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Abstract 

Saliency detection is a category of computer vision algorithms that aims to filter out the 

most salient object in a given image. Existing saliency detection methods can generally 

be categorized as bottom-up methods and top-down methods, and the prevalent deep 

neural network (DNN) has begun to show its applications in saliency detection in recent 

years. However, the challenges in existing methods, such as problematic pre-assumption, 

inefficient feature integration and absence of high-level feature learning, prevent them 

from superior performances. 

In this thesis, to address the limitations above, we have proposed multiple novel 

models with favorable performances. Specifically, we first systematically reviewed the 

developments of saliency detection and its related works, and then proposed four new 

methods, with two based on low-level image features, and two based on DNNs. The 

regularized random walks ranking method (RR) and its reversion-correction-improved 

version (RCRR) are based on conventional low-level image features, which exhibit 

higher accuracy and robustness in extracting the image boundary based foreground / 

background queries; while the background search and foreground estimation (BSFE) 

and dense and sparse labeling (DSL) methods are based on DNNs, which have shown 

their dominant advantages in high-level image feature extraction, as well as the 

combined strength of multi-dimensional features. Each of the proposed methods is 

evaluated by extensive experiments, and all of them behave favorably against the state-

of-the-art, especially the DSL method, which achieves remarkably higher performance 

against sixteen state-of-the-art methods (including ten conventional methods and six 
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learning based methods) on six well-recognized public datasets. The successes of our 

proposed methods reveal more potential and meaningful applications of saliency 

detection in real-life computer vision tasks. 
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1 Introduction 

1.1 Background of Saliency Detection 

With the rapid uptake of smart devices and social networks, we are now immersed in 

massive amounts of digital media data every day. Considering the scarcity of our 

attention and time, it is urgent and advantageous to filter out only the most useful 

message for further processing among all of the available data to us. This concept 

equates to the saliency detection process when applied to images.  

Saliency is usually referred to as local contrast [5-7], which typically originates from 

contrasts between objects and their surroundings, such as differences in color, texture, 

shape, etc. This mechanism measures intrinsically salient stimuli to the vision system 

that primarily attracts human attention in the early stage of visual exposure to an input 

image [6]. Intermediate and higher visual processes may automatically judge the 

importance of different regions of the image, and conduct detailed processes only on the 

“salient object” that mostly related to the current task, while neglecting the remaining 

“background” regions [8]. Figure 1.1 shows a few examples of natural images. As seen 

in Figure 1.1(c), the flower, the cookies, the girl, the cat and the toy car usually attract 

the most visual attention in their corresponding images, and thus are regarded as salient 

objects. On the other hand, Figure 1.1(b) shows illustrative results of saliency detection, 

or the “saliency maps” in formal terms. The general objective of saliency detection is to 

provide saliency maps of the input images as close to the ground truth as possible.  

 

Chapter 
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Figure 1.1 Examples of salient objects in natural images. (a) original images; (b) example saliency 

detection results [2]; (c) ground truth. 
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1.2 Significance of Research 

Human visual saliency detection has long been studied by cognition scientists and has 

recently draw much of interest in the computer vision community mainly because of its 

assistance in finding the objects or regions that efficiently represent a scene, and thus 

harness complex vision problems such as scene understanding. Early researches of 

saliency detection mostly focus on human eye fixation [5], [9], [10], which approximates 

the visual attention of semantic objects in a given image, such as human faces, texts, or 

daily objects [9], [11]. The detection results of eye fixations, however, are often 

presented as sparse dots without details about the objects. On the other hand, the recent 

researches of saliency detection are capable of locating and segmenting the whole salient 

object with complete boundary details [12], and thus has received broad research 

interests. The detection of the salient objects in images is of significant importance, as it 

not only improves the subsequent image processing and analyses, but also directs the 

limited computational resources to more efficient solutions. Saliency detection has 

received recognized success in various areas, such as computer vision, graphics, and 

robotics. More specifically, the proposed models have been broadly applied in object 

detection and recognition [13-20], object discovery [21], [22], photo collage and 

thumbnailing [23-25], image quality assessment [26-28], image segmentation [29-32], 

content based image retrieval [21], [33-35], image editing and manipulating [30], [36-

38], image and video compression [39], [40], video summarization [41-43], visual 

tracking [28], [44-49], and human-robot interaction [50], [51]. 
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1.3 Existing Challenges 

Since emergence, intensive researches have been conducted on saliency detection. The 

majority of existing saliency detection methods is based on hand-crafted low-level 

features. However, there are multiple critical issues on the existing methods that prevent 

them from perfection. 

