>(θ(t) − θ∗)
≥ Fλ(θ(t))− ‖∇L(θ(t)) + λξ(t)‖∞‖θ(t) − θ∗‖1
(ii)

≥ Fλ(θ(t))− λ

4
‖θ(t) − θ∗‖1

where (i) is from the convexity of Fλ and (ii) is from the fact that for all t ≥ 0,

Fλ(θ(t)) ≤ Fλ(θ(t−1)) and ωλ(θ(t)) ≤ λ
4 . This finishes the proof.

Lemma 40 (Adapted from [153]). Suppose ‖θ(t)

S ‖0 ≤ s̃ and ωλ(θ(t)) ≤ λ
4 . Then there

exists a generic constant c1 such that ‖θ(t) − θ∗‖2 ≤ c1λ
√
s∗

ρ−
s∗+2s̃

.

7.4 Proofs for Chapter 5

7.4.1 Proofs of Main Results

We provide proof sketches for the main results of Theorem 12 and 13 in this section.

Proof of Theorem 12

We provide a few important intermediate results. The first result characterizes the

sparsity of the solution and an upper bound of the objective after sufficiently many

iterations as follows. The proof is provided in Appendix 7.4.4.

Lemma 41. Suppose that Assumptions 1 ∼ 4 hold. After sufficiently many iterations

T <∞, the following results hold for all t ≥ T :

‖θ(t)

S ‖0 ≤ s̃ and Fλ{1}(θ(t)) ≤ Fλ{1}(θ∗) +
15λ2

tgts
∗

4ρ−s∗+2s̃

.

We then demonstrate the parameter estimation and quadratic convergence condi-

tioning on the sparse solution and bounded objective. The proof is provided in Ap-

pendix 7.4.4.
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Lemma 42. Suppose that Assumptions 1 ∼ 4 hold. If ‖θ(t)

S ‖0 ≤ s̃, and Fλ{1}(θ(t)) ≤
Fλ{1}(θ∗) +

15λ2
tgts
∗

4ρ−
s∗+2s̃

, we have

‖θ(t) − θ∗‖2 ≤
18λtgt

√
s∗

ρ−s∗+2s̃

and ‖θ(t+1) − θ{1}‖2 ≤
Ls∗+2s̃

2ρ−s∗+2s̃

‖θ(t) − θ{1}‖22

Moreover, we characterize the sufficient number of iterations for the proximal New-

ton updates to achieve the approximate KKT condition. The proof is provided in

Appendix 7.4.4.

Lemma 43. Suppose that Assumptions 1 ∼ 4 hold. If ‖θ(T )

S ‖0 ≤ s̃, and Fλ{1}(θ(T )) ≤
Fλ{1}(θ∗) +

15λ2
tgts
∗

4ρ−
s∗+2s̃

at some iteration T , we need at most

T1 ≤ log log

(
3ρ+

s∗+2s̃

ε

)

extra iterations of the proximal Newton updates such that ωλ{1}(θ
(T+T1)) ≤ λtgt

8 .

Combining Lemma 41 ∼ 43, we have desired results in Theorem 12.

Proof of Theorem 13

We present a few important intermediate results that are key components of our main

proof. The first result shows that in a neighborhood of the true model parameter θ∗,

the sparsity of the solution is preserved when we use a sparse initialization. The proof

is provided in Appendix 7.4.3.

Lemma 44 (Sparsity Preserving Lemma). Suppose that Assumptions 1 and 2 hold

with ε ≤ λtgt

8 . Given θ(t) ∈ B (θ∗, R) and ‖θ(t)

S ‖0 ≤ s̃, there exists a generic constant C1

such that

‖θ(t+1)

S ‖0 ≤ s̃ and ‖θ(t+1) − θ∗‖2 ≤
C1λtgt

√
s∗

ρ−s∗+2s̃

.

We then show that every step of proximal Newton updates within each stage has

a quadratic convergence rate to a local minimizer, if we start with a sparse solution in

the refined region. The proof is provided in Appendix 7.4.3.
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Lemma 45. Suppose that Assumptions 1 ∼ 4 hold. If θ(t) ∈ B (θ∗, R) and
∥∥θ(t)

S
∥∥

0
≤ s̃,

then for each stage K ≥ 2, we have

‖θ(t+1) − θ{K}‖2 ≤
Ls∗+2s̃

2ρ−s∗+2s̃

‖θ(t) − θ{K}‖22.

In the following, we need to use the property that the iterates θ(t) ∈ B(θ
{K}

, 2R)

instead of θ(t) ∈ B (θ∗, R) for convergence analysis of the proximal Newton method.

This property holds since we have θ(t) ∈ B (θ∗, R) and θ
{K} ∈ B (θ∗, R) simultaneously.

Thus θ(t) ∈ B
(
θ
{K}

, 2R
)

, where 2R =
ρ−
s∗+2s̃

Ls∗+2s̃
is the radius for quadratic convergence

region of the proximal Newton algorithm.

The following lemma demonstrates that the step size parameter is simply 1 if the

the sparse solution is in the refined region. The proof is provided in Appendix 7.4.3.

Lemma 46. Suppose that Assumptions 1∼ 4 hold. If θ(t) ∈ B(θ
{K}

, 2R) and ‖θ(t)
S‖0 ≤

s̃ at each stage K ≥ 2 with 1
4 ≤ α < 1

2 , then ηt = 1. Further, we have

Fλ{K}(θ(t+1)) ≤ Fλ{K}(θ(t)) +
1

4
γt.

Moreover, we present a critical property of γt. The proof is provided in Ap-

pendix 7.4.3.

Lemma 47. Denote ∆θ(t) = θ(t) − θ(t+1) and

γt = ∇L
(
θ(t)
)>
·∆θ(t) + ‖λ{K} �

(
θ(t) + ∆θ(t)

)
‖1 − ‖λ{K} �

(
θ(t)
)
‖1.

Then we have γt ≤ −‖∆θ(t)‖2∇2L(θ(t))
.

In addition, we present the sufficient number of iterations for each convex relax-

ation stage to achieve the approximate KKT condition. The proof is provided in Ap-

pendix 7.4.3.

Lemma 48. Suppose that Assumptions 1 ∼ 4 hold. To achieve the approximate KKT

condition ωλ{K}
(
θ(t)
)
≤ ε for any ε > 0 at each stage K ≥ 2, the number of iteration
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for proximal Newton updates is at most

log log

(
3ρ+

s∗+2s̃

ε

)
.

We further present the contraction of the estimation error along consecutive stages,

which is a direct result from oracle statistical rate in [153].

Lemma 49. Suppose that Assumptions 1∼ 4 hold. Then there exists a generic constant

c1 such that the output solutions for all K ≥ 2 satisfy

‖θ̂{K} − θ∗‖2 ≤ c1


‖∇L(θ∗)S‖2 + λtgt

√∑

j∈S
1(|θ∗j | ≤ βλ) + ε

√
s∗


+ 0.7‖θ̂{K−1} − θ∗‖2.

Combining Lemma 44 ∼ Lemma 47, we have the quadratic convergence of the prox-

imal Newton algorithm within each convex relaxation stage. The rest of the results in

Theorem 13 hold by further combining Lemma 48 and recursively applying Lemma 49.

7.4.2 Coordinate Descent Algorithms with the Active Set Strategy

We first provide a brief derivation of the quadratic approximation (5.5) into a weighted

least square problem. For notational convenience, we omit the indices {K} and (t)

for a particular iteration of a stage. Recall that we want to minimize the following

`1-regularized quadratic problem

∆θ̂ = argmin
∆θ

∆θ>∇L(θ) +
1

2
∆θ>∇2L(θ)∆θ + ‖λ� (θ + ∆θ)‖1. (7.160)

For GLM, we have

L(θ) =
1

n

n∑

i=1

ψ(x>i θ)− yix>i θ,

where ψ is the cumulant function. Then we can rewrite the quadratic function

∆θ>∇L(θ) + 1
2∆θ>∇2L(θ)∆θ in subproblem (7.160) as a weighted least squares form
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[159]:

1

2n

n∑

i=1

(
2
(
yi − ψ′(x>i θ)

)
x>i ∆θ + ψ′′(x>i θ)(x

>
i ∆θ)2

)

=
1

2n

n∑

i=1

wi(zi − x>i ∆θ)2 + constant,

where wi = ψ′′(x>i θ), zi =
yi−ψ′(x>i θ)
ψ′′(x>i θ)

, and the constant term does not depend on ∆θ.

This indicates that (7.160) is equivalent to a Lasso problem with reweighted least square

loss function:

∆θ̂ = argmin
∆θ

1

2n

n∑

i=1

wi(zi − x>i ∆θ)2 + ‖λ� (θ + ∆θ)‖1. (7.161)

By solving (7.161), we can avoid directly computing the d × d Hessian matrix ∇2L(θ)

in (7.160) and significantly reduce the memory usage when d is large.

We then introduce an algorithm for solving (7.161) leveraging the idea of active

set update. The active set update scheme is very efficient in practice [159] with rigid

theoretical justifications [158]. The algorithm contains two nested loops. In the outer

loop, we separate all coordinates into two sets: active set and inactive set. Such a

partition is based on some heuristic greedy scheme, such as gradient thresholding (also

called strong rule, [245]). Then within each iteration of the middle loop, the inner loop

only updates coordinates in the active set in a cyclic manner until convergence, where

the coordinates in the inactive set remain to be zero. After the inner loop converges,

we update the active set based on a greedy selection rule that further decreases the

objective value, and repeat the inner loop. Such a procedure continues until the active

set no longer changes in the outer loop. We provide the algorithm description as follows

and refer [158] for further details of active set based coordinate minimization. We use

(p) to index the p-th iteration of the outer loop, and (p, l) to index the l-th iteration of

the inner loop at the p-th iteration of the outer loop.

Inner Loop. The active set A and inactive set A⊥ are respectively set as

A ← {j : θj 6= 0} = {j1, j2, . . . , js} and A⊥ ← {j : j /∈ A},
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where j1 < j2 < . . . < js. A coordinate-wise minimization of (7.161) is performed

throughout the inner loop. Specifically, given θ(p,l) at the l-th iteration of the inner

loop, we solve (7.161) by only considering the j-th coordinate in the active set and fix

the rest coordinates in a cyclic manner for all j = j1, j2, . . . , js, i.e.,

∆θ̂j = argmin
∆θj

1

2n

n∑

i=1

wi(zi −
∑

k∈A,k 6=j
x>ik∆θk − x>ij∆θj)2 + |λj(θj + ∆θj)|. (7.162)

Then we update θ
(p,l+1)
j = θ

(p,l)
j +∆θ̂j . Solving (7.162) has a simple closed form solution

by soft thresholding, i.e.,

∆θ̂j ←
S( 1

n

∑n
i=1wiδij , λj)

1
n

∑n
i=1wix

2
ij

,

where δij = zi −
∑

k∈A,k 6=j xik∆θk and S(a, b) = sign(a) max{|a| − b, 0} for real values

a and b. Moreover, the residual δij can be updated efficiently. Specifically, after the

update of ∆θ̂j for the j-th coordinate, then for the next non-zero coordinate, e.g., j′ ∈ A,

we update the residual as

δij′ = δij − x>ij∆θ̂j + xij′∆θj′ .

This reduces the computational cost of updating each coordinate from O(s) to O(1),

only with an increase of the memory cost O(s) for maintaining the previous updates of

∆θj .

Given a convergence parameter a ∈ (0, 1), we terminate the inner loop when

‖θ(p,l+1) − θ(p,l)‖2 ≤ aλ.

Outer Loop. At the beginning of the outer loop, we initialize the active set A(0) as

follows

A(0) ← {j : |∇jL(θ(0))| ≥ (1− ν)λ} ∪ {j : θ
(0)
j 6= 0},

where ∇jL(θ(0)) is the j-th entry of ∇L(θ(0)), ν ∈ (0, 0.1) is a thresholding parameter,

and the inactive set is A(0)
⊥ = {j : j /∈ A(0)}.
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Suppose at the p-th iteration of the outer loop, the active set is A(p). We then

perform the inner loop introduced above using A(p) until the convergence of the inner

loop and denote θ(p+1) = θ(p,l), which is the output of the inner loop. Next, we describe

how to update the active set A(p) using the following greedy selection rule.

• We first shrink the active set as follows. The active coordinate minimization (inner

loop) may yield zero solutions on A(p). We eliminate the zero coordinates of θ(p+1)

from A(p), and update the intermediate active set and inactive set respectively as

A(p+ 1
2

) ← {j ∈ A(p) : θ
(p+1)
j 6= 0} and A(p+ 1

2
)

⊥ ← {j : j /∈ A(p+ 1
2

)}.

• We then expand the active set as follows. Denote

j(p) = argmax

j∈A
(p+ 1

2 )

⊥

|∇jL(θ(p+1))|.

The outer loop is terminated if

|∇j(p)L(θ(p+1))| ≤ (1 + δ)λ,

where δ � 1 is a real positive convergence parameter, e.g., δ = 10−5. Otherwise,

we update the sets as

A(p+1) ← A(p+ 1
2

) ∪ {j(p)} and A(p+1)
⊥ ← A(p+ 1

2
)

⊥ \{j(p)},

7.4.3 Proof of Intermediate Results for Theorem 13

For notational convenience, we denote

R`1λ (θ) = ‖λ� θ‖1.

We also introduce an important notion as follows, which is closely related with the

SE properties.
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Definition 23. We denote the local `1 cone as

C(s, ϑ,R)=
{
v, θ : S ⊆M, |M| ≤ s, ‖vM⊥‖1 ≤ ϑ‖vM‖1, ‖θ − θ∗‖2 ≤ R

}
.

Then we define the largest and smallest localized restricted eigenvalues (LRE) as

ψ+
s,ϑ,R = sup

u,θ

{
v>∇2L(θ)v

v>v
: (v, θ) ∈ C(s, ϑ,R)

}
,

ψ−s,ϑ,R = inf
u,θ

{
v>∇2L(θ)v

v>v
: (v, θ) ∈ C(s, ϑ,R)

}
.

The following proposition demonstrates the relationships between SE and LRE. The

proof can be found in [142], thus is omitted here.

Proposition 6. Given any θ, θ′ ∈ C(s, ϑ,R) ∩ B(θ∗, R), we have

c1ψ
−
s,ϑ,R ≤ ρ−s ≤ c2ψ

−
s,ϑ,R, and c3ψ

+
s,ϑ,R ≤ ρ+

s ≤ c4ψ
+
s,ϑ,R.

where c1, c2, c3, and c4 are constants.

Proof of Lemma 44

We first demonstrate the sparsity of the update. For notational convenience, we omit

the stage index {K}. Since θ(t+1) is the minimizer to the proximal Newton problem, we

have

∇2L(θ(t))(θ(t+1) − θ(t)) +∇L(θ(t)) + λ� ξ(t+1) = 0,

where ξ(t+1) ∈ ∂‖θ(t+1)‖1.

