14 research outputs found

    Salient Object Detection Techniques in Computer Vision-A Survey.

    Full text link
    Detection and localization of regions of images that attract immediate human visual attention is currently an intensive area of research in computer vision. The capability of automatic identification and segmentation of such salient image regions has immediate consequences for applications in the field of computer vision, computer graphics, and multimedia. A large number of salient object detection (SOD) methods have been devised to effectively mimic the capability of the human visual system to detect the salient regions in images. These methods can be broadly categorized into two categories based on their feature engineering mechanism: conventional or deep learning-based. In this survey, most of the influential advances in image-based SOD from both conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency modeling trends with key issues, core techniques, and the scope for future research work have been discussed in the context of difficulties often faced in salient object detection. Results are presented for various challenging cases for some large-scale public datasets. Different metrics considered for assessment of the performance of state-of-the-art salient object detection models are also covered. Some future directions for SOD are presented towards end

    Advanced Visual Computing for Image Saliency Detection

    Get PDF
    Saliency detection is a category of computer vision algorithms that aims to filter out the most salient object in a given image. Existing saliency detection methods can generally be categorized as bottom-up methods and top-down methods, and the prevalent deep neural network (DNN) has begun to show its applications in saliency detection in recent years. However, the challenges in existing methods, such as problematic pre-assumption, inefficient feature integration and absence of high-level feature learning, prevent them from superior performances. In this thesis, to address the limitations above, we have proposed multiple novel models with favorable performances. Specifically, we first systematically reviewed the developments of saliency detection and its related works, and then proposed four new methods, with two based on low-level image features, and two based on DNNs. The regularized random walks ranking method (RR) and its reversion-correction-improved version (RCRR) are based on conventional low-level image features, which exhibit higher accuracy and robustness in extracting the image boundary based foreground / background queries; while the background search and foreground estimation (BSFE) and dense and sparse labeling (DSL) methods are based on DNNs, which have shown their dominant advantages in high-level image feature extraction, as well as the combined strength of multi-dimensional features. Each of the proposed methods is evaluated by extensive experiments, and all of them behave favorably against the state-of-the-art, especially the DSL method, which achieves remarkably higher performance against sixteen state-of-the-art methods (including ten conventional methods and six learning based methods) on six well-recognized public datasets. The successes of our proposed methods reveal more potential and meaningful applications of saliency detection in real-life computer vision tasks

    Quantum Cuts: A Quantum Mechanical Spectral Graph Partitioning Method for Salient Object Detection

    Get PDF
    The increasing number of cameras, their availability to the end user and the social media platforms gave rise to the massive repositories of today’s Big Data. The largest portion of this data corresponds to unstructured image and video collections. This fact motivates the development of algorithms that would help efficient management and organization of the Big Data. This processing usually involves high level Computer Vision tasks such as object detection and recognition whose accuracy and complexity are therefore crucial. Salient object detection, which can be defined as highlighting the regions that visually stand out from the rest of the environment, can both reduce the complexity and improve the accuracy of object detection and recognition. Thus, recently there has been a growing interest in this topic. This interest is also due to many other applications of salient object detection such as media compression and summarization.This thesis focuses on this crucial problem and presents novel approaches and methods for salient object detection in digital media, using the principles of Quantum Mechanics. The contributions of this thesis can be categorized chronologically into three parts. First part is constituted of a direct application of ideas originally proposed for describing the wave nature of particles in Quantum Mechanics and expressed through Schrödinger’s Equation, to salient object detection in images. The significance of this contribution is the fact that, to the best of our knowledge, this is the first study that proposes a realizable quantum mechanical system for salient object proposals yielding an instantaneous speed in a possible physical implementation in the quantum scale.The second and main contribution of this thesis, is a spectral graph based salient object detection method, namely Quantum-Cuts. Despite the success of spectral graph based methods in many Computer Vision tasks, traditional approaches on applications of spectral graph partitioning methods offer little for the salient object detection problem which can be mapped as a foreground segmentation problem using graphs. Thus, Quantum-Cuts adopts a novel approach to spectral graph partitioning by integrating quantum mechanical concepts to Spectral Graph Theory. In particular, the probabilistic interpretation of quantum mechanical wave-functions and the unary potential fields in Quantum Mechanics when combined with the pairwise graph affinities that are widely used in Spectral Graph Theory, results into a unique optimization problem that formulates salient object detection. The optimal solution of a relaxed version of this problem is obtained via Quantum-Cuts and is proven to efficiently represent salient object regions in images.The third part of the contributions cover improvements on Quantum-Cuts by analyzing the main factors that affect its performance in salient object detection. Particularly, both unsupervised and supervised approaches are adopted in improving the exploited graph representation. The extensions on Quantum-Cuts led to computationally efficient algorithms that perform superior to the state-of-the-art in salient object detectio

    Innovations in Medical Image Analysis and Explainable AI for Transparent Clinical Decision Support Systems

    Get PDF
    This thesis explores innovative methods designed to assist clinicians in their everyday practice, with a particular emphasis on Medical Image Analysis and Explainability issues. The main challenge lies in interpreting the knowledge gained from machine learning algorithms, also called black-boxes, to provide transparent clinical decision support systems for real integration into clinical practice. For this reason, all work aims to exploit Explainable AI techniques to study and interpret the trained models. Given the countless open problems for the development of clinical decision support systems, the project includes the analysis of various data and pathologies. The main works are focused on the most threatening disease afflicting the female population: Breast Cancer. The works aim to diagnose and classify breast cancer through medical images by taking advantage of a first-level examination such as Mammography screening, Ultrasound images, and a more advanced examination such as MRI. Papers on Breast Cancer and Microcalcification Classification demonstrated the potential of shallow learning algorithms in terms of explainability and accuracy when intelligible radiomic features are used. Conversely, the union of deep learning and Explainable AI methods showed impressive results for Breast Cancer Detection. The local explanations provided via saliency maps were critical for model introspection, as well as increasing performance. To increase trust in these systems and aspire to their real use, a multi-level explanation was proposed. Three main stakeholders who need transparent models have been identified: developers, physicians, and patients. For this reason, guided by the enormous impact of COVID-19 in the world population, a fully Explainable machine learning model was proposed for COVID-19 Prognosis prediction exploiting the proposed multi-level explanation. It is assumed that such a system primarily requires two components: 1) inherently explainable inputs such as clinical, laboratory, and radiomic features; 2) Explainable methods capable of explaining globally and locally the trained model. The union of these two requirements allows the developer to detect any model bias, the doctor to verify the model findings with clinical evidence, and justify decisions to patients. These results were also confirmed for the study of coronary artery disease. In particular machine learning algorithms are trained using intelligible clinical and radiomic features extracted from pericoronaric adipose tissue to assess the condition of coronary arteries. Eventually, some important national and international collaborations led to the analysis of data for the development of predictive models for some neurological disorders. In particular, the predictivity of handwriting features for the prediction of depressed patients was explored. Using the training of neural networks constrained by first-order logic, it was possible to provide high-performance and explainable models, going beyond the trade-off between explainability and accuracy
    corecore