1.3.1 Problematic Pre-assumptions 

Among many conventional low-level feature based saliency detection methods, specific 

pre-assumptions or prior knowledge are required in order to make them properly 

functioning. Most of the pre-assumptions are largely empirical, e.g. image boundary 

regions are assumed as background [52], [53], or image central [54], [55] regions are 

assumed as foreground. These pre-assumptions are easily violated on broader datasets 

with more unusual-patterned images, such as the example in Figure 1.2, where the upper 

two images have salient objects on the boundary, while the lower two images have 

background regions in the center. The atypical patterns of these images lead to the 

failure of conventional low-level feature based methods, as seen in Figure 1.2(b). To 

overcome the limitations above, multiple more robust improvements of the pre-

assumptions have been proposed, which will be discussed in Chapters 3 and 4. 
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Figure 1.2 Examples showing the problematic pre-assumptions in conventional low-level feature 

based saliency detection methods. (a) original images; (b) failed detection results by a conventional 

low-level feature based method [52]; (c) ground truth. 

1.3.2 Ineffective Feature Integration 

Among the hand-crafted low-level features in conventional methods, each one is usually 

advantageous only on a specific aspect, e.g. color histogram is good at differentiating 

texture patterns, frequency spectrum is good at differentiating energy patterns, and SIFT 
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[56] is good at object recognition with varied environments, etc. It is generally difficult 

to combine different low-level features into a single algorithm to benefit from them all. 

Although some integration trials have been made [57], [58], these specially designed 

algorithms are nevertheless bulky and inefficient due to the large number of features 

involved. On the other hand, a more effective means of feature integration has been 

proposed, which will be discussed in Chapter 5. 

1.3.3 Absence of High-Level Feature Abstraction and Learning 

Without feature abstraction and learning, the conventional low-level feature based 

methods are likely to encounter difficulty regarding low contrast images and complex 

patterned images. Some typical examples of this issue are exhibited in Figure 1.3, where 

the upper two images lead to the failed results on low contrast images, while the lower 

two images lead to the failed results on complex patterned images. On the other hand, 

however, this drawback can be readily solved via high-level feature extraction and 

learning. The recently prevalent deep neural networks (DNNs), especially the 

convolutional neural networks (CNNs), are proved to be of great assistance in high-level 

feature extraction of saliency detection. This will be discussed in Chapter 5. 
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Figure 1.3 The challenges regarding low contrast images and complex images. (a) original images; (b) 

failed detection results by a conventional low-level feature based method [54]; (c) ground truth. 

1.4 Contributions 

To address the issues above in existing saliency detection methods, we have conducted 

extensive research on three major aspects, and have proposed four novel saliency 

detection methods to provide improved saliency detection performances. The major 

contributions are summarized below. 
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1.4.1 Conventional Low-Level Feature Based Saliency Detection 

We first explore better exploitations of the hand crafted features of conventional low-

level feature based saliency detection methods, and propose the regularized random 

walks ranking (RR) method, which has the following contributions: 

(1) To improve the background saliency estimation, we first filter out one of the four 

boundaries of the input image that most unlikely belong to the background, unlike 

conventional methods that use all four boundaries as background reference [52], [53]. 

This erroneous boundary removal process effectively eliminates the image boundary 

with boundary-adjacent foreground superpixels, and thus neutralizes their negative 

influences in the saliency estimations. 

(2) To improve the foreground saliency estimation, we propose the regularized 

random walks ranking algorithm, which consists of a pixel-wise graph term and a newly 

formulated fitting constraint to take local image data and prior estimation into account. 

This fitting constraint is able to utilize the entire saliency estimation results from the 

former steps instead of the selected seed points alone. Besides, regularized random 

walks ranking is independent of superpixel segmentation, and can generate pixel-wised 

saliency maps that reflect full-details of the input image. 