It follows from [153] that if Assumption 3 holds, then we have min
j∈S′{λj} ≥ λtgt/2

for some set S ′ ⊃ S with |S ′| ≤ 2s∗. Then the analysis of sparsity of can be performed

through λtgt directly.
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We then consider the following decomposition

∇2L(θ(t))(θ(t+1) − θ(t)) +∇L(θ(t))

= ∇2L(θ(t))(θ(t+1) − θ∗)︸ ︷︷ ︸
V1

+∇2L(θ(t))(θ∗ − θ(t))︸ ︷︷ ︸
V2

+∇L(θ(t))−∇L(θ∗)︸ ︷︷ ︸
V3

+∇L(θ∗)︸ ︷︷ ︸
V4

.

Consider the following sets:

Ai =
{
j ∈ S ′ : |(Vi)j | ≥ λtgt/4

}
, for all i ∈ {1, 2, 3, 4}.

Set A2. We have A2 =
{
j ∈ S ′ : |(∇2L(θ(t))(θ∗ − θ(t)))j | ≥ λtgt/4

}
. Consider a subset

S ′ ⊂ A2 with |S ′| = s′ ≤ s̃. Suppose we choose a vector v ∈ Rd such that ‖v‖∞ = 1

and ‖v‖0 = s′ with s′λtgt/4 ≤ v>∇2L(θ(t))(θ∗ − θ(t)). Then we have

s′λtgt/4 ≤ v>∇2L(θ(t))(θ∗ − θ(t)) ≤ ‖v(∇2L(θ(t)))
1
2 ‖2‖(∇2L(θ(t)))

1
2 (θ∗ − θ(t))‖2

(i)

≤
√
ρ+
s∗+2s̃ρ

+
s′‖v‖2‖θ∗ − θ(t)‖2

(ii)

≤
√
s′ρ+

s∗+2s̃ρ
+
s′‖θ∗ − θ(t)‖2

(iii)

≤
C ′
√
s′ρ+

s∗+2s̃ρ
+
s′λtgt

√
s∗

ρ−s∗+2s̃

, (7.163)

where (i) is from the SE properties, (ii) is from the definition of v, and (iii) is from

‖θ(t) − θ∗‖2 ≤ C ′λtgt

√
s∗/ρ−s∗+2s̃. Then (7.163) implies

s′ ≤ C2ρ
+
s∗+2s̃ρ

+
s′s
∗

(ρ−s∗+2s̃)
2
≤ C2κ

2
s∗+2s̃s

∗, (7.164)

where the last inequality is from the fact that s′ = |S ′| achieves the maximum possible

value such that s′ ≤ s̃ for any subset S ′ of A2. (7.164) implies that s′ < s̃, so wo must

have S ′ = A2 to attain the maximum. Then we have

|A2| = s′ ≤ C2κ
2
s∗+2s̃s

∗.

Set A3. We have A3 =
{
j ∈ S ′ :

∣∣(∇L(θ(t))−∇L(θ∗)
)
i

∣∣ ≥ λtgt/4
}

. Suppose we choose
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a vector v ∈ Rd such that ‖v‖∞ = 1, ‖v‖0 = |A3| and

v>
(
∇L(θ(t))−∇L(θ∗)

)
=
∑

i∈A3

vi

(
∇L(θ(t))−∇L(θ∗)

)
i

=
∑

i∈A3

∣∣∣
(
∇L(θ(t))−∇L(θ∗)

)
i

∣∣∣ ≥ λtgt|A3|/4. (7.165)

Then we have

v>
(
∇L(θ(t))−∇L(θ∗)

)
≤ ‖v‖2‖∇L(θ(t))−∇L(θ∗)‖2

(i)

≤
√
|A3|‖∇L(θ(t))−∇L(θ∗)‖2

(ii)

≤ ρ+
s∗+2s̃

√
|A3| · ‖θ(t) − θ∗‖2, (7.166)

where (i) is from the definition of v, and (ii) is from the mean value theorem and

analogous argument for A2.

Combining (7.165) and (7.166), we have

λtgt|A3| ≤ 4ρ+
s∗+2s̃

√
|A3| · ‖θ − θ∗‖2

(i)

≤ 8λtgtκs∗+2s̃

√
3s∗|A3|

where (i) is from ‖θ(t) − θ∗‖2 ≤ C ′λtgt

√
s∗/ρ−s∗+2s̃ and definition of κs∗+2s̃ =

ρ+
s∗+2s̃/ρ

−
s∗+2s̃. This implies

|A3| ≤ C3κ
2
s∗+2s̃s

∗.

Set A4. By Assumption 3 and λtgt ≥ 4‖∇L(θ∗)‖∞, we have

0 ≤ |V4| ≤
∑

i∈S∗

4

λtgt
|(∇L(θ∗))i| · 1(|(∇L(θ∗))i| > λtgt/(4))

=
∑

i∈S∗

4

λtgt
|(∇L(θ∗))i| · 0 = 0, (7.167)
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Set A1. From Lemma 50, we have Fλ(θ(t+1)) ≤ Fλ(θ∗)+
λtgt

4 ‖θ(t+1)−θ∗‖1. This implies

L(θ(t+1))− L(θ∗) ≤ λtgt(‖θ∗‖1 − ‖θ(t+1)‖1) +
λtgt

4
‖θ(t+1) − θ∗‖1

= λtgt(‖θ∗S′‖1 − ‖θ
(t+1)
S′ ‖1 − ‖θ(t+1)

S′⊥
‖1) +

λtgt

4
‖θ(t+1) − θ∗‖1

≤ 5λtgt

4
‖θ(t+1)
S′ − θ∗S′‖1 −

3λtgt

4
‖θ(t+1)
S′⊥

− θ∗S′⊥‖1. (7.168)

where the equality holds since θ∗S′⊥
= 0. On the other hand, we have

L(θ(t+1))− L(θ∗)
(i)

≥ ∇L(θ∗)(θ(t+1) − θ∗) ≥ −‖cL(θ∗)‖∞‖θ(t+1) − θ∗‖1
(ii)

≥ −λtgt

4
‖θ(t+1) − θ∗‖1 = −λtgt

4
‖θ(t+1)
S′ − θ∗S′‖1 −

λtgt

4
‖θ(t+1)
S′⊥

− θ∗S′⊥‖1, (7.169)

where (i) is from the convexity of L and (ii) is from Assumption 3. Combining (7.168)

and (7.169), we have

‖θ(t+1)
S′⊥

− θ∗S′⊥‖1 ≤ 3‖θ(t+1)
S′ − θ∗S′‖1,

which implies that θ(t+1) − θ∗ ∈ C(s∗, 3, R) with respect to the set S ′.
We have A4 =

{
j ∈ S ′ : |(∇2L(θ(t))(θ∗ − θ(t+1)))j | ≥ λtgt/4

}
. Consider a subset

S ′ ⊂ A2 with |S ′| = s′ ≤ s̃ and a vector v ∈ Rd similar to that in A2. Then we have

s′λtgt/4 ≤ v>∇2L(θ(t))(θ(t+1) − θ∗) ≤ ‖v(∇2L(θ(t)))
1
2 ‖2‖(∇2L(θ(t)))

1
2 (θ(t+1) − θ∗)‖2

(i)

≤ c1

√
ρ+
s∗+2s̃ρ

+
s′‖v‖2‖θ∗ − θ(t+1)‖2

(ii)

≤ c1

√
s′ρ+

s∗+2s̃ρ
+
s′‖θ∗ − θ(t+1)‖2

(iii)

≤
c2

√
s′ρ+

s∗+2s̃ρ
+
s′λtgt

√
s∗

ρ−s∗+2s̃

, , (7.170)

where (i) is from SE condition and Proposition 6, (ii) is from the definition of v, and

(iii) is from ‖θ(t+1) − θ∗‖2 ≤ C ′λtgt

√
s∗/ρ−s∗+2s̃. Following analogous argument in for

A2, we have

|A1| ≤ C1κ
2
s∗+2s̃s

∗.
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Combining the results for Set A1 ∼ A4, we have that there exists some constant C0

such that

‖θ(t+ 1
2

)

S ‖0 ≤ C0κ
2
s∗+2s̃s

∗ ≤ s̃.

From Lemma 46, we further have that the step size satisfies ηt = 1, then we have

θ(t+1) = θ(t+ 1
2

). The estimation error follows directly from Lemma 51.

Proof of Lemma 45

For notational simplicity, we introduce the following proximal operator,

proxH,gr (θ) = argminθ′r(θ
′) + g>(θ′ − θ) +

1

2
‖θ′ − θ‖2H .

Then we have

θ(t+1) = prox
∇2L(θ(t)),∇L(θ(t))
R`1
λ{K}

(θ(t))

(
θ(t)
)
.

By Lemma 44, we have

‖θ(t+1)

S ‖0 ≤ s̃.

By the KKT condition of function minFλ{K} , i.e., −∇L(θ
{K}

) ∈ ∂R`1
λ{K}

(θ
{K}

), we also

have

θ
{K}

= prox
∇2L(θ(t)),∇L(θ

{K}
)

R`1
λ{K}

(θ
{K}

)

(
θ
{K}
)
.

By monotonicity of sub-gradient of a convex function, we have the strictly non-

expansive property: for any θ, θ′ ∈ R, let u = proxH,gr (θ) and v = proxH,g
′

r (θ′), then

(u− v)>H(θ − θ′)− (u− v)>
(
g − g′

)
≥ ‖u− v‖2H .
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Thus by the strictly non-expansive property of the proximal operator, we obtain

‖θ(t+1) − θ{K}‖2
∇2L(θ

{K}
)

≤
(
θ(t+1) − θ{K}

)> [
∇2L(θ(t))

(
θ(t) − θ{K}

)
+
(
∇L(θ

{K}
)−∇L(θ(t))

)]

≤ ‖θ(t+1) − θ{K}‖2
∥∥∥∇2L(θ(t))

(
θ(t) − θ{K}

)
+
(
∇L(θ

{K}
)−∇L(θ(t))

)∥∥∥
2
. (7.171)

Note that both ‖θ(t+1)‖0 ≤ s̃ and ‖θ{K}‖0 ≤ s̃. On the other hand, from the SE

properties, we have

‖θ(t+1) − θ{K}‖2
∇2L(θ

{K}
)

= (θ(t+1) − θ{K})>∇2L(θ
{K}

)(θ(t+1) − θ{K})

≥ ρ−s∗+2s̃‖θ(t+1) − θ{K}‖22. (7.172)

Combining (7.171) and (7.172), we have

∥∥∥θ(t+1) − θ{K}
∥∥∥

2

≤ 1

ρ−s∗+2s̃

∥∥∥∇2L(θ(t))
(
θ(t) − θ{K}

)
+
(
∇L(θ

{K}
)−∇L(θ(t))

)∥∥∥
2

=
1

ρ−s∗+2s̃

∥∥∥∥
∫ 1

0

[
∇2L

(
θ(t) + τ

(
θ
{K} − θ(t)

))
−∇2L

(
θ(t)
)]
·
(
θ
{K} − θ(t)

)
dτ

∥∥∥∥
2

≤ 1

ρ−s∗+2s̃

∫ 1

0

∥∥∥
[
∇2L

(
θ(t) + τ

(
θ
{K} − θ(t)

))
−∇2L

(
θ(t)
)]
·
(
θ
{K} − θ(t)

)∥∥∥
2
dτ

≤ Ls∗+2s̃

2ρ−s∗+2s̃

∥∥∥θ(t) − θ{K}
∥∥∥

2

2
,

where the last inequality is from the local restricted Hessian smoothness of L. Then we

finish the proof by the definition of R.
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Proof of Lemma 46

Suppose the step size ηt < 1. Note that we do not need the step size to be ηt = 1 in

Lemma 44 and Lemma 45. We denote ∆θ(t) = θ(t+ 1
2

) − θ(t). Then we have

∥∥∥∆θ(t)
∥∥∥

2

(i)

≤
∥∥∥θ(t) − θ{K}

∥∥∥
2

+
∥∥∥θ(t+ 1

2
) − θ{K}

∥∥∥
2

(ii)

≤
∥∥∥θ(t) − θ{K}

∥∥∥
2

+
Ls∗+2s̃

2ρ−s∗+2s̃

∥∥∥θ(t) − θ{K}
∥∥∥

2

2

(iii)

≤ 3

2

∥∥∥θ(t) − θ{K}
∥∥∥

2
, (7.173)

where (i) is from triangle inequality, (ii) is from Lemma 45, and (iii) is from∥∥∥θ(t) − θ{K}
∥∥∥

2
≤ R ≤ ρ−

s∗+2s̃

Ls∗+2s̃
.

By Lemma 44, we have

∥∥∥∆θ(t)
S

∥∥∥
0
≤ 2s̃.

To show ηt = 1, it is now suffice to demonstrate that

Fλ{K}(θ(t+ 1
2

))−Fλ{K}(θ(t)) ≤ 1

4
γt.

By expanding Fλ{K} , we have

Fλ{K}(θ(t) + ∆θ(t))−Fλ{K}(θ(t))

= L(θ(t) + ∆θ(t))− L(θ(t)) +R`1
λ{K}

(θ(t) + ∆θ(t))−R`1
λ{K}

(θ(t))

(i)

≤ ∇L(θ(t))>∆θ(t) +
1

2
∆(θ(t))>∇2L(θ)∆θ(t) +

Ls∗+2s̃

6

∥∥∥∆θ(t)
∥∥∥

3

2
+R`1

λ{K}
(θ(t) + ∆θ(t))

−R`1
λ{K}

(θ(t))

(ii)

≤ γt −
1

2
γt +

Ls∗+2s̃

6

∥∥∥∆θ(t)
∥∥∥

3

2

(iii)

≤ 1

2
γt +

Ls∗+2s̃

6ρ−s∗+2s̃

∥∥∥∆θ(t)
∥∥∥
∇2L(θ)

∥∥∥∆θ(t)
∥∥∥

2

(iv)

≤
(

1

2
− Ls∗+2s̃

6ρ−s∗+2s̃

∥∥∥∆θ(t)
∥∥∥

2

)
γt

(v)

≤ 1

4
γt,

where (i) is from the restricted Hessian smooth condition, (ii) and (iv) are from

Lemma 47, (iii) is from the same argument of (7.172), and (v) is from (7.173), γt < 0,
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and
∥∥∥θ(t) − θ{K}

∥∥∥
2
≤ R ≤ ρ−

s∗+2s̃

Ls∗+2s̃
. This implies θ(t+1) = θ(t+ 1

2
).

Proof of Lemma 47

We denote H = ∇2L(θ(t)). Since ∆θ(t) is the solution for

min
∆θ(t)

∇L
(
θ(t)
)>
·∆θ(t) +

1

2

∥∥∥∆θ(t)
∥∥∥

2

H
+R`1

λ{K}

(
θ(t) + ∆θ(t)

)

then for any ηt ∈ (0, 1], we have

ηt∇L
(
θ(t)
)>
·∆θ(t) +

η2
t

2

∥∥∥∆θ(t)
∥∥∥

2

H
+R`1

λ{K}

(
θ(t) + ηt∆θ

(t)
)

≥ ∇L
(
θ(t)
)>
·∆θ(t) +

1

2

∥∥∥∆θ(t)
∥∥∥

2

H
+R`1

λ{K}

(
θ(t) + ∆θ(t)

)

By the convexity of R`1
λ{K}

, we have

ηt∇L
(
θ(t)
)>
·∆θ(t) +

η2
t

2

∥∥∥∆θ(t)
∥∥∥

2

H
+ ηtR`1λ{K}

(
θ(t) + ∆θ(t)

)
+ (1− ηt)R`1λ{K}(θ

(t))

≥ ∇L
(
θ(t)
)>
·∆θ(t) +

1

2

∥∥∥∆θ(t)
∥∥∥

2

H
+R`1

λ{K}

(
θ(t) + ∆θ(t)

)
.

Rearranging the terms, we obtain

(1− ηt)
(
∇L

(
θ(t)
)>
·∆θ(t) +R`1

λ{K}

(
θ(t) −∆θ(t)

)
−R`1

λ{K}
(θ(t))

)
+

1− η2
t

2

∥∥∥∆θ(t)
∥∥∥

2

H

≤ 0

Canceling the (1 − ηt) factor from both sides and let ηt → 1, we obtain the desired

inequality,

γt ≤ −
∥∥∥∆θ(t)

∥∥∥
2

H
.

Proof of Lemma 48

We first demonstrate an upper bound of the approximate KKT parameter ωλ{K} . Given

the solution θ(t−1) from the (t − 1)-th iteration, the optimal solution at t-th iteration
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satisfies the KKT condition:

∇2L(θ(t−1))(θ(t) − θ(t−1)) +∇L(θ(t−1)) + λ{K} � ξ(t) = 0,

where ξ(t) ∈ ∂‖θ(t)‖1. Then for any vector v with ‖v‖2 ≤ ‖v‖1 = 1 and ‖v‖0 ≤ s∗ + 2s̃,

we have

(∇L(θ(t)) + λ{K} � ξ(t))>v

= (∇L(θ(t)))>v − (∇2L(θ(t−1))(θ(t) − θ(t−1)) +∇L(θ(t−1)))>v

= (∇L(θ(t))−∇L(θ(t−1)))>v − (∇2L(θ(t−1))(θ(t) − θ(t−1)))>v

(i)

≤
∥∥∥(∇2L(θ̃))

1
2 (θ(t) − θ(t−1))

∥∥∥
2
·
∥∥∥v>(∇2L(θ̃))

1
2

∥∥∥
2

+
∥∥∥(∇2L(θ(t−1)))

1
2 (θ(t) − θ(t−1))

∥∥∥
2
·
∥∥∥v>(∇2L(θ(t−1)))

1
2

∥∥∥
2

(ii)

≤ 2ρ+
s∗+2s̃

∥∥∥θ(t) − θ(t−1)
∥∥∥

2
, (7.174)

where (i) is from mean value theorem with some θ̃ = (1 − a)θ(t−1) + aθ(t) for some

a ∈ [0, 1] and Cauchy-Schwarz inequality, and (ii) is from the SE properties. Take the

supremum of the L.H.S. of (7.174) with respect to v, we have

∥∥∥∇L(θ(t)) + λ{K} � ξ(t)
∥∥∥
∞
≤ 2ρ+

s∗+2s̃

∥∥∥θ(t) − θ(t−1)
∥∥∥

2
. (7.175)

Then from Lemma 45, we have

∥∥∥θ(t+1) − θ{K}
∥∥∥

2
≤
(
Ls∗+2s̃

2ρ−s∗+2s̃

)1+2+4+...+2t−1∥∥∥θ(0) − θ{K}
∥∥∥

2>

2
≤
(
Ls∗+2s̃

2ρ−s∗+2s̃

∥∥∥θ(0) − θ{K}
∥∥∥

2

)2t

.

By (7.175) and (7.173) by taking ∆θ(t−1) = θ(t) − θ(t−1), we obtain

ωλ{K}
(
θ(t)
)
≤ 2ρ+

s∗+2s̃

∥∥∥θ(t) − θ(t−1)
∥∥∥

2
≤ 3ρ+

s∗+2s̃

∥∥∥θ(t−1) − θ{K}
∥∥∥

2

≤ 3ρ+
s∗+2s̃

(
Ls∗+2s̃

2ρ−s∗+2s̃

∥∥∥θ(0) − θ{K}
∥∥∥

2

)2t

.
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By requiring the R.H.S. equal to ε we obtain

t = log

log

(
3ρ+
s∗+2s̃

ε

)

log

(
2ρ−
s∗+2s̃

Ls∗+2s̃

∥∥∥θ(0)−θ{K}
∥∥∥

2

) = log log

(
3ρ+

s∗+2s̃

ε

)
− log log


 2ρ−s∗+2s̃

Ls∗+2s̃

∥∥∥θ(0) − θ{K}
∥∥∥

2




(i)

≤ log log

(
3ρ+

s∗+2s̃

ε

)
− log log 4 ≤ log log

(
3ρ+

s∗+2s̃

ε

)
,

where (i) is from the fact that
∥∥∥θ(0) − θ{K}

∥∥∥
2
≤ R =

ρ−
s∗+2s̃

2Ls∗+2s̃
.

7.4.4 Proof of Intermediate Results for Theorem 12

Proof of Lemma 41

Given the assumptions, we will show that for all large enough t, we have

‖θ(t+1)

S ‖0 ≤ s̃.

Following the analysis of Lemma 46, Lemma 47, and Appendix 7.4.7, we have that

the objective Fλ{1} has sufficient descendant in each iteration of proximal Newton step,

which is also discussed in [175]. Then there exists a constant T such that for all t ≥ T ,

we have

Fλ{1}(θ(t)) ≤ Fλ{1}(θ∗) +
λtgt

4
‖θ(t) − θ∗‖1,

where ‖θ(t) − θ∗‖1 ≤ cλtgt

√
s∗/ρ−s∗+s̃ from similar analysis in [153]. The rest of the

analysis is analogous to that of Lemma 44, from which we have ‖θ(t)

S ‖0 ≤ s̃.

Proof of Lemma 42

The estimation error is derived analogously from [153], thus we omit it here. The claim

of the quadratic convergence follows directly from Lemma 45 given sparse solutions.
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Proof of Lemma 43

The upper bound of the number of iterations for proximal Newton update is obtained

by combining Lemma 41 and Lemma 48. Note that

T1 ≤ log

log

(
3ρ+
s∗+2s̃

ε

)

log

(
2ρ−
s∗+2s̃

Ls∗+2s̃

∥∥∥θ(T+1)−θ{1}
∥∥∥

2

) .

Then we obtain the result from
∥∥∥θ(T+1) − θ{1}

∥∥∥
2
≤ R =

ρ−
s∗+2s̃

2Ls∗+2s̃
.

7.4.5 Proof of Theorem 14

It is demonstrated in [242] that Assumptions 1 ∼ 3 hold given the LRE properties

defined in Definition 23. Thus, combining the analyses in [242] and Proposition 6, we

have that Assumptions 1 ∼ 3 hold with high probability. Assumption 4 also holds

trivially by choosing ε = c√
n

for some generic constant c. The rest of the results follow

directly from Theorem 13 and the analyses in [150].

7.4.6 Further Intermediate Results

Lemma 50. Given ωλ{K}(θ̂
{K}) ≤ λtgt

8 , we have that for all t ≥ 1 at the {K + 1}-th
stage,

ωλ{K+1}(θ(t)) ≤ λtgt

4
and Fλ{K+1}(θ(t)) ≤ Fλ{K+1}(θ∗) +

λtgt

4
‖θ(t) − θ∗‖1.

Proof. Note that at the {K + 1}-th stage, θ(0) = θ̂{K}. Then we have

ωλ{K+1}(θ(0)) = min
ξ∈∂‖θ(0)‖1

‖∇L(θ(0)) + λ{K+1} � ξ‖∞

(i)

≤ min
ξ∈‖θ(0)‖1

‖∇L(θ(0)) + λ{K} � ξ‖∞ + ‖(λ{K+1} − λ{K})� ξ‖∞

(ii)

≤ ωλ{K}(θ
(0)) + ‖λ{K+1} − λ{K}‖∞

(iii)

≤ λtgt

8
+
λtgt

8
≤ λtgt

4
,

where (i) is from triangle inequality, (ii) is from the definition of the approximate KKT
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condition and ξ, and (iii) is from ωλ{K}(θ
(0)) = ωλ{K}(θ̂

{K}) ≤ λtgt

8 and ‖λ{K+1} −
λ{K}‖∞ ≤ λtgt

8 .

For some ξ(t) = argminξ∈∂‖θ(t)‖1 ‖∇L(θ(t)) + λ{K+1} � ξ‖∞, we have

Fλ{K+1}(θ∗)
(i)

≥ Fλ{K+1}(θ(t))− (∇L(θ(t)) + λ{K+1} � ξ(t))>(θ(t) − θ∗)
≥ Fλ{K+1}(θ(t))− ‖∇L(θ(t)) + λ{K+1} � ξ(t)‖∞‖θ(t) − θ∗‖1
(ii)

≥ Fλ{K+1}(θ(t))− λtgt

4
‖θ(t) − θ∗‖1

where (i) is from the convexity of Fλ{K+1} and (ii) is from the fact that for all t ≥ 0,

‖∇L(θ(t)) + λ{K+1} � ξ(t)‖∞ ≤ λtgt

4 . This finishes the proof.

Lemma 51 (Adapted from [153]). Suppose ‖θ(t)

S ‖0 ≤ s̃ and ωλ{K}(θ
(t)) ≤ λtgt

4 . Then

there exists a generic constant c1 such that

‖θ(t) − θ∗‖2 ≤
c1λtgt

√
s∗

ρ−s∗+2s̃

.

7.4.7 Global Convergence Analysis

For notational convenience, we denote F = Fλ and R = R`1λ in the sequel. We first

provide an upper bound of the objective gap.

Lemma 52. Suppose the F(θ) = R(θ) +L(θ) and L(θ) satisfies the restricted Hessian

smoothness property, namely, for any θ, h ∈ Rd

d

dτ
∇2L(θ + τh)|τ=0 � C

√
h>∇2L(θ)h · ∇2L(θ),

for some constant C. Let ∆θ be the search direction and let θ+ = θ + τ∆θ for some

τ ∈ (0, 1]. Then

F(θ+) ≤ F(θ) +
[
−τ +O(τ2)

]
‖∆θ‖2H .
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Proof. From the convexity of R, we have

F(θ+)−F(θ)

= L(θ+)− L(θ) +R(θ+)−R(θ)

≤ L(θ+)− L(θ) + τR(θ + ∆θ) + (1− τ)R(θ)−R(θ)

= L(θ+)− L(θ) + τ (R(θ + ∆θ)−R(θ))

= ∇L(θ)> · (τ∆θ) + τ (R(θ + ∆θ)−R(θ)) + τ

∫ τ

0
(∆θ)>∇2L(θ + α∆θ)∆θdα.

By Lemma 47 and the restricted Hessian smoothness property, we obtain

F(θ+)−F(θ)

≤ −τ ‖∆θ‖∇2L(θ) + τ

∫ τ

0
(∆θ)>∇2L(θ + α∆θ)∆θdα

= −τ ‖∆θ‖∇2L(θ) + τ

∫ τ

0
dα

∫ α

0
dz

d

dz
(∆θ)>∇2L(θ + z∆θ)∆θ

+ τ

∫ τ

0
dα(∆θ)>∇2L(θ)∆θ

=
(
−τ +O(τ2)

)
‖∆θ‖2∇2L(θ) .

Next, we show that ∆θ 6= 0 when θ have not attained the optimum.

Lemma 53. Suppose the F(θ) = R(θ)+L(θ) has a unique minimizer, and L(θ) satisfies

the restricted Hessian smoothness property. Then ∆θ(t) = 0 if and only if θ(t) = θ.

Proof. Suppose ∆θ is non-zero at θ. Lemma 52 implies that for sufficiently small 0 <

τ ≤ 1,

F(θ + τ∆θ(t))−F(θ) ≤ 0.

However F(θ) is uniquely minimized at θ, which is a contradiction. Thus ∆θ = 0 at θ.

Now we consider the other direction. Suppose ∆θ = 0, then θ is a minimizer of F .

Thus for any direction h and τ ∈ (0, 1], we obtain

∇L(θ)>(τh) +
1

2
τ2h>Hh+R(θ + τh)−R(θ) ≥ 0.
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Rearrange, we obtain

R(θ + τh)−R(θ) ≥ −τ∇L(θ)>h− 1

2
τ2h>Hh

Let DF(θ, h) be the directional derivative of F at θ in the direction h, thus

DF(θ, h) = lim
τ→0

F(θ + τh)−F(θ)

τ

= lim
τ→0

τ∇L(θ)>h+O(τ2) +R(θ + τh)−R(θ)

τ

≥ lim
τ→0

τ∇L(θ)>h+O(τ2)− τ∇L(θ)>h− 1
2τ

2h>Hh

τ
= 0.

Since F is convex, then θ is the minimizer of F .

Then, we show the behavior of ‖∆θ‖H and R(θ + ∆θ) when ∆θ 6= 0.

Lemma 54. Suppose at any point θ ∈ Rd, we have ∇L(θ) ∈ span
(
∇2L(θ)

)
. If ∆θ 6= 0

then either

‖∆θ‖H > 0 or R (θ + ∆θ) < R (θ) .

Proof. Recall that ∆θ is obtained by solving the following sub-problem,

∆θ = argmin
∆θ

R(θ + ∆θ) +∇L(θ)>∆θ + ‖∆θ‖2H .

If ‖∆θ‖H = 0 and ∆θ 6= 0, then

∆θ ⊥ span(H) and ∇L(θ)>∆θ = 0.

Thus

R (θ + ∆θ) < R (θ) .

Notice that R (θ + ∆θ) 6= R (θ), since otherwise ∆θ = 0 is a solution.

Finally, we demonstrate the strict decrease of the objective in each proximal Newton

step.
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Lemma 55. Suppose at any point θ ∈ Rd, we have ∇L(θ) ∈ span
(
∇2L(θ)

)
. If ∆θ 6= 0

then

F(θ + τ∆θ) < F(θ),

for small enough τ > 0.

Proof. By Lemma 54, if ∆θ 6= 0, then either ‖∆θ‖H > 0 or R(θ + ∆θ) −R(θ) < 0. If

it is the first case, then by Lemma 47,

γ = ∇L(θ)>∆θ +R(θ + ∆θ)−R(θ) < −‖∆θ‖H < 0.

It is the second case, then ∇L(θ)>∆θ = 0 and

γ = R(θ + ∆θ)−R(θ) < 0.

Moreover, we have

F(θ + τ∆θ)−F(θ)

= L(θ + τ∆θ)− L(θ) +R(θ + τ∆θ)−R(θ)

≤ τ∇L(θ)>∆θ +
τ2

2
∆θ>H∆θ +O(τ3) +R(θ + τ∆θ)−R(θ)

≤ τ∇L(θ)>∆θ + τR(θ + ∆θ) + (1− τ)R(θ)−R(θ) +
τ2

2
∆θ>H∆θ +O(τ3)

= τ(γ +O(τ)).

where the first inequality is from the restricted Hessian smoothness property. Thus

F(θ + τ∆θ)−F(θ) < 0 for sufficiently small τ > 0.