The RR method has been published on CVPR 2015 [1], and will be fully described 

in Chapter 3.  

1.4.2 Improved Low-Level Feature Based Saliency Detection 

To improve the performance of the RR method in Section 1.4.1, we have conducted 

further research about the boundary regions in an image, and propose the reversion 
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correction and regularized random walks ranking (RCRR) method, which is a direct 

upgrade of the RR method. RCRR has the following contributions: 

(1) We propose the reversion correction (RC) process, which, unlike the RR method 

that completely removes one of the problematic boundaries, locates and eliminates the 

boundary-adjacent foreground superpixels, which is more accurate and can maximally 

preventing the saliency reversions (will be discussed later) from emerging. This 

mechanism also leads to increased robustness of the algorithm. 

(2) We present the extensibility of our method as a saliency optimization algorithm, 

which can be directly applied on existing saliency detection methods for performance 

improvement purposes. 

(3) We also propose the boundary-adjacent object saliency (BAOS) dataset, which is 

comprised of 200 images that have large proportions of the salient objects on the image 

boundaries. This dataset provides an objective evaluation for saliency detection methods’ 

performance on boundary-adjacent salient objects. 

The RCRR method has been publish on IEEE TIP [2], and will be fully described in 

Chapter 4. 

1.4.3 Deep Neural Network Based Saliency Detection 

Among various recent research works in computer vision, the deep neural network 

(DNN) [59] has shown particular success in high-level feature extraction, which grants 

us an excellent machine learning tool to overcome the difficulty of conventional low-

level feature based saliency detection methods when facing low contrast images and 

complex patterned images. We propose two independent DNN based methods, the 
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adaptive background search and foreground estimation (BSFE) and the dense and sparse 

labeling (DSL). The contributions of the two methods are listed below. 

For BSFE: 

(1) We propose an adaptive background extractor, which approximates background 

regions semantically and cognitively, contributing to higher detection accuracy; 

(2) We apply the auto-encoder (AE) hierarchically for foreground estimation, which 

is guided by the background mask, to reconstruct the final saliency map with higher 

performance. 

And for DSL: 

 (1) We combine the DNN-based dense labeling (DL) and sparse labeling (SL) 

together for initial saliency estimation, in which DL conducts dense labeling that 

maximally preserves the global image information and provides accurate location 

estimation of the salient object, while SL conducts sparse labeling that focuses more on 

local features of the salient object; 

(2) For the SL step, both low-level features and RGB features of the image are 

applied as the network inputs. Such multi-dimensional input features enable the 

complementary advantage of low-level features and RGB features, by which the image 

is more accurately abstracted and represented; 

(3) In the last deep convolution (DC) step, a 6-channeled input structure is proposed, 

which provides significantly better guidance in generating the final saliency map. On the 

one hand, the combined initial saliency estimations from the DL and SL steps provide 

accurate location guidance of the salient object, effectively excluding any false salient 

region; on the other hand, the superpixel indication channel precisely represents the 
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current to-be-classified superpixel, which leads to more consistent and accurate saliency 

labeling. 

The BSFE method has been published on ICIP 2016 [3], while the DSL method has 

been published on IEEE TCSVT [4]. They will be fully described in Chapter 5.  

1.5 Thesis Organization 

The remainder of this thesis is organized as follows.  

Chapter 2 gives a systematic review of the related works, including the 

categorization of saliency detection methods, and the different prevalent applications of 

DNN.  

Chapter 3 introduces the RR method in detail, which includes research objective, 

necessary prior knowledge (manifold ranking and random walks), step-by-step 

methodology (background/foreground saliency estimation, and final saliency 

formulation), and experimental results. 

Chapter 4 introduces the RCRR method in detail, which includes research objective, 

necessary prior knowledge (k-means clustering), step-by-step methodology (reversion 

correction and regularized random walks ranking), and experimental results. 

Chapter 5 introduces the two DNN based methods, i.e. BSFE and DSL. The research 

objectives and related works (auto-encoder, sparse labeling and dense labeling) of the 

two methods are first presented, followed by the methodology (adaptive background 

search and foreground estimation) and experimental results of BSFE, and then the 

detailed description of DSL (dense labeling, sparse labeling and deep convolution) and 

its experimental evaluations. 
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Chapter 6 summarizes the whole thesis, gives conclusions, and explores for potential 

future works. 
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2 Related Works 

In this chapter, we will systematically review the related works about this thesis, namely 

the categorizations of saliency detection methods, developments of object detection, and 

the most prevalent applications of deep neural networks. 

2.1 Saliency Detection 

From the perspective of computer vision, the methods of saliency detection are broadly 

categorized into two major groups, namely the bottom-up methods and the top-down 

methods. Besides that, more methods using unconventional models and features have 

also been proposed in recent years. 

2.1.1 Bottom-Up Methods 

The bottom-up methods are largely designed for non-task-specific saliency detections 

[60], in which low-level features are mainly involved as fundamentals for the detections. 

These features are usually data-driven and hand-crafted.  

Before the 2010s, the researches of saliency detection are in the stage of fundamental 

developments, which draws interest across multiple disciplines including cognitive 

psychology, neuroscience, and computer vision. At this time, usually only the most basic 

features in conventional image processing, such as pixel color value, histogram, 

frequency spectrum, etc., are exploited in the methods. As a pioneer, Itti et al. [5] 

present a center-surround model that integrates color, intensity and orientation at 

different scales for saliency detection. Rahtu et al. [61] detect saliency by measuring the 

Chapter 
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center-surround contrast of a sliding window over the input image. Bruce et al. [62] 

exploit Shannon’s self-information measurement on local context to compute saliency. 

In the work of Cheng et al. [63], [64], pixel-wise color histogram and region-based 

contrast are utilized in establishing the histogram-based and region-based saliency maps. 

Duan et al. [65] measure global contrast based saliency with spatially weighted feature 

dissimilarities. Achanta et al. [66] propose a frequency-tuned method based on color and 

luminance, in which the saliency value is computed by the color difference with respect 

to the mean pixel value. Fourier spectrum analysis has also been utilized in visual 

saliency detection, such as in the works of Hou et al. [67] and Guo et al. [68].  

Since the 2010s, more advanced models, and especially the graph based models, 

have been introduced to saliency detection, which have greatly improved the overall 

detection accuracy. It is also notable that the majority of conventional low-level feature 

based saliency detection methods were proposed during this period. Jiang et al. [54] 

establish a 2-ring graph model that calculates saliency values of different image regions 

by their Markov absorption probabilities. To overcome the negative influence of small-

scale high-contrast image patterns, Yan et al. [69] propose a multi-layer approach that 

optimizes saliency detection by a hierarchical tree model. Perazzi et al. [70] unify the 

contrast and saliency computation into a single high dimensional Gaussian filtering 

framework. Wei et al. [71] apply background priors and geodesic distance to compute 

visual saliency. Yang et al. [52] exploit the graph-based manifold ranking in extracting 

foreground queries for the final saliency map, in which the four image boundaries are 

used as background prior knowledge. In the work of Li et al. [1], the image boundaries 

are refined before being used as background prior knowledge, and a random-walk based 

ranking model is applied for saliency optimization. And in the work of Qin et al. [72], 
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the saliency of different image cells is computed by synchronous update of their 

dynamic states via the cellular automata model. 

The statistics of prevalent bottom-up methods are listed in Table 2.1, and some 

example saliency maps are shown in Figure 2.1. It is observed that the bottom-up 

methods generally behave poorly on low contrast or complex patterned images. 

Table 2.1 Information statistics of bottom-up saliency detection methods 

 

# Method Published on Year Code 

1 IT [5] TPAMI 1998 M 

2 SR [67] CVPR 2007 M 

3 SUN [73] JOV 2008 M 

4 FT [66] CVPR 2009 C 

5 SEG [61] ECCV 2010 M+C 

6 RC/HC [63] CVPR 2011 C 

7 SVO [74] ICCV 2011 M+C 

8 CB [75] BMVC 2011 M+C 

9 FES [76] IA 2011 M+C 

10 SF [70] CVPR 2012 C 

11 LR [77] CVPR 2012 M 

12 CA [78] CVPR 2012 M+C 

12 PCA [79] CVPR 2013 M+C 

13 HS [69] CVPR 2013 EXE 

14 MR [52] CVPR 2013 M 

15 MC [54] ICCV 2013 M+C 

16 DSR [80] ICCV 2013 M+C 

17 GC [81] ICCV 2013 C 

18 UFO [82] ICCV 2013 M+C 

19 GR [83] SPL 2013 M+C 

20 RBD [53] CVPR 2014 M 

21 RR [1] CVPR 2015 M 

22 BSCA [72] CVPR 2015 M 

23 RCRR [2] TIP 2016 M 

Abbreviation of journals and conferences: please refer to Appendix A; Abbreviation of code type: M 