Since each step, the objective is strictly decreasing, thus the algorithm will eventually

reach the minimum.
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7.5 Proofs for Chapter 6

7.5.1 Proofs of Results in Section 6.2

Proof of Theorem 15

From the directional derivative of f at xG , for any x, we have

0 = lim
t→0

f(xG + tg(x))− f(xG + tx)

t
= ∇f(xG)>(g(x)− x),

which implies xG is a stationary point.

Proof of Theorem 16

Given any v ∈ TxG(x), there exists a smooth path γ : (−1, 1) → G(x) with γ(0) = x

and v = γ′(0). We consider the function `(t) = f(γ(t)). By chain rule, we have

`′(t) = ∇f(γ(t))>γ′(t) and `′′(t) = γ′(t)>∇2f(γ(t))γ′(t) +∇f(γ(t))>γ′′(t). (7.176)

Furthermore, since G is the invariant group, we have `(t) = f(γ(t)) = const and `′(t) =

`′′(t) = 0 for any t ∈ (−1, 1). Since x is stationary, ∇f(γ(0)) = ∇f(x) = 0 and we plug

it into (7.176) to have

0 = `′′(0) = γ′(0)>∇2f(γ(0))γ′(0) = v>Hxv,

which implies that v ∈ Null(Hx). This completes our proof.

7.5.2 Proof of Theorem 17

We separate the analysis into four intermediate components, one for each claim. We first

identifies the stationary point of F(x) in the following lemma. The proof is provided in

Appendix 7.5.2.

Lemma 56. 0, u and −u are the only stationary points of F(x), i.e., ∇F(x) = 0.

Next, we characterize two types of stationary points. We show a stronger result

in the following lemma that x = 0 is a strict saddle point, and ∇2F(x) has both
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positive and negative eigenvalue in the neighborhood of x = 0. The proof is provided

in Appendix 7.5.2.

Lemma 57. x = 0 is a strict saddle point, where ∇2F(0) is negative semi-definite with

λmin(F(0)) = −‖u‖22. Moreover, for any x ∈ R1, ∇2F(x) contains positive eigenvalues

and negative eigenvalues, i.e.

λmax(∇2F(x)) ≥ ‖x‖22 and λmin(∇2F(x)) ≤ −1

2
‖u‖22.

Moreover, we identify that x = ±u are global minima, and F(x) is strongly convex

in a neighborhood of x = ±u. The proof is provided in Appendix 7.5.2.

Lemma 58. For x = ±u, x is a global minimum, and ∇2F(x) is positive definite with

λmin(∇2F(x)) = ‖u‖22. Moreover, for any x ∈ R2, F(x) is locally strongly convex, i.e.

λmin(∇2F(x)) ≥ 1

5
‖u‖22.

Finally, we show that outside the regions R1 and R2, the gradient ∇F(s) has a

sufficiently large norm. The proof is provided in Appendix 7.5.2.

Lemma 59. For any x ∈ R3, we have

‖∇F(x)‖2 >
‖u‖32

8
.

Combining Lemma 56 – Lemma 59, we finish the proof.

Proof of Lemma 56

We provide an algebraic approach to determine stationary points here. Without loss of

generality, we assume ‖u‖2 = 1. Then we write

x = αu+ w,
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where α ∈ R is a constant and w>u = 0. Accordingly, we solve

(xx> − uu>)x = [(αu+ w)(αu+ w)> − uu>](αu+ w)

= [α2uu> + αwu> + αuw> + ww> − uu>](αu+ w)

= α3u+ α2w + αu‖w‖22 + w‖w‖22 − αu
= u(α3 + α‖w‖22 − α) + w(α2 + ‖w‖22) = 0.

1. Suppose α = 0, which implies u>x = 0. Thus we must have (xx> − uu>)x =

x‖x‖22 = 0, which further implies x = 0 is a stationary point.

2. Suppose ‖w‖2 = 0, which implies w = 0. Thus we must have (xx> − uu>)x =

(α3 − α)u = 0, which further implies α = −1 or 1, i.e., x = −u and x = u are

stationary points.

3. Suppose α 6= 0 and w 6= 0. We then require

α2 + ‖w‖22 − 1 = 0 and α2 + ‖w‖22 = 0.

This conflict with each other, which implies there is no stationary point when

α 6= 0 and w 6= 0.

The results are identical to those by applying generic theories in Section 6.2 directly.

Proof of Lemma 57

We first show that x = 0 is a strict saddle point, by verifying that λmin(∇2F(0)) < 0 and

for any neighborhood B of x = 0, there exist y1, y2 ∈ B such that F(y1) ≤ F(0) ≤ F(y2).

From (6.8) we have ∇2F(0) = −uu>. For any z ∈ Rn with ‖z‖2 = 1, we have

z>∇2F(0)z = −(z>u)2 ≥ −‖u‖22,

where the last inequality is from Cauchy-Schwarz. Then we have ∇2F(0) is negative

semi-definite. The minimal eigenvalue is λmin(∇2F(0)) = −‖u‖22 with the corresponding

eigenvector u/‖u‖2 and the maximal eigenvalue is λmax(∇2F(0)) = 0 with the corre-

sponding eigenvector z that satisfies u>z = 0.
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Let y1 = αu, where α ∈ [0, 1], and y2 be any vector that satisfies y>2 u = 0. Then we

have

F(y1) =
1

4
‖uu> − α2uu>‖22 =

(1− α2)

4
‖uu>‖22 ≤

1

4
‖uu>‖22 = F(0) and

F(y2) =
1

4

(
‖uu>‖22 + ‖y2‖22

)
≥ F(0).

Therefore, we have F(y1) ≤ F(0) ≤ F(y2), which implies x = 0 is a strict saddle point.

Next, we show that for any ‖x‖2 ≤ 1
2‖u‖2, ∇2F(x) has both positive and nega-

tive eigenvalues. Given a point x, let zmax(x) and zmin(x) denote the eigenvectors of

λmax(∇2F(x)) corresponding to the largest and smallest eigenvalues respectively. Then

for any x ∈ R1, ∇2F(x) has at least a positive eigenvalue since

z>max(x)∇2F(x)zmax(x) ≥ z>max(0)∇2F(x)zmax(0) = 2(z>max(0)x)2 + ‖x‖22 ≥ ‖x‖22.

On the other hand, we have zmin(0) = u/‖u‖2 and λmin(∇2F(0)) = −‖u‖22 from the

previous discussion. Then for any x ∈ R1, ∇2F(x) has at least a negative eigenvalue

since

z>min(x)∇2F(x)zmin(x) ≤ z>min(0)∇2F(x)zmin(0) = 2(z>min(0)x)2 + ‖x‖22 − ‖u‖22
≤ 3‖x‖22 − ‖u‖22 ≤ −

1

4
‖u‖22.

Proof of Lemma 58

We only discuss the scenario when x = u. The argument for x = −u is similar. From

the Hessian matrix ∇2F(x) in (6.8), we have ∇2F(u) = uu>+‖u‖22 ·In. For any z ∈ Rn

with ‖z‖2 = 1, we have

z>∇2F(u)z = (z>u)2 + ‖u‖22 ≥ ‖u‖2,

then λmin(∇2F(u)) = ‖u‖22 with the corresponding eigenvector z satisfying u>z = 0.

Therefore, ∇2F(u) is positive definite and x = u is a local minimum of F(x). Moreover,
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x = u is a also a global minimum since

F(u) = min
x∈Rn

F(x) = 0.

On the other hand, let x = u+ e. For any x ∈ R2, we have

∣∣∣z>
(
∇2F(x)−∇2F(u)

)
z
∣∣∣ =

∣∣∣z>
(

2(u+ e)(u+ e)> + ‖x‖22 · In − 2uu> − ‖u‖22 · In
)
z
∣∣∣

=
∣∣∣z>

(
2(ee> + eu> + ue>) + (‖e‖22 + 2e>u) · In

)
z
∣∣∣

≤
(
3‖e‖22 + 6‖e‖2‖u‖2

)
· ‖z‖22 ≤

51

64
‖u‖22,

which further implies

z>∇2F(x)z ≥ z>∇2F(u)z −
∣∣∣z>

(
∇2F(x)−∇2F(u)

)
z
∣∣∣ ≥ 1

5
‖u‖22.

Proof of Lemma 59

Let x = αu+ βw‖u‖2, where α, β ∈ R, w>u = 0 and ‖w‖2 = 1. Then we have

‖∇F(x)‖22 = ‖(xx> − uu>)x‖22 = ‖(α2 + β2)‖u‖22 · (αu+ βw‖u‖2)− α‖u‖22 · u‖22
= ‖(α3 + αβ2 − α)‖u‖22 · u+ β(α2 + β2)‖u‖32 · w‖22
= [(α3 + αβ2 − α)2 + β2(α2 + β2)2]‖u‖62

Then region R3 is equivalent to the following set

Xu =

{
x = αu+ βw‖u‖2 | α2 + β2 >

1

4
, (α− 1)2 + β2 >

1

64

}
.

By direct calculation, the infimum of ‖∇F(x)‖2 subject to x ∈ Xu is obtained when

α→ 0 and β → 1
2 , i.e., ‖∇F(x)‖2 > ‖u‖32

8 .

7.5.3 Proof of Theorem 18

The proof scheme is identical to that of the rank 1 case in Theorem 17. However,

the analysis is much more challenging due to the nonisolated strict saddle points and

minimum points.
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First, we identify the stationary points of F(X) in the following lemma. The proof

is provided in Appendix 7.5.3.

Lemma 60. For any X ∈ X , X is a stationary point of F(X).

Next, we characterize two types of stationary points. We show a stronger result

in the following lemma that for any X ∈ X , it is a strict saddle point, where the

Hessian matrix has both positive and negative eigenvalues. Further, the Hessian matrix

has a negative eigenvalue in the neighborhood of X ∈ X . The proof is provided in

Appendix 7.5.3.

Lemma 61. For any X ∈ X\U , X is a strict saddle point with

λmin(∇2F(X)) ≤ −λ2
max(Σ1 − Σ2) and λmax(∇2F(X)) ≥ 2λ2

max(Σ2).

Moreover, for any X ∈ R1, ∇2F(X) contains a negative eigenvalue, i.e.

λmin(∇2F(X)) ≤ −σ
2
r (U)

4
.

Moreover, we show in the following lemma that for any X ∈ U , it is a global min-

imum, and F(X) is only strongly convex along certain directions in the neighborhood

of X ∈ U . The proof is provided in Appendix 7.5.3.

Lemma 62. For any X ∈ U , X is a global minimum of F(X), and ∇2F(X) is positive

semidefinite, which has exactly r(r − 1)/2 zero eigenvalues with the minimum nonzero

eigenvalue at least σ2
r (U). Moreover, for any X ∈ R2, we have

z>∇2F(X)z ≥ 1

5
σ2
r (U)‖z‖22

for any z ⊥ E , where E ⊆ Rn×r is a subspace is spanned by all eigenvectors of ∇2F(KE)

associated with the negative eigenvalues, where E = X − UΨX and ΨX and KE are

defined in (6.10).

Finally, we show in the following lemma that the gradient ∇F(X) has a sufficiently

large norm outside the neighborhood of stationary points. The proof is provided in

Appendix 7.5.3
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Lemma 63. The gradient ∇F(X) has sufficiently large norm in R′3 and R′′3, i.e.,

‖∇F(X)‖F >
σ4
r (U)

9σ1(U)
for any X ∈ R′3, and

‖∇F(X)‖F >
3

4
σ3

1(X) for any X ∈ R′′3.

Combining Lemma 60 – Lemma 63, we finish the proof.

Proof of Lemma 60

We provide an algebraic approach to determine stationary points here. We denote

X = ΦΣ2Θ2 +W , where W>Φ = 0. Accordingly, we solve

(XX> − UU>)X = [(ΦΣ2Θ2 +W )(ΦΣ2Θ2 +W )> − UU>](ΦΣ2Θ2 +W )

= ΦΣ2Θ>2 (Θ2Σ2
2Θ2 +W>W ) +W (Θ2Σ2

2Θ2 +W>W )− ΦΣ2
1Σ2Θ>2 = 0.

1. Suppose Σ2 = 0, which implies

WW>W = 0.

The solution to the equation above is W = 0, which indicates that X = 0 is a

stationary point.

2. Suppose W = 0, which implies

Φ(Σ2
2 − Σ2

1)Σ2Θ>2 = 0.

The solution to the equation above is (Σ2
2 − Σ2

1)Σ2, which indicates that ΦΣ2Θ2

is a stationary point for any Θ2 ∈ Or and Σ2 = Σ1IMask, where IMask is setting

arbitrary number of diagonal elements of the identity matrix as 0 at arbitrary

locations (include 2r combinations). This includes X = 0 and X = UΨ for any

Ψ ∈ Or as special examples.

3. Suppose Σ2 6= 0 and W 6= 0. Since Φ and W have orthogonal column spaces, we
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then require

Θ2Σ2
2Θ2 +W>W = 0,

which further implies

ΦΣ2
1Σ2Θ>2 = 0.

The solution to the equation above is Σ2 = 0, which conflicts with the assumption.

This finishes the proof.

The results are identical to those by applying generic theories in Section 6.2 directly.

Proof of Lemma 61

For notational convenience, denote X̃ = X\U . Associate each X ∈ X̃ with a rank

deficient set S ⊆ [r], S 6= ∅, which is equivalent with saying that Σ2 = Σ1D, where D

is a diagonal matrix with Dii = 0 for all i ∈ S, and Djj = 1 for all j ∈ S = [r]\S. Let

s ∈ S be the smallest index value in S and s ∈ S be the smallest index value in S.

Part 1. We first show that the rank deficient stationary points are strict saddle points,

i.e., their eigenvalue satisfies

λmin(∇2F(X)) ≤ −σ2
s(U)

λmax(∇2F(X)) ≥ 2σ2
s(U).

If S = ∅, i.e., X = 0, then λmax(∇2F(X)) ≥ 0.

We start with the proof of λmin(∇2F(X)). Remind that

KX =




X(∗,1)X
>
(∗,1) X(∗,2)X

>
(∗,1) · · · X(∗,r)X

>
(∗,1)

X(∗,1)X
>
(∗,2) X(∗,2)X

>
(∗,2) · · · X(∗,r)X

>
(∗,2)

...
...

. . .
...

X(∗,1)X
>
(∗,r) X(∗,2)X

>
(∗,r) · · · X(∗,r)X

>
(∗,r)



.

Let X(∗,1), . . . , X(∗,r) be the columns of X. Since X is rank deficient, then there exists a
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unit vector w = [w1, . . . , wr]
> ∈ Rr, ‖w‖2 = 1, such that w>X>Xw = 0. Let φs be the

s-th column of Φ, which satisfies φ>s X(∗,i) = 0 for any i ∈ [r] from the construction of X,

and z = [z>1 , . . . , z
>
r ]> ∈ Rnr be a vector by taking the i-th subvector as zi = w(i)φs ∈ Rn

for all i ∈ [r], then

λmin(∇2F(X)) ≤ z>∇2F(X)z = z>(KX + Ir ⊗XX> +X>X ⊗ In − Ir ⊗ UU>)z

=

r∑

i,j

w(i)w(j)φ
>
s X(∗,j)X

>
(∗,i)φs + φ>s XX

>φs + w>X>Xw − φ>s UU>φs

= 0 + 0 + 0− σ2
s(U) = −σ2

s(U).