- Matlab; C - C/C++; EXE - executable. 
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Figure 2.1 Example saliency maps of prevalent bottom-up saliency detection methods. (a) – (g): 

image case IDs. 
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2.1.2 Top-Down Methods 

On the other hand, the top-down saliency detection methods are usually task-driven. 

These methods break down the saliency detection task into more fundamental 

components, and task-specific high-level features are frequently involved as prior 

knowledge. Supervised learning approaches are commonly used in detecting image 

saliency. In the work of Yang et al. [84], joint learning of conditional random field (CRF) 

is conducted in discriminating visual saliency. Lu et al. [85] apply a graph-based 

diffusion process to learn the optimal seeds of an image to discriminate object and 

background. Mai et al. [86] train a CRF model to aggregate saliency maps from various 

models, which benefits not only from the individual saliency maps, but also from the 

interactions among different pixels. And in the work of Tong et al. [87], samples from a 

weak saliency map are exploited as the training set for a series of supply vector 

machines (SVMs) [88], which are subsequently applied to generate a strong saliency 

map. 

Since 2013, benefitted from the tremendous success of deep learning and other high-

level feature extraction techniques, more learning based methods arise with significantly 

improved performances. Jiang et al. [57] regard saliency detection as a regression 

problem, which fuses regional contrast, property and backgroundness into a random 

forest classifier for multi-level image saliency segmentation. Kim et al. [89] represent 

the saliency map as a linear combination of different high-dimensional color space, 

where the salient regions and the background distinctively separated. Wang et al. [90] 

train two separate DNNs with image patches (DNN-L) and object proposals (DNN-G) 

for local and global saliency, the two results are then integrated by a weighted 
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summation to create the final saliency map. Zhao et al. [91] establish a multi-context 

DNN model for superpixel-wise saliency classification, which exploits DNN for per-

superpixel saliency value classification. Li et al. [92] propose a similar multi-scale DNN 

model for feature extraction, the outputs of which are then aggregated for the final 

saliency map. And in the work of Chen et al. [93], two stacked DNNs are utilized to 

build the saliency detection model, among which the first one provides a coarse saliency 

estimation with the whole image as input, while the second one focuses on the local 

context to produce fine-grained saliency map.  

The statistics of popular top-down saliency detection methods are listed in Table 2.2, 

and some example saliency maps are shown in Figure 2.2. We notice that compared with 

the bottom-up methods in Figure 2.1, the top-down methods generally perform much 

better on low contrast and complex patterned images, which is attributed to the high-

level feature extraction involved in their learning processes. 

Table 2.2 Information statistics of top-down saliency detection methods. 

 

# Method Published on Year Code 

1 SA [86] CVPR 2013 M+C 

2 DRFI [57] CVPR 2013 M+C 

3 HDCT [89] CVPR 2014 M 

4 BL [87] CVPR 2015 M 

5 MCDL [91] CVPR 2015 Py+C 

6 LEGS [90] CVPR 2015 M+C 

7 MDF [92] CVPR 2015 M+C 

8 DISC [93] TNNLS 2015 M+C 

9 DSL [4] TCSVT 2016 M 

Abbreviation of journals and conferences: please refer to Appendix A; Abbreviation of code type: M 

- Matlab; C - C/C++; Py - Python. 
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Figure 2.2 Example saliency maps of prevalent top-down saliency detection methods. (a) – (g): 

image case IDs. 

2.1.3 Other Methods 

In recent years, more applications of other innovative models and features have been 

proposed in saliency detection. For instance, with the application of commercial 

plenoptic cameras, Li et al. [94] propose a saliency detection method which exploits the 

unique refocusing capability of light fields. Liu et al. [95] design an adaptive partial 

differential equation (PDE) system learning from images, which is used to model the 

evolution of visual saliency. Yang et al. [96] establish a visual tracking model of the 

salient object based on midlevel structural information captured in superpixels. The 

work of Zhou et al. [97] develops the time-mapping model, which is a time-based spatial 
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tone-mapping that is used to convert high-frame-rate video into low-frame-rate video 

while maximally preserving the saliency information contained. In the work of Vig et al. 

[98], they propose the hierarchical feature learning method using a data-driven approach 

to perform large-scale searching of optimal features; this method provide integrated and 

biologically-plausible saliency detection outputs. The accuracy and robustness of the 

methods above, however, are still under further validation. 

2.2 Image Segmentation 

Image segmentation, which includes semantic scene labeling and semantic segmentation, 

is one of the well-developed research areas in computer vision [99]. While saliency 

detection aims to locate the most salient object in an image, and treat the segmentation 

task as a binary labeling problem, the objective of general image segmentation is to 

mark each pixel in the image a label indicating the type of object class it belongs to 

(background is treated as a separate class in this case). In other words, image 

segmentation is a multi-class labeling problem. Figure 2.3 shows typical examples to 

illustrate the difference between saliency detection and general image segmentation. 
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Figure 2.3 Illustration of the difference between saliency detection and general image segmentation. 

(a) original images; (b) ground truth for saliency detection; (c) ground truth for multi-class image 

segmentation. 

 

The segmentation methods are usually categorized as unsupervised methods and 

supervised methods. Reviews of both types can be found in [100-102]. Unsupervised 

methods are conducted without any prior knowledge or user input, which encourages 

their significantly high efficiency. These methods include thresholding [103], [104], 

relaxation [105], edge detection [106], [107], region growing [107], [108], etc. Yet, after 

many years of developments, unsupervised methods are still in need of higher accuracy 

and robustness to produce satisfying results. On the other hand, supervised methods 

primarily depend on their training datasets or user inputs as prior knowledge, the quality 

of which will directly affect the quality of their segmentation results. These methods are 

usually based on statistical models [109], [110], and population-based information is 
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represented from the training datasets. However, due to their dependency of prior 

knowledge, large-scale training data is usually required for higher performances, which 

is hard to obtain before the segmentation tasks. 

Recently, the computer-aided semi-supervised segmentation methods have emerged 

as a popular compromise solution. The semi-supervised methods are generally able to 

provide more accurate and efficient segmentation results with minimum user inputs, 

hence have become the currently prevailing means of image segmentation. As a major 

branch of semi-supervised image segmentation methods, the graph-based methods 

exhibit remarkably elevated accuracy and robustness in comparison with other methods. 

They usually take advantage of user inputs to directly indicate clues about the 

foreground and background in the images. The segmentation problem is then solved by 

applying various graph theories. These methods are primarily variations of five graph 

theoretic techniques, namely graph cut, random walks, shortest path, power watershed, 

and minimum spanning tree: 

(1) The graph cut method and its variations generally aim to solve energy 

minimization problems for low-level computer vision tasks. They can be reduced to 

instances of the max-flow/min-cut theorem [111]. Existing implementations include 

graph cut with cost functions [112], graph cut on Markov random filed (MRF) [113], 

and graph cut on conditional random field (CRF) [114], etc. As a major extension, the 

GrabCut method [115] applies user-specified bounding box with a Gaussian mixture 

model to estimate the color distribution of the object, and achieves relatively accurate 

results. 

(2) The random walks method is initially introduced as a mathematical formalization 

of a random sequence path used in data classification [116]. It calculates the probability 
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from any element in an image to each of the user-defined seed points, and determines 

the cluster that an element most likely belongs to [117]. 

(3) The shortest path method aims to find a path between two vertices in a graph, in 

which the sum of weights of the edges passed is minimized. Existing methods include 

Dijkstra’s method [118], Bellman-Ford method [119], A* search method [120], and 

Johnson’s method [121], etc. 

(4) The power watershed method inherits the basic ideas from the watershed method 

[122]. It is a generalized framework that effectively extends from graph cuts, random 

walks and shortest path methods. It is an integration of unary terms in a standard 

watershed method to improve the segmentation results. 