The proof of λmax(∇2F(X)) follows analogous analysis. Let a unit vector w =

[w1, . . . , wr]
> ∈ Rr be the singular vector of X>X corresponding to the largest singular

value σ2
s(U), and φs be the s-th column of Φ, i.e., φ>s XX

>φs = φ>s UU
>φs = σ2

s(U). Let

z = [z>1 , . . . , z
>
r ]> ∈ Rnr be a vector by taking the i-th subvector as zi = w(i)φs ∈ Rn

for all i ∈ [r], then

λmax(∇2F(X)) ≥ z>∇2F(X)z = z>(KX + Ir ⊗XX> +X>X ⊗ In − Ir ⊗ UU>)z

=
r∑

i,j

w(i)w(j)φ
>
s X(∗,j)X

>
(∗,i)φs + φ>s XX

>φs + w>X>Xw − φ>s UU>φs

= σ2
s(U) + σ2

s(U) + σ2
s(U)− σ2

s(U) = 2σ2
s(U).

When X = 0, let w ∈ Rr be any unit vector and φ ∈ Rn be a unit vector that

satisfies φ>Φ = 0. Construct z ∈ Rnr as the same way above, then

λmax(∇2F(X)) ≥ z>∇2F(X)z = z>(KX + Ir ⊗XX> +X>X ⊗ In − Ir ⊗ UU>)z

=
r∑

i,j

w(i)w(j)φ
>X(∗,j)X

>
(∗,i)φ+ φ>XX>φ+ w>X>Xw − φ>UU>φ

= 0 + 0 + 0− 0 = 0.

Next, we show that for any neighborhood B of X ∈ X̃ , there exist Y1, Y2 ∈ B such

that F(Y1) ≤ F(X) ≤ F(Y2). Suppose X = ΦΣ1DΘ2 and E1 = ΦΣ1D1Θ2, where
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D +D1 = I, then 〈E1, X〉 = 0. Given α ∈ [0,
√

2], let Y1 = X + αE1, then we have

F(Y1) =
1

4
‖Y1Y

>
1 − UU>‖2F

=
1

4

(
‖XX> − UU>‖2F + α4‖E1E

>
1 ‖2F + 2〈α2E1E

>
1 , XX

> − UU>〉
)

= F(X) +
1

4
〈α2ΦΣ2

1D1Φ>, α2ΦΣ2
1D1Φ> − 2ΦΣ2

1D1Φ>〉

= F(X) +
(α4 − 2α2)

4
ΦΣ4

1D1Φ>

≤ F(X).

Similarly, let E2 = Φ̃Σ̃Θ̃, where Φ̃ ∈ Rn×r has orthogonal columns satisfying Φ̃>Φ =

0, Σ̃ ∈ Rr×r is any diagonal matrix with nonnegative entries, and Θ̃ ∈ Rr×r is any

orthogonal matrix. Given α ≥ 0, let Y2 = X + αE2, then we have

F(Y2) =
1

4
‖Y2Y

>
2 − UU>‖2F =

1

4

(
‖XX> − UU>‖2F + α4‖E2E

>
2 ‖2F

)
≥ F(X).

Part 2. Next, we show that for any X in a neighborhood of saddle points, the Hessian

matrix ∇2F(X) has a negative eigenvalue. Given any X∗ ∈ X̃ with the associated

rank deficient set S∗ ⊆ [r], S 6= ∅, let X = X∗ + E. For any s ∈ S∗, let φs be the

corresponding singular vector of U , i.e., the s-th column of Φ, w ∈ Rr be the singular

vector of X>X associated with the smallest singular value, and z ∈ Rnr be a unit vector

with the i-th subvector as zi = w(i)φs for all i ∈ [r], then

λmin(∇2F(X)) ≤ z>∇2F(X)z = z>(KX + Ir ⊗XX> +X>X ⊗ In − Ir ⊗ UU>)z

=
r∑

i,j

w(i)w(j)φ
>
s X(∗,j)X

>
(∗,i)φs + φ>s XX

>φs + w>X>Xw − φ>s UU>φs

= (φ>s Ew
>)2 + φ>s EE

>φs + σ2
r (X)− σ2

s(U)

≤ 2‖φ>s E‖22 + σ2
r (X)− σ2

s(U). (7.177)

We claim that from (7.177), if σr(X) ≤ 1
2σr(U), we have

λmin(∇2F(X)) ≤ −1

4
σ2
r (U).
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The discussion is addressed by the following cases. Let LΦ denote the column space

of Φ and LΦS∗ be the column space of ΦS∗ .

Case 1: Suppose X is rank deficient, i.e., σr(X) = 0. Without loss of generality, we can

argue that E is also rank deficient. Otherwise, if E is full rank, then there exist some

subspace in columns of X∗ eliminated by the corresponding subspace in columns of E.

Therefore, we can consider the rank is deficient in both X∗ and E in that particular

subspace. Then there exists a subspace L1 ⊂ LΦ such that E = PL1(E)+(I−PLΦ
)(E).

We can always find a s ∈ S∗ such that φs ∈ LΦ\L1, i.e., φ>s PL1x = 0 for any x ∈ Rn,

such that

φ>s E = φ>s (PL1(E) + (I − PLΦ
)(E)) = 0.

This further implies

λmin(∇2F(X)) ≤ −σ2
s(U) ≤ −σ2

r (U).

Case 2: Suppose X has full column rank, and the singular vector y associated with the

smallest singular value σr(X) satisfies ‖PLΦ
(y)‖2 = 0 without loss of generality. This

implies that for any singular vector ỹ of X, there exists s ∈ S∗ such that φ>s (ỹ) = 0.

This further implies φ>s E = 0, then combining with (7.177) we have

λmin(∇2F(X)) ≤ σ2
r (X)− σ2

s(U) ≤ −3

4
σ2
r (U).

Case 3: Suppose X has full column rank, and the singular vector y associated with

the smallest singular value σr(X) satisfies ‖PLΦ
(y)‖2 ∈ (0, 1]. This implies that there

exists s ∈ S∗ such that ‖φ>s E‖2 ≤ σr(X) without loss of generality because there exists

a potential subspace of E that is orthogonal to φs. If the singular vector associated with

smallest singular value of X is not closest to φs for any s ∈ S∗ ⊂ [r], then it must be

closest to some other s′ ∈ [r]\S∗. Then we can always consider the rank is deficient for

s′ without loss of generality and the same argument above holds. This further results

in

λmin(∇2F(X)) ≤ 3σ2
r (X)− σ2

s(U) ≤ −1

4
σ2
r (U).
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Proof of Lemma 62

It is obvious that for any X ∈ U , F(X) = 0, thus it is a global minimum since F(Y ) ≥ 0

for any Y ∈ Rn×r. Without loss of generality, let X = U , i.e., Ψ = I, then we have

∇2F(U) = KU +




U>(∗,1)U(∗,1) · In U>(∗,1)U(∗,2) · In · · · U>(∗,1)U(∗,r) · In
U>(∗,2)U(∗,1) · In U>(∗,2)U(∗,2) · In · · · U>(∗,2)U(∗,r) · In

...
. . .

...
...

U>(∗,r)U(∗,1) · In U>(∗,r)U(∗,2) · In · · · U>(∗,r)U(∗,r) · In



.

Part 1. We first characterize the eigenvectors associated with zero eigenvalues of

∇2F(U). For any i and j chosen from 1, ..., r, where i < j, we define a vector v(i,j) ∈ Rnr

as

v(i,j) = [0>, ...., −U>(∗,j)︸ ︷︷ ︸
i-th block

, ..., U>(∗,i)︸ ︷︷ ︸
j-th block

, ..., 0>]>/
√
‖U(∗,j)‖22 + ‖U(∗,i)‖22,

where −U(∗,j) is the i-th block of v(i,j), and U(∗,i) is the j-th block of v(i,j). Then we

can verify

v(i,j)>∇2F(U)v(i,j) ·
(
‖U(∗,j)‖22 + ‖U(∗,i)‖22

)

= U>(∗,j)U(∗,j) · U>(∗,i)U(∗,i) − U>(∗,j)U(∗,i) · U>(∗,i)U(∗,j) − U>(∗,i)U(∗,i) · U>(∗,j)U(∗,i)

+ U>(∗,i)U(∗,i) · U>(∗,j)U>(∗,j) + U>(∗,j)U(∗,i) · U>(∗,i)U(∗,j) − U>(∗,j)U(∗,j) · U>(∗,i)U(∗,i)

− U>(∗,i)U(∗,i) · U>(∗,j)U(∗,j) + U>(∗,i)U(∗,j) · U>(∗,j)U(∗,i) = 0,

which implies that v(i,j) is an eigenvector of ∇2F(U) and the associated eigenvalue is 0.

We then prove the linear independence among all v(i,j)’s by contradiction. Assume

that all v(i,j)’s are linearly dependent. Then there exist α(i,j)’s with at least two nonzero

α(i,j)’s such that

∑

i<j

α(i,j)v
(i,j) = 0.
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This further implies that for any i < k < j, we have

α(i,k)U(∗,i) − α(k,j)U(∗,j) = 0.

Since U(∗,j) and U(∗,i) are linearly independent, we must have α(i,k) = α(k,j) = 0. This

is contradicted by our assumption. Thus, all v(i,j)’s are linearly independent, i.e., we

can obtain all r(r − 1)/2 eigenvectors associated with zero eigenvalues of ∇2F(U) by

conducting the orthogonalization over all v(i,j). Meanwhile, this also implies that F(X)

is not strongly convex at X = U .

We then show that the minimum nonzero eigenvalue of ∇2F(U) is lower bounded

by σ2
r (U). We consider a vector

z = [z>1 , ..., z
>
r ]> ∈ Rnr,

which is orthogonal to all v(i,j), i.e., for any i < j, we have

z>i U(∗,j) = z>j U(∗,i).

Meanwhile, we also have

z>∇2F(U)z = z>(U>U ⊗ I)z +
r∑

i=1

(z>i U(∗,i))
2 + 2

∑

j<k

(z>j U(∗,k))(z
>
k U(∗,j))

= z>(U>U ⊗ I)z +

r∑

i=1

(z>i U(∗,i))
2 + 2

∑

j<k

(z>j U(∗,k))
2

= z>(U>U ⊗ I)z + z>(I ⊗ UU>)z.

We can construct a valid z as follows: let w = [w1, ..., wr]
> ∈ Rr be the eigenvector

associated with the smallest eigenvalue of U>U , and y be a vector, which is orthogonal

to all U(∗,i)’s. Then we take

zi = w(i)y.

It can be further verified that z>v(i,j) = 0 for any (i, j), and z>(I ⊗ UU>)z = 0. Since

both U>U ⊗ I and I⊗UU> are PSD matrices, then we have from the Weyl’s inequality
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that the minimum nonzero eigenvalue λ+
min(∇2F(U)) of ∇2F(U) satisfies

λ+
min(∇2F(U)) ≥ λ+

min(U>U ⊗ I) = z>(U>U ⊗ I)z = λmin(U>U) = σ2
r (U).

Part 2. Next, we characterize the neighborhood of the global minima. Let E = X−U .

We then have

z>(∇2F(X)−∇2F(U))z

= z>(Ir ⊗ (UE> + EU> + EE>) + (U>E + E>U + E>E)⊗ In +KE + Ẽ1 + Ẽ2)z,

where Ẽ1 and Ẽ2 are defined as

Ẽ1 =




E(∗,1)U
>
(∗,1) E(∗,2)U

>
(∗,1) · · · E(∗,r)U

>
(∗,1)

E(∗,1)U
>
(∗,2) E(∗,2)U

>
(∗,2) · · · E(∗,r)U

>
(∗,2)

...
. . .

...
...

E(∗,1)U
>
(∗,r) E(∗,2)U

>
(∗,r) · · · E(∗,r)U

>
(∗,r)



,

Ẽ2 =




U(∗,1)E
>
(∗,1) U(∗,2)E

>
(∗,1) · · · U(∗,r)E

>
(∗,1)

U(∗,1)E
>
(∗,2) U(∗,2)E

>
(∗,2) · · · U(∗,r)E

>
(∗,2)

...
. . .

...
...

U(∗,1)E
>
(∗,r) U(∗,2)E

>
(∗,r) · · · U(∗,r)E

>
(∗,r)



.



242

Meanwhile, we have

|z>(Ir ⊗ (UE> + EU> + EE>))z| ≤ ‖UE> + EU> + EE>‖2‖z‖22
≤ (2σ1(U)‖E‖2 + ‖E‖22)‖z‖22,

|z>((U>E + E>U + E>E)⊗ In)z| ≤ ‖U>E + E>U + E>E‖2‖z‖22
≤ (2σ1(U)‖E‖2 + ‖E‖22)‖z‖22,

∣∣∣z>
(
Ẽ1 + Ẽ2

)
z
∣∣∣ =

∣∣∣∣∣∣
∑

i,j

z>i E(∗,j)U
>
(∗,i)zj +

∑

i,j

z>i U(∗,j)E
>
(∗,i)zj

∣∣∣∣∣∣

= 2

∣∣∣∣∣∣
∑

i,j

z>i E(∗,j)U
>
(∗,j)zi

∣∣∣∣∣∣
= 2

∣∣∣∣∣
∑

i

z>i EU
>zi

∣∣∣∣∣

≤ 2σ1(U)‖E‖2
r∑

j=1

‖zi‖22 = 2σ1(U)‖E‖2‖z‖22.

where the second equality comes from z>i U(∗,j) = z>j U(∗,i) for all i, j’s by constructing z

as in Part 1.

We then characterize the eigenvectors associated with negative eigenvalues of KE .

For any i and j chosen from 1, ..., r, where i < j, we define

w(i,j) = [0>, ...., −E>(∗,j)︸ ︷︷ ︸
i-th block

, ..., E>(∗,i)︸ ︷︷ ︸
j-th block

, ..., 0>]>/
√
‖E(∗,j)‖22 + ‖E(∗,i)‖22,

where the i-th block of w(i,j) is −E(∗,j), and the j-th block of w(i,j) is E(∗,i). Then we

have

KEw
(i,j) =

2
(
E>(∗,i)E(∗,j)

)2
− 2‖E(∗,i)‖22‖E(∗,j)‖22

‖E(∗,i)‖22 + ‖E(∗,j)‖22︸ ︷︷ ︸
λ̃

w(i,j),

which implies that w(i,j) is an eigenvector of KE and the associated eigenvalue λ̃ is

nonpositive by the Cauchy-Schwarz inequality.

We then prove the linear independence among all w(i,j)’s by contradiction. Assume

that all w(i,j)’s are linearly dependent. Then there exist α(i,j)’s with at least two nonzero
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α(i,j)’s such that

∑

i<j

α(i,j)w
(i,j) = 0.

This further implies that for any i < k < j, we have

α(i,k)E(∗,i) − α(k,j)E(∗,j) = 0.

Since E(∗,j) and E(∗,i) are linearly independent, we must have α(i,k) = α(k,j) = 0. This

is contradicted by our assumption. Thus, all w(i,j)’s are linearly independent, i.e., we

can obtain all r(r − 1)/2 eigenvectors associated with negative eigenvalues of KE by

conducting the orthogonalization over all w(i,j)’s.

We consider to construct z analogous to that in Part 1, which is orthogonal to all

w(i,j)’s. Then we have

z>w(i,j) = z>i E(∗,j) − z>j E(∗,i) = 0 for any i and j.

This further implies

z>




E(∗,1)E
>
(∗,1) E(∗,2)E

>
(∗,1) · · · E(∗,r)E

>
(∗,1)

E(∗,1)E
>
(∗,2) E(∗,2)E

>
(∗,2) · · · E(∗,r)E

>
(∗,2)

...
. . .

...
...

E(∗,1)E
>
(∗,r) E(∗,2)E

>
(∗,r) · · · E(∗,r)E

>
(∗,r)



z

=
∑

i,j

z>i E(∗,j)E
>
(∗,i)zj =

∑

i,j

z>i E(∗,j)E
>
(∗,j)zi = z>(Ir ⊗ EE>)z.

Note that 0 ≤ z>(Ir ⊗ EE>)z ≤ σ2
1(E)‖z‖22, which implies ‖KE‖2 ≤ σ2

1(E). Thus,

there exists no other eigenvector associated with negative eigenvalues of KE besides all

w(i,j)’s. Meanwhile, we also have

λmin(KE) = min
i,j

2(E>(∗,i)E(∗,j))
2 − 2‖E(∗,i)‖22‖E(∗,j)‖22

‖E(∗,i)‖22 + ‖E(∗,j)‖22
≥ −max

i,j

2‖E(∗,i)‖22‖E(∗,j)‖22
‖E(∗,i)‖22 + ‖E(∗,j)‖22

≥ −σ2
1(E).
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Combining all results above, we need

‖E‖2 ≤
σ2
r (U)

8σ1(U)

such that

|z>(∇2F(X)−∇2F(U))z| ≤ (6σ1(U)‖E‖2 + 3‖E‖22)‖z‖22 <
4σ2

r (U)

5
‖z‖22.

This implies that

z>∇2F(X)z ≥ z>∇2F(U)z − |z>(∇2F(X)−∇2F(U))z| > σ2
r (U)

5
‖z‖22,

since z is orthogonal to the eigenvectors corresponding to the zero eigenvalues of∇2F(U)

by the way of its construction.

Proof of Lemma 63

Part 1. We first discuss X ∈ R′3. Recall that ∇F(X) = (XX> − UU>)X. For

notational simplicity, let U = UΨX , where ΨX = arg minΨ∈Or ‖X − UΨ‖2.

Let the compact SVD be X = Φ1Σ1Θ>1 , Φ1,∈ Rn×r, Σ1,Σ2 ∈ Rr×r. Then we have

‖(XX> − UU>)X‖2F ≥ ‖(XX> − UU>)X‖22 ≥ ‖(XX> − UU>)‖22 · σ2
r (X). (7.178)

Moreover, we claim that

‖XX> − UU>‖22 ≥ 2(
√

2− 1)σ2
r (U) · min

Ψ∈Or
‖X − UΨ‖22. (7.179)

We then demonstrate (7.179). Let E = X − UΨX with ΨX = argminΨ∈Or ‖X − UΨ‖22
and the SVD of U>X be U>X = AΣB>, then we have ΨX = AB>. This implies

X>UΨX = BΣB> = Ψ>XU
>X � 0.



245

Further, we have E>UΨX is symmetric since

E>UΨX = X>UΨX −Ψ>XU
>UΨX = Ψ>XU

>X −Ψ>XU
>UΨX = Ψ>XU

>E.

Without loss of generality, we assume ΨX = I, then we have X>U � 0 and E>U =

U>E. Substituting X = U + E and denoting α = 2(
√

2− 1)σ2
r (U), we have

0 ≤ λmax

((
XX> − UU>

)> (
XX> − UU>

))
− αλmax

(
(X − U)> (X − U)

)

≤ λmax

((
XX> − UU>

)> (
XX> − UU>

)
− α (X − U)> (X − U)

)

= λmax

((
E>E

)2
+ 4E>EE>U + 2(E>U)2 + 2U>UE>E − αE>E

)

= λmax

((
E>E +

√
2E>U

)2
+ (4− 2

√
2)E>EE>U + 2U>UE>E − αE>E

)
.

This implies we only need to show that

λmax

(
(E>E +

√
2E>U)2 + (4− 2

√
2)E>EE>U + 2U>UE>E − αE>E

)
≥ 0.

It is sufficient to show that (4− 2
√

2)E>U + 2U>U − αIr � 0. From E = X − U and

X>U � 0, we have

(4− 2
√

2)E>U + 2U>U − αIr = (4− 2
√

2)X>U + 2(
√

2− 1)U>U − αIr � 0,

provided 2(
√

2− 1)U>U − αIr � 0, which is satisfied by the choice of α.

Combining (7.178), (7.179), and minΨ∈Or ‖X − UΨ‖2 > σ2
r(U)

8σ1(U) , we have

‖(XX> − UU>)X‖2F ≥ 2(
√

2− 1)σ4
r (U) · σ4

r (U)

64σ2
1(U)

≥ σ8
r (U)

81σ2
1(U)

.

Part 2. Next, we discuss X ∈ R′′3.

Let U = Φ1Σ1Θ>1 and X = Φ2Σ2Θ>2 be the SVDs, then we have a lower bound of
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‖∇F(X)X>‖F when X and U has the same column space, i.e,

‖∇F(X)X>‖F = ‖XX>XX> − UU>XX>‖F = ‖Φ2Σ4
2Φ>2 − Φ1Σ2

1Φ1Φ2Σ2
2Φ2‖F

=
√
‖Σ4

2‖2F + ‖Σ2
1Φ>1 Φ2Σ2

2‖2F − 2Tr(Φ1Σ2
1Φ>1 Φ2Σ6

2Φ>2 )

≥
√
‖Σ4

2‖2F + ‖Σ2
1Σ2

2‖2F − 2Tr(Σ2
1Σ6

2) ≥ 3

4

√
‖Σ4

2‖2F =
3

4
‖XX>XX>‖F, (7.180)

where the last inequality is from the definition of R′′ that ‖Σ2
2‖2F ≥ 16‖Σ2

1‖2F and the

minimum is achieved when (Σ1)ii = 1
2(Σ2)ii for all i ∈ [r]. Further, we have

‖∇F(X)X>‖F ≤ σ1(X)‖∇F(X)‖F and ‖XX>XX>‖F ≥ σ4
1(X). (7.181)

Combining (7.180) and (7.181), we have the desired result.

7.5.4 Proof of Theorem 19

The proofs are based on the analysis of the general rank r ≥ 1 case in Theorem 18,

combined with the concentration properties of sub-Gaussian matrices {Ai}di=1.

First, we identify the stationary points of F (X) in the following lemma. The proof

is provided in Appendix 7.5.4.

Lemma 64. For any X ∈ U ∪ {0}, X is a stationary point of F (X).

Next, we characterize two types of stationary points. We show in the following

lemma that X = 0 is the only the strict saddle point, and the Hessian matrix has

negative eigenvalues in the neighborhood of X with high probability if d is large enough.

The proof is provided in Appendix 7.5.4

Lemma 65. For any X ∈ R1, if max
{
‖XX> − UU>‖2F, ‖X‖2F, 1

}
≤ N1 holds

for some constant N1 and the number of linear measurements d satisfies d =

Ω
(
N1nr/σ

2
r (U)

)
, then with probability at least 1 − exp (−C1nr) for some constant

C1, ∇2F (X) contains a negative eigenvalue, i.e.

λmin(∇2F (X)) ≤ −σ
2
r (U)

8
.

Moreover, X = 0 is a strict saddle point with λmin(F (0)) ≤ −7
8‖U‖22.
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Moreover, we show in the following lemma that any X ∈ U is a global minimum,

and F (X) is only strongly convex along certain directions in the neighborhood of X ∈ U
with high probability if d is large enough. The proof is provided in Appendix 7.5.4.

Lemma 66. For any X ∈ U , X is a global minimum, and ∇2F (X) is positive semidef-

inite. Moreover, for any X ∈ R2, if max
{
‖XX> − UU>‖2F, 4‖U‖2F, 1

}
≤ N2 holds for

some constant N2 and d satisfies d = Ω
(
N2nr/σ

2
r (U)

)
, then with probability at least

1− exp (−C2nr) for some constant C2, we have

z>∇2F (X)z ≥ 1

10
σ2
r (U)‖z‖22

for any z ⊥ E , where E ⊆ Rn×r is a subspace is spanned by all eigenvectors of ∇2F(KE)

associated with the negative eigenvalues, where E = X − UΨX and ΨX and KE are

defined in (6.10).

Finally, we show in the following lemma that the gradient ∇F (X) is sufficiently

large norm outside the neighborhood of X with high probability if d is large enough.

The proof is provided in Appendix 7.5.4.

Lemma 67. For any X ∈ R′3, if max
{
‖XX> − UU>‖2F, maxk ‖X(∗,k)‖2F

}
≤ N3 holds

for some constant N3 and d satisfies d = Ω
(
N3
√
nr log(nr)σ1(U)/σ4

r (U)
)
, then with

probability at least 1− (C3nr)
−1 for some constant C3, we have

‖∇F (X)‖F >
σ4
r (U)

18σ1(U)
.

Moreover, for any X ∈ R′′3, if d = Ω (n
√
r log(n)), then with probability at least 1 −

(C4n)−2 for some constant C4, we have

‖∇F (X)‖F >
1

4
σ3

1(X).

For X ∈ R1, N1 ≤
(
‖XX>‖F + ‖UU>‖F

)2 ≤ 25‖UU>‖2F. Similarly, we have

N2 ≤ 25‖UU>‖2F and N3 ≤ 25‖UU>‖2F. Then combining ‖UU>‖2F ≤ rσ4
1(U) and

Lemma 64 – Lemma 67, if d satisfies

d = Ω

(
max

{
σ4

1(U)nr2

σ2
r (U)

,
σ5

1(U)r
√
nr log(nr)

σ4
r (U)

, n
√
r log(n)

})
,
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with probability at least 1− 2 exp (−C5nr)− (C3nr)
−1 − (C4n)−2, we have the desired

results.

Proof of Lemma 64

Recall that the gradient F (X) is

∇F (X) =
1

2d

d∑

i=1

〈Ai, XX> − UU>〉 · (Ai +A>i )X.

It is easy to see that X ∈ U ∪ {0} is a stationary point of F (X). Note that due to

the perturbation of the linear mapping A, X ∈ X\U is not a strict saddle point.

Proof of Lemma 65

We only need to verify

∣∣λmin(∇2F (X))− λmin(∇2F(X))
∣∣ ≤ ‖∇2F (X)−∇2F(X)‖2 ≤

σ2
r (U)

8
,

where the first inequality is from Weyl’s inequality and the second inequality holds with

high probability at least 1 − exp (−cnr) if d = Ω(N1nr/σ
2
r (U)) by taking δ = σ2

r (U)/8

in Lemma 5. Similarly, we have λmin(∇2F (0)) ≤ −7
8‖U‖22 with high probability, which

finishes the proof.

Proof of Lemma 66

First of all, it is easy to see that for any X ∈ U , F (X) = 0 attains the minimal

objective value of F , thus X is a global minimum. From (6.18), we have ∇2F (U) =

vec((Ai +A>i )U) · vec((Ai +A>i )U)>, which is positive semidefinite.

The rest of the analysis is analogous to the proof of Lemma 65, where we only need

to verify

∣∣λmax(∇2F (X))− λmax(∇2F(X))
∣∣ ≤ ‖∇2F (X)−∇2F(X)‖2 ≤

σ2
r (U)

10
.

Now we only need to verify the bound of N2. Let Ψ̃ = arg minΨ∈Or ‖X − UΨ‖2 and

Ũ = UΨ̃, then ‖Ũ‖F = ‖U‖F and σi(Ũ) = σi(U) for all i = 1 . . . , r. From minΨ∈Or ‖X−
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UΨ‖2 ≤ σ2
r(U)

8σ1(U) , we have

‖X − Ũ‖F ≤
√
r‖X − Ũ‖2 ≤

√
rσr(U) ≤

√√√√
r∑

i=1

σ2
i (U) = ‖U‖F.

This implies

‖X‖F ≤ ‖X − Ũ‖F + ‖U‖F ≤ 2‖U‖F.

Following the analysis of Lemma 65, we finish the proof.

Proof of Lemma 67

Part 1. We first discuss X ∈ R′3. By taking δ = σ4
r(U)

18σ1(U) in the analysis of Lemma 5,

we have that if d = Ω
(
N3
√
nr log(nr)σ1(U)/σ4

r (U)
)
, then with probability at least

1− (c2nr)
−1,

‖∇F (X)‖F ≥ ‖∇F(X)‖F − ‖∇F (X)−∇F(X)‖F ≥
σ4
r (U)

18σ1(U)
.

Part 2. Next, we discuss X ∈ R′′3. Remind that from (7.180) we have

‖∇F(X)X>‖F ≥
3

4
‖XX>XX>‖F. (7.182)

Moreover, we have

∇F (X)X> =
1

d

d∑

i=1

〈Ai, XX> − UU>〉 · (Ai +A>i )XX>/2︸ ︷︷ ︸
ÎI

.

Ignore the index i for ÎI for convenience. Consider the (j, k)-th entry of ÎI, i.e.

〈A,XX>−UU>〉·(A(j,∗)+A
>
(∗,j))XX

>
(∗,k)/2. Analogous to the analysis in Part 1, since A

has i.i.d. zero mean sub-Gaussian entries with variance 1, we have 〈A,XX>−UU>〉 and

(A(j,∗) +A>(∗,j))XX
>
(∗,k) are also zero mean sub-Gaussian entries with variance bounded

by ‖XX> − UU>‖2F and ‖XX>(∗,k)‖2F respectively.

It is easy to check E(∇F (X)X>) = ∇F(X)X>. By Lemma 77, we
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have ÎI is sub-exponential with variance proxy upper bounded by N4 =

max
{
‖XX> − UU>‖2F, ‖XX>(∗,k)‖2F

}
. Then by the concentration of sub-exponential

random variables,

P
(
|(∇F (X)X>)(j,k) − (∇F(X)X>)(j,k)| > t

)
≤ exp

(
−c1dt

N4

)
.