(5) The minimum spanning tree method is a subcategory of the spanning tree method 

[123], which applies a tree structure that connects the vertices of a given graph together. 

There are multiple methods available, including Boruvka’s method [124], Kruskal’s 

method [125], Prim’s method [126], and parallel method [127], etc. 

For the graph-based semi-supervised methods above, user interactions are required. 

These methods model the image as a weighted graph to reflect local intensity changes, 

and a small number of user-provided seeds are applied to estimate the foreground and 

the background regions. The final solution is usually achieved by minimization of the 

corresponding energy function. For example, the graph cut method performs a max-

flow/min-cut analysis to find the minimum weight cut between the seeds of the 

foreground and the seeds of the background. Another example is the random walks 

method, in which the diffusion distances are calculated as the classification probabilities 

[117], [128].  
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In this thesis, the ideas of weighted graph, random walks and energy function 

optimization are used to facilitate the saliency detection process, which will be discussed 

in Chapter 3 and Chapter 4. 

2.3 Object Proposal Generation 

Object proposal generation, or objectness measurement, is a class of methods that 

attempt to generate a small set (e.g. a few hundreds or thousands) of potential object 

regions (called object proposals) in a given image, so that these object proposals can 

cover the different objects in the image to the maximum extend, regardless of the 

specific categories of these objects (i.e. generic over categories) [129-134]. The object 

proposal generation is often adopted as a pre-processing stage before subsequent tasks. 

Compared with conventional sliding window based object detection paradigm [135], 

[136], object proposal generation has three major advantages:  

(1) It better accords with human visual system which quickly perceives objects 

before identifying them [137], [138]; 

(2) It greatly speeds up the computation by reducing the potential candidates of 

search locations (e.g., from typically a few million candidates to less than a few 

thousand candidates), especially when the number of object classes that need to be 

detected is high； 

(3) It also helps to improve the accuracy of the object detection task by allowing the 

usage of more powerful classifiers during testing, since it restricts the detection only on 

the object proposals [139]. 

Object proposal generation and saliency detection are closely correlated. On the one 

hand, the object proposal generation process consider saliency as a useful cue for 
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measuring objectness of a region [130], [140]; in other words, an object is more likely to 

be salient than a background region [141], [142]. On the other hand, the saliency 

detection process applies objectness measurements to distribute high and low saliency 

values to objects and background, which leads to higher accuracy [74]. 

In this thesis, the idea of object proposal is exploited to provide initial saliency 

estimations, which will be discussed in Chapter 5. 

2.4 Deep Neural Network (DNN) 

Deep neural network is a branch of machine learning that has experienced drastic 

developments in the last decade. First proposed by LeCun et al. in 1989 [143], the 

DNNs, and especially the convolutional neural networks (CNNs), are designed to model 

high-level nonlinear data features by multiple complex processing layers [59]. Since 

emergence, DNN has received remarkable success in image classification [144-146], 

object detection [147], [148], semantic segmentation [149-151], face recognition [152], 

[153], pose estimation [154], pedestrian behavior estimation [155], [156], and cancer 

type / subtype classification [157] etc.  

The current applications of DNN focus on two major categories, namely sparse 

labeling and dense labeling. In this section, we will first briefly review the basic 

principles of neural networks, and then introduce the applications of DNN on sparse and 

dense labeling. 

2.4.1 Fundamentals of Neural Networks 

This section is based on the online course Unsupervised Feature Learning and Deep 

Learning [158]. Consider a supervised learning problem, where we have access to the 
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labeled training examples ( ) ( )( , )i ix y . The neural networks provide a way of defining a 

complex, non-linear model 
, ( )W bh x , with parameters ,W b  to be fitted by the training 

data. The simplest neural network, which consists of only a single “neuron”, is shown in 

Figure 2.4. 

 

Figure 2.4 An illustrative diagram of a “neuron” in DNN. The X1~X3 stand for inputs, and “+1” 

stands for bias. 