This implies

P
(
‖∇F (X)X> −∇F(X)X>‖F > t

)
≤ n2 exp

(
− c3dt

N4n

)

= exp

(
− c3dt

N4n
+ 2 log n

)
. (7.183)

On the other hand, we have

‖XX>(∗,k)‖F ≤ ‖XX>‖F,

and

‖XX> − UU>‖F ≤ ‖XX>‖F + ‖UU>‖F ≤ 2‖XX>‖F,

which implies

N4 = max
{
‖XX> − UU>‖2F, ‖XX>(∗,k)‖2F

}
≤ 4‖XX>‖2F. (7.184)

Let X = ΨXΣXΘX be the SVD of X, then

‖XX>‖2F = ‖Σ2
X‖2F =

r∑

i=1

σ4
i (X) ≤

√√√√r
r∑

i=1

σ8
i (X) =

√
r‖XX>XX>‖F. (7.185)

Combining (7.183), (7.184), and (7.185), then if t = 1
2‖XX>XX>‖F and d =

Ω (n
√
r log(n)), with probability at least 1− (c4n)−2, we have

‖∇F (X)X>‖F ≥ ‖∇F(X)X>‖F − ‖∇F (X)X> −∇F(X)X>‖F ≥
1

4
‖XX>XX>‖F.
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Combining with

‖∇F (X)X>‖F ≤ σ1(X)‖∇F (X)‖F and ‖XX>XX>‖F ≥ σ4
1(X),

we have the desired result.

7.5.5 Proof of Corollary 3

For completeness of the analysis, we provide the intermediate results for Corollary 3 as

in the analysis for Theorem 19. Recall that for the noisy scenario, we observe

y(i) = 〈Ai,M∗〉+ z(i),

where {z(i)}di=1 are independent zero mean sub-Gaussian random noise with variance

σ2
z . Denoting M∗ = UU>, we have the corresponding objective, gradient, and Hessian

matrix as

F (X) =
1

4d

d∑

i=1

(
〈Ai, XX> − UU>〉 − z(i)

)2
, (7.186)

∇F (X) =
1

2d

d∑

i=1

(
〈Ai, XX> − UU>〉 − z(i)

)
· (Ai +A>i )X, and (7.187)

∇2F (X) =
1

2d

d∑

i=1

Ir ⊗
(
〈Ai, XX> − UU>〉 − z(i)

)
· (Ai +A>i )

+ vec
(

(Ai +A>i )X
)
· vec

(
(Ai +A>i )X

)>
. (7.188)

We first show the connection between the noisy model and low-rank matrix factor-

ization in the following lemma.

Lemma 68. We have E(F (X)) = F(X)+σ2
z
4 , E(∇F (X)) = ∇F(X), and E(∇2F (X)) =

∇2F(X).

We have from Lemma 68 that the objective F (X) for noisy model (7.186) differs from

the unbiased estimator of the objective F(X) for low-rank matrix factorization (6.9)

only by a quantity depending on σz. Moreover, the gradient (7.187) and the Hessian

matrix (7.188) of the noisy model are unbiased estimators of the counterparts of the
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low-rank matrix factorization problem in (6.11) and (6.12) respectively. These further

allow us to derive the lemmas below directly from the counterparts of the low-rank

matrix factorization problem in Theorem 18, using the concentrations of sub-Gaussian

quantities {Ai}di=1 and {z(i)}di=1. The proofs of the lemmas below are analogous to those

of Lemma 64 – Lemma 67, thus we omit them here.

First, we identify the stationary points of F (X) in the following lemma.

Lemma 69. For any X ∈ U ∪ {0}, X is a stationary point of F (X).

Next, we show in the following lemma that X = 0 is the only the strict saddle point,

and the Hessian matrix has negative eigenvalues in the neighborhood of X with high

probability if d is large enough.

Lemma 70. For any X ∈ R1, if max
{
‖XX> − UU>‖2F + σ2

z , ‖X‖2F, 1
}
≤ N1

holds for some constant N1 and the number of linear measurements d satisfies d =

Ω
(
N1nr/σ

2
r (U)

)
, then with probability at least 1− exp (−C1nr) for some constant C1,

∇2F (X) contains a negative eigenvalue, i.e.

λmin(∇2F (X)) ≤ −σ
2
r (U)

8
.

Moreover, X = 0 is a strict saddle point with λmin(F (0)) ≤ −7
8‖U‖22.

Moreover, we show in the following lemma that any X ∈ U is a global minimum,

and F (X) is only strongly convex along certain directions in the neighborhood of X ∈ U
with high probability if d is large enough.

Lemma 71. For any X ∈ U , X is a global minimum, and ∇2F (X) is positive semidef-

inite. Moreover, for any X ∈ R2, if max
{
‖XX> − UU>‖2F + σ2

z , ‖U‖2F, 1
}
≤ N2 holds

for some constant N2 and d satisfies d = Ω
(
N2nr/σ

2
r (U)

)
, then with probability at least

1− exp (−C2nr) for some constant C2, we have

z>∇2F (X)z ≥ 1

10
σ2
r (U)‖z‖22

for any z ⊥ E , where E ⊆ Rn×r is a subspace is spanned by all eigenvectors of ∇2F(KE)

associated with the negative eigenvalues, where E = X − UΨX .
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Finally, we show in the following lemma that the gradient ∇F (X) is sufficiently

large norm outside the neighborhood of X with high probability if d is large enough.

Lemma 72. For any X ∈ R′3, if

max

{
‖XX> − UU>‖2F + σ2

z , max
k
‖X(∗,k)‖2F, σ1(U)/σ2

r (U)

}
≤ N3

holds for some constant N3 and d satisfies d = Ω
(
N3
√
nr log(nr)σ1(U)/σ4

r (U)
)
, then

with probability at least 1− (C3nr)
−1 for some constant C3, we have

‖∇F (X)‖F >
σ4
r (U)

18σ1(U)
.

Moreover, for any X ∈ R′′3, if d = Ω (n
√
r log(n)), then with probability at least 1 −

(C4n)−2 for some constant C4, we have

‖∇F (X)‖F >
1

4
σ3

1(X).

In terms of the estimation error, the result follows directly from combining [192]

(Lemma 5.3) and [188] (Corollary 2) for the sub-Gaussian case. Note that X̂ is the

optimal solution here. Note that the statistical rate here is consistent with the result

for general noisy setting [246].

7.5.6 Proof of Theorem 20

First, (p1) follows directly from Lemma 64. It is also immediate that for anyX ∈ U∪{0},
we have ∇F (X) = 0, which implies X is a stationary point of F (X). Moreover, for any

X ∈ U , we have F (X) = 0, which implies X is a global minimum.

Then, we have from [247,248] that when Ai has i.i.d. zero mean sub-Gaussian entries

with variance 1 and d ≥ cnr, then with high probability, we have that for any matrices

M1,M2 of rank at most 6r,

∣∣∣∣∣
1

d

d∑

i=1

〈Ai,M1〉2 − ‖M1‖2F

∣∣∣∣∣ ≤ ρ1 ‖M1‖2F . (7.189)

Note that ΨX = argminΨ∈Or ‖X − UΨX‖2F = argminΨ∈Or ‖X − UΨX‖22 = AB>, where
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the SVD of U>X = AΣB>.

Then we demonstrate (p2). Here we state an intermediate result to be used later.

Lemma 73 (Lemma 6 in [219]). Given X,U ∈ Rn×r, and E = X − UΨX , where

ΨX is defined in (6.10), we have
∥∥EE>

∥∥2

F
≤ 2

∥∥XX> − UU>
∥∥2

F
and ‖E‖2F ≤

1
2(
√

2−1)σ2
r(U)

∥∥XX> − UU>
∥∥2

F
.

Let z = [E>(∗,1), . . . , E
>
(∗,r), ] ∈ Rnr, E = X −UΨX , and ΨX is defined in (6.10), then

z>∇2F (X)z

= z>

(
1

2d

d∑

i=1

Ir ⊗ 〈Ai, XX> − UU>〉 · (Ai +A>i )

+ vec((Ai +A>i )X) · vec((Ai +A>i )X)>

)
z

=
1

d

d∑

i=1

(〈
Ai, EE

>
〉2
− 3

〈
Ai, XX

> − UU>
〉2
)

+
2

d

d∑

i=1

〈Ai, XX> − UU>〉 ·
〈

(Ai +A>i )X,E
〉

(7.190)

(i)

≤ (1 + ρ1)
∥∥∥EE>

∥∥∥
2

F
− 3(1− ρ1)

∥∥∥XX> − UU>
∥∥∥

2

F
+ 4 ‖∇F (X)‖∗ ‖E‖2

(ii)

≤ −1

3
σ2
r (U) ‖E‖22 + 4 ‖∇F (X)‖∗ ‖E‖2

where (i) is from (7.189) and Fenchel’s duality theorem, and (ii) is from Lemma 73 by

taking ρ1 ≤ 1
10 and ‖E‖2 ≤ ‖E‖F.

On the other hand, we have from (7.190) and Lemma 73 by taking ρ1 ≤ 1
10 that

z>∇2F (X)z≤(1 + ρ1)
∥∥∥EE>

∥∥∥
2

F
− 3(1− ρ1)

∥∥∥XX> − UU>
∥∥∥

2

F
+ 4 ‖∇F (X)‖F ‖E‖F

≤ −1

3
σ2
r (U) ‖E‖2F + 4 ‖∇F (X)‖F ‖E‖F . (7.191)

For ‖∇F (X)‖F ≤
σ3
r(U)
96 and ‖E‖F ≥

σr(U)
4 , we have from (7.191) that

z>∇2F (X)z ≤ −1

6
σ2
r (U) ‖E‖2F ,
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which implies λmin(∇2F (X)) ≤ −1
6σ

2
r (U). Since we have

{
X | ‖E‖2 ≥

σr(U)

4

}
⊆
{
X | ‖E‖F ≥

σr(U)

4

}
,

then it follows that λmin(∇2F (X)) ≤ −1
6σ

2
r (U) also holds in R1.

To demonstrate (p3), we have the following intermediate results from [192].

Lemma 74 (Lemma 5.7 in [192]). Given X,U ∈ Rn×r, and E = X −UΨX , where ΨX

is defined in (6.10), with ‖E‖F ≤
σr(U)

4 , then with high probability, we have

〈∇F(X), E〉 − 1

20

(∥∥∥XX> − UU>
∥∥∥

2

F
+
∥∥∥EX>

∥∥∥
2

F

)
≥ σ2

r (U)

4
‖E‖2F +

1

5

∥∥∥XX> − UU>
∥∥∥

2

F
.

Lemma 75 (Lemma 5.8 in [192]). Given X,U ∈ Rn×r, E = X − UΨX , where ΨX is

defined in (6.10), with ‖E‖F ≤
‖U‖2

4 , and any V ∈ Rn×r, then with high probability, we

have

|〈∇F(X)−∇F (X), V 〉| ≤ 1

10

∥∥∥XX> − UU>
∥∥∥

F

∥∥∥V X>
∥∥∥

F
.

Lemma 76 (Lemma 5.9 in [192]). Given any X ∈ Rn×r, with high probability, we have

∥∥∥XX> − UU>
∥∥∥

2

F
≥ 1

2 ‖X‖2
‖∇F (X)‖2F .

Then we have

〈∇F(X), E〉 = 〈∇F (X), E〉+ 〈∇F(X)−∇F (X), E〉
(i)

≤ 〈∇F (X), E〉+
1

10

∥∥∥XX> − UU>
∥∥∥

F

∥∥∥EX>
∥∥∥

F

(ii)

≤ 〈∇F (X), E〉+
1

20

(∥∥∥XX> − UU>
∥∥∥

1

F
+
∥∥∥EX>

∥∥∥
2

F

)
(7.192)

where (i) is from Lemma 75 and (ii) is from the inequality of arithmetic and geometric
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means. Then we have

〈∇F (X), E〉
(i)

≥ σ2
r (U)

4
‖E‖2F +

1

5

∥∥∥XX> − UU>
∥∥∥

2

F

(ii)

≥ σ2
r (U)

4
‖E‖2F +

1

10 ‖X‖2
‖∇F (X)‖2F

(iii)

≥ σ2
r (U)

4
‖E‖2F +

1

20 ‖U‖2
‖∇F (X)‖2F ,

where (i) is from Lemma 74 and (7.192), (ii) is from Lemma 76, and (iii) is from

‖X‖2 ≤ 5
4 ‖U‖2 given ‖E‖2 ≤ 1

4 ‖U‖2.

7.5.7 Further Intermediate Results

Proof of Proposition 3

Consider the following regions:

R̃1
4
=

{
Y ∈ Rn×r | σr(Y ) ≤ 1

2
σr(U)

}
,

R̃2
4
=

{
Y ∈ Rn×r | min

Ψ∈Or
‖Y − UΨ‖2 ≤

σ2
r (U)

8σ1(U)

}
, and

R̃3
4
=

{
Y ∈ Rn×r | σr(Y ) >

1

2
σr(U), min

Ψ∈Or
‖Y − UΨ‖2 >

σ2
r (U)

8σ1(U)

}
.

Then it is obvious to see that R̃1 ∪ R̃2 ∪ R̃3 = Rn×r. Moreover, we immediately have

R1 = R̃1 ∩R′′⊥3 and R′3 = R̃3 ∩R′′⊥3 . Since for X ∈ R2, we have for any i ∈ [r],

|σi(X)− σi(U)| ≤ σr(U)

8
,

‖XX>‖F ≤ 2‖UU>‖F always holds, i.e., R2 ⊆ R′′⊥3 , thus R2 = R̃2 ∩ R′′⊥3 also holds.

Then we have

R1 ∪R2 ∪R′3 =
(
R̃1 ∪ R̃2 ∪ R̃3

)
∩R′′⊥3 = R′′⊥3 .
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Proof of Proposition 4

For any α ∈ (0, 1) and Ψ ∈ Or, Ψ 6= Ir, we have

F(αU + (1− α)UΨ) =
1

4
‖(αU + (1− α)UΨ)(αU + (1− α)UΨ)> − UU>‖2F

=
α2(1− α)2

4
‖U(Ψ + Ψ> − 2Ir)U

>‖2F
> 0 = αF(U) + (1− α)F(UΨ).

Proof of Lemma 4

We first demonstrate the objective function. By the definition of F (X), we have

F(X) = E(F (X)) = E

(
1

4d

d∑

i=1

(y(i) − 〈Ai, XX>〉)2

)

=
1

4d

d∑

i=1

E
(
〈Ai, UU>〉 − 〈Ai, XX>〉

)2

=
1

4d

d∑

i=1

E〈Ai, UU> −XX>〉2 =
1

4d

d∑

i=1

E
(

vec(Ai)
>vec(UU> −XX>)

)2

=
1

4d

d∑

i=1

E
(

vec(UU> −XX>)>vec(Ai)vec(Ai)
>vec(UU> −XX>)

)

=
1

4
vec(UU> −XX>)> · 1

d

d∑

i=1

E(vec(Ai)vec(Ai)
>) · vec(UU> −XX>)

=
1

4
‖vec(UU> −XX>)‖22 =

1

4
‖UU> −XX>‖2F,

Next, we demonstrate the gradient and the Hessian matrix. From the independence

of Ai’s, we have

E(∇F (X)) =
1

2
E
(
〈Ai, XX> − UU>〉 · (Ai +A>i )X

)

E(∇2F (X)) =
1

2
E

(
Ir ⊗ 〈Ai, XX> − UU>〉 · (Ai +A>i )

+ vec
(

(Ai +A>i )X
)
· vec

(
(Ai +A>i )X

)>
)
.
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We ignore the index i and denote Ai as A for the convenience of notation. The proof is

analyzed by entry-wise agreement.

For the (j, k)-th entry of gradient ∇F (X), we have

E(∇F (X)(j,k)) =
1

2
E
(
〈A,XX> − UU>〉 · (A+A>)(j,∗)X(∗,k)

)

=
1

2
E

(∑

s,t

A(s,t)(XX
> − UU>)(s,t) ·

∑

l

(A(j,l) +A(l,j))X(l,k)

)

(i)
=

1

2
E

(∑

l

A2
(j,l)(XX

> − UU>)(j,l)X(l,k) +A2
(l,j)(XX

> − UU>)(l,j)X(l,k)

)

=
1

2

(∑

l

E(A2
(j,l))(XX

> − UU>)(j,l)X(l,k) + E(A2
(l,j))(XX

> − UU>)(l,j)X(l,k)

)

(ii)
=

1

2

(∑

l

(XX> − UU>)(j,l)X(l,k) + (XX> − UU>)(l,j)X(l,k)

)

= (XX> − UU>)X(j,k), (7.193)

where (i) is from the independence and zero mean of entries of A, and (ii) is from

σ2 = 1.

We use double index for the Hessian matrix, i.e., denote (jk, st) as the ((k − 1)n+

j, (t − 1)n + s)-th entry of ∇2F (X). We discuss by separating the two components of

∇2F (X). For the first component,

E
(
〈A,XX> − UU>〉 · (A+A>)(j,k)

)

= E

(∑

s,t

A(s,t)(XX
> − UU>)(s,t) · (A(j,k) +A(k,j))

)

= E
(
A2

(j,k)(XX
> − UU>)(j,k) +A2

(k,j)(XX
> − UU>)(k,j)

)

= 2(XX> − UU>)(j,k).

Therefore, we have

1

2
E
(
Ir ⊗ 〈Ai, XX> − UU>〉 · (Ai +A>i )

)
= Ir ⊗ (XX> − UU>). (7.194)
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For the second component

E
(

vec((A+A>)X) · vec((A+A>)X)>(jk,st)

)

= E
(

vec((A+A>)(j,∗)X(∗,k)) · vec((A+A>)(s,∗)X(∗,t))
>
)

= E

((∑

l

A(j,l)X(l,k) +
∑

m

A(m,j)X(m,k)

)
·
(∑

l

A(s,l)X(l,t) +
∑

m

A(m,s)X(m,t)

))
.

Remind that KX =




K11 K21 · · · Kr1

K12 K22 · · · Kr2

...
...

. . .
...

K1r K2r · · · Krr




, where Kkt = X(∗,k)X
>
(∗,t). If j 6= s, we

have

E
(

vec((A+A>)X) · vec((A+A>)X)>(jk,st)

)

= E(2A2
(j,s)X(s,k)X(j,t)) = 2X(s,k)X(j,t) =

(
X>X ⊗ In +KX

)
(jk,st)

. (7.195)

If j = s, we have

E
(

vec((A+A>)X) · vec((A+A>)X)>(jk,jt)

)

= E

(∑

l

A2
(j,l)X(l,k)X(l,t) +

∑

m

A2
(m,j)X(m,k)X(m,t) + 2A2

(j,j)X(j,k)X(j,t)

)

= 2(X>(∗,k)X(∗,t) +X(j,k)X(j,t)) =
(
X>X ⊗ In +KX

)
(jk,jt)

. (7.196)

Combining (7.194), (7.195), and (7.196), we have

E(∇2F (X)(jk,st)) = ∇2F(X)(jk,st).

Proof of Lemma 5

From Lemma 4, we have that E(∇F (X)) = ∇F(X) and E(∇2F (X)) = ∇2F(X). We

start with an intermediate result to show that the product of two sub-Gaussian random

variables is a sub-exponential random variable.
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Lemma 77. Suppose X and Y are two zero mean sub-Gaussian random variables with

variance proxies σ2
1 and σ2

2 respectively. Let σ2 = max{σ2
1, σ

2
2}, then XY is a sub-

exponential random variable with variance proxy σ2, i.e. there exist some constant c

such that for all t > 0,

P(|XY − E(XY )| > t) ≤ exp
(
−ct/σ2

)
. (7.197)

Proof. By the definition of sub-exponential random variables [237], we have that if Z is

a centered sub-exponential random variable, we have

‖Z‖ψ1 = sup
p≥1

1

p
(E|Z|p)1/p = c1σ

2
Z ,

where ‖Z‖ψ1 is the sub-exponential norm of Z and σ2
Z is the proxy of the variance of

Z. Using basic inequalities, we have

|‖XY |‖ψ1 = sup
p≥1

1

p
(E(XY )p)

1
p ≤ sup

p≥1
p−

1
2 (EXp)

1
p p−

1
2 (EY p)

1
p = c2σ1σ2 ≤ c2σ

2.

where c2 is a constant and the last equality holds since X and Y are sub-Gaussian

random variables. Thus, XY is a sub-exponential random variable with variance proxy

σ2. Then for general uncentered sub-exponential XY , we have that (7.197) holds for

all t > 0 for some constant c.

Part 1: The perturbation result of the Hessian matrix is discussed first. To bound

‖∇2F (X)−∇2F(X)‖2, we first bound |z>∇2F (X)z− z>∇2F(X)z| for any unit vector

z ∈ Rnr, and apply ε-Net argument. Let z = [z>1 , . . . , z
>
r , ] ∈ Rnr be a unit vector,
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where zi ∈ Rn for all i = 1, . . . , r, then

z>∇2F (X)z

= z>

(
1

2d

d∑

i=1

Ir ⊗ 〈Ai, XX> − UU>〉 · (Ai +A>i )

+ vec((Ai +A>i )X) · vec((Ai +A>i )X)>

)
z

=
1

d

d∑

i=1

1

2

r∑

t=1

z>t (Ai +A>i )zt · 〈Ai, XX> − UU>〉
︸ ︷︷ ︸

Îi

+
1

d

d∑

i=1

1

2

(
r∑

t=1

zt(Ai +A>i )X(∗,t)

)2

︸ ︷︷ ︸
ÎIi

. (7.198)

On the other hand,

z>∇2F(X)z = z>
(
Ir ⊗ (XX> − UU>)

)
z

︸ ︷︷ ︸
I

+ z>
(
X>X ⊗ In +KX

)
z

︸ ︷︷ ︸
II

.

From the analysis of Lemma 4, we have E(̂Ii) = I and E(ÎIi) = II.

We ignore the index i of Ai for convenience. To bound Îi, we have

1

2

r∑

t=1

z>t (A+A>)zt · 〈A,XX> − UU>〉
︸ ︷︷ ︸

Î

=

n∑

j=1

n∑

k=1

r∑

t=1

zt(j)zt(k)A(j,k)

︸ ︷︷ ︸
ˆIII

·
n∑

j=1

n∑

k=1

(
XX> − UU>

)
(j,k)

A(j,k)

︸ ︷︷ ︸
V̂I

.

Since A has i.i.d. zero mean sub-Gaussian entires with variance 1, then ˆIII is also a

zero mean sub-Gaussian with variance upper bounded by 1 since ‖z‖2 = 1, and V̂I is

also a zero mean sub-Gaussian with variance upper bounded by ‖XX> − UU>‖2F. By

Lemma 77, we have each Îi is sub-exponential with proxy σ2
1 = max{1, ‖XX>−UU>‖2F}.
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Then, from the concentration of sum of sub-exponential random variables, there exist

some constant c1 such that

P

(∣∣∣∣∣
1

d

d∑

i=1

Îi − I

∣∣∣∣∣ > t1

)
≤ exp

(
−c1dt1

σ2
1

)
. (7.199)

On the other hand, ÎIi is sub-exponential with variance proxy upper bounded by

σ2
2 = ‖X‖2F since

∑r
t=1 zt(Ai + A>i )X(∗,t) is a zero mean sub-Gaussian, then from the

concentration of sum of sub-exponential random variables, there exist some constant c2

such that

P

(∣∣∣∣∣
1

d

d∑

i=1

ÎIi − II

∣∣∣∣∣ > t2

)
≤ exp

(
−c2dt2

σ2
2

)
. (7.200)

Let t1 = t2 = δ/4, then combining (7.198), (7.199), and (7.200), for N1 ≥ max
{
σ2

1, σ
2
2

}
,

we have

P
(∣∣∣z>(∇2F (X)−∇2F(X))z

∣∣∣ > δ

2

)
≤ exp

(
−c3dδ

σ2
1

)
+ exp

(
−c4dδ

σ2
2

)
≤ 2 exp

(
−c5dδ

N1

)
,

(7.201)

Using the ε-Net, we have

‖∇2F (X)−∇2F(X)‖2 = sup
z∈Rnr

∣∣∣z>(∇2F (X)−∇2F(X))z
∣∣∣

≤ (1− 2ε)−1 sup
z∈Nε

∣∣∣z>(∇2F (X)−∇2F(X))z
∣∣∣ . (7.202)

Combining (7.201) and (7.202), if we take ε = 1/4, then the covering number of a unit

sphere of Rnr can be bounded as |Nε| ≤ 10nr ≤ exp (3nr), we have

P
(
‖∇2F (X)−∇2F(X)‖2 > δ

)
≤ P

(
sup

z∈N1/4

∣∣∣z>(∇2F (X)−∇2F(X))z
∣∣∣ > δ

)

≤ 2|N1/4| exp

(
−c5dδ

N1

)
≤ 2 exp

(
3nr − c5dδ

N1

)
.
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If d = Ω(N1nr/δ), then with probability at least 1− exp (−c6nr), we have

‖∇2F (X)−∇2F(X)‖2 ≤ δ.

Part 2: The perturbation result of the gradient is discussed then. Remind that

∇F (X) =
1

d

d∑

i=1

1

2
〈Ai, XX> − UU>〉 · (Ai +A>i )X
︸ ︷︷ ︸

Î

.

Ignore the index i for Î for convenience. Consider the (j, k)-th entry of Î, i.e.,

1

2
〈A,XX> − UU>〉 · (A(j,∗) +A>(∗,j))X(∗,k).

Analogous to the analysis of Part 1, since A has i.i.d. zero mean sub-Gaussian entries

with variance 1, we have 〈A,XX> − UU>〉 and (A(j,∗) + A>(∗,j))X(∗,k) are also zero

mean sub-Gaussian entries with variance bounded by ‖XX> − UU>‖2F and ‖X(∗,k)‖2F
respectively.

By Lemma 77, we have that Î is sub-exponential with variance proxy upper bounded

by

N2 ≥ max
{
‖XX> − UU>‖2F, ‖X(∗,k)‖2F

}
.

Then by the concentration of sub-exponential random variables,

P
(
|∇F (X)(j,k) −∇F(X)(j,k)| > t

)
≤ exp

(
−c1dt

N2

)
.

This implies

P (‖∇F (X)−∇F(X)‖F > t) ≤ nr exp

(
− c1dt

N2
√
nr

)
= exp

(
− c1dt

N2
√
nr

+ log(nr)

)
.

Let δ = t, then if d = Ω (N2
√
nr log(nr)/δ), with probability at least 1 − (c2nr)

−1, we
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have

‖∇F (X)−∇F(X)‖F ≤ δ.

Combining Part 1 and Part 2, we have the desired result.

Proof of Lemma 68

We first demonstrate the objective function. By the definition of F (X), we have

F(X) = E(F (X)) = E

(
1

4d

d∑

i=1

(y(i) − 〈Ai, XX>〉)2

)

=
1

4d

d∑

i=1

E
(
〈Ai, UU>〉+ z(i) − 〈Ai, XX>〉

)2

=
1

4d

d∑

i=1

E
(
〈Ai, UU> −XX>〉+ z(i)

)2

=
1

4d

d∑

i=1

E
(

vec(Ai)
>vec(UU> −XX>) + z(i)

)2

(i)
=

1

4d

d∑

i=1

E
(

vec(UU> −XX>)>vec(Ai)vec(Ai)
>vec(UU> −XX>) + z2

(i)

)

=
1

4
vec(UU> −XX>)> · 1

d

d∑

i=1

E(vec(Ai)vec(Ai)
>) · vec(UU> −XX>) +

σ2
z

4

=
1

4
‖vec(UU> −XX>)‖22 +

σ2
z

4
=

1

4
‖UU> −XX>‖2F +

σ2
z

4
,

where (i) from the fact that z(i) has zero mean and is independent of Ai.

Next, we demonstrate the gradient and the Hessian matrix. From the independence



265

of Ai’s, we have

E(∇F (X)) =
1

2
E
((
〈Ai, XX> − UU>〉 − z(i)

)
· (Ai +A>i )X

)

E(∇2F (X)) =
1

2
E

(
Ir ⊗

(
〈Ai, XX> − UU>〉 − z(i)

)
· (Ai +A>i )

+ vec
(

(Ai +A>i )X
)
· vec

(
(Ai +A>i )X

)>
)
.

We ignore the index i and denote Ai (z(i)) as A (z) for the convenience of notation. The

proof is analyzed by entry-wise agreement.

For the (j, k)-th entry of gradient ∇F (X), we have

E(∇F (X)(j,k)) =
1

2
E
((
〈A,XX> − UU>〉 − z

)
· (A+A>)(j,∗)X(∗,k)

)

(i)
=

1

2
E

(∑

s,t

A(s,t)(XX
> − UU>)(s,t) ·

∑

l

(A(j,l) +A(l,j))X(l,k)

)

(ii)
= (XX> − UU>)X(j,k)

where (i) is from the zero mean of z and (ii) is from (7.193) in the proof of Lemma 4.

We use double index again for the Hessian matrix, i.e., denote (jk, st) as the ((k −
1)n+j, (t−1)n+s)-th entry of ∇2F (X). We discuss by separating the two components

of ∇2F (X). For the first component,

E
((
〈A,XX> − UU>〉 − z

)
· (A+A>)(j,k)

)

= E

(∑

s,t

A(s,t)(XX
> − UU>)(s,t) · (A(j,k) +A(k,j))

)

= E
(
A2

(j,k)(XX
> − UU>)(j,k) +A2

(k,j)(XX
> − UU>)(k,j)

)

= 2(XX> − UU>)(j,k).

The rest of the analysis is identical to that of Lemma 4.
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[244] Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data:

methods, theory and applications. Springer Science &amp; Business Media, 2011.

[245] Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon,

Jonathan Taylor, and Ryan J Tibshirani. Strong rules for discarding predictors in

Lasso-type problems. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 74(2):245–266, 2012.

[246] Sahand Negahban and Martin J Wainwright. Restricted strong convexity and

weighted matrix completion: Optimal bounds with noise. Journal of Machine

Learning Research, 13(1):1665–1697, 2012.

[247] Emmanuel J Candes and Yaniv Plan. Tight oracle inequalities for low-rank matrix

recovery from a minimal number of noisy random measurements. IEEE Transac-

tions on Information Theory, 57(4):2342–2359, 2011.

[248] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive

sensing, volume 1. Birkhäuser Basel, 2013.
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