 

A neural network is usually established by hooking together many of the “neuron” 

structures in Figure 2.4, so that the output of one neuron is the input of another. For 

instance, Figure 2.5 shows a typical neural network with 3 layers. In this structure, the 

“+1” are bias units; the leftmost layer is the input layer, usually takes in images or other 

data structures; the rightmost layer is the output layer, which can output a single label 

(for sparse labeling) or a matrix-like label mask (for dense labeling); the middle layer is 

a hidden layer, since its values are not directly observed during the training process.  

The network has parameters (   )  ( ( )  ( )  ( )  ( )), where    
( )

 and    
( )

 

denote the weight and bias associated with layer  . The   
( )

 denote the activation value 

of unit   in layer  . For     (the input layer),   
( )     is defined. The computation that 

the network represents is given by the equations below, which are called forward 

propagation; the network is hence called feed-forward network: 

 

𝑥  

𝑥  

𝑥3 

+1 

ℎ𝑊 𝑏(𝑥) Neuron 
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(2) (1) (1) (1) (1)

1 11 1 12 2 13 3 1

(2) (1) (1) (1) (1)

2 21 1 22 2 23 3 2

(2) (1) (1) (1) (1)

3 31 1 32 2 33 3 3

(3) (2) (2) (2) (2) (2) (2) (2)

, 1 11 1 12 2 13 3 1

( )

( )

( )

( ) ( )W b

a f W x W x W x b

a f W x W x W x b

a f W x W x W x b

h x a f W a W a W a b

   

   

   

    

 
(2.1) 

After the computation hits the output layer, there will be a cost function ( , )J W b  

calculating the cost against the ground truth label. The cost is then propagated 

backwards with gradients of each layer to update the parameters ,W b , which is called 

backpropagation: 

( ) ( )

( )
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( )

( , )
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l l
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i

W W J W b
W

b b J W b
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 (2.2) 

During training, the forward propagation and backpropagation are conducted 

alternately to update the network parameters, until the cost is small enough, or the 

maximum iteration number is reached. 
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Figure 2.5 A small illustrative neural network with 3 layers. The X1~X3 stand for inputs, and “+1” 

stands for bias. 

 

In practice, instead of the fully connected network in Figure 2.5, the convolutional 

neural network (CNN) is more prevalently used. CNN is also a type of feed-forward 

neural network, which models the animal visual perception. Instead of full connection, 

the connection between different layers of CNN is realized by 2D-convolution. Figure 

2.6 exhibits a typical architecture of CNN. 
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Figure 2.6 A typical CNN architecture. 

 

Compared with fully connected network, CNN benefits from the shared weights of 

each convolution filter among layers, which greatly reduce the overall size of the 

network. CNN is also renowned for being space invariant, which contributes to its 

significantly elevated robustness. Given these advantages, CNN receives broad 

applications in various computer vision tasks.  

In this thesis, CNN is applied in all of our DNN models, which will be introduced in 

Chapter 5. 

2.4.2 DNN Based Sparse Labeling 

Sparse labeling is the fundamental application of DNN in classification tasks. The idea 

is to generate a single class label for each input sample [159], such as an image. Many 

state-of-the-art network models are designed under this scheme, including AlexNet 

[144], OverFeat [145], Clarifai [160], VGG [161], GoogLeNet [146], and ResNet [162], 

etc. Recently, initial studies have emerged towards the application of DNN on saliency 

sparse labeling. For instance, Wang et al. [90] train two separate DNNs with image 

patches and object proposals for local and global saliency; Zhao et al.[91] establish a 

multi-context DNN model for superpixel-wise saliency classification; and Li et al. [92] 
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propose a multi-scale DNN model for feature extraction, the outputs of which are then 

aggregated for the final saliency map. 

2.4.3 DNN Based Dense Labeling 

On the other hand, the dense labeling is a newly arising application of DNN that has 

drawn much attention. Unlike sparse labeling, dense labeling aims to predict a complete 

label mask (instead of a single label) based on the input sample, with either identical or 

reduced size. Since much more per-sample label information can be generated than 

sparse labeling, DNN-based dense labeling has greatly facilitated many previously 

challenging tasks such as object detection and semantic segmentation, in terms of both 

accuracy and efficiency. In [147], Szegedy et al. propose the idea of DNN-based object 

detection via DNN regression and multi-scale refinements. Girshick et al.[148] combine 

CNNs with bottom-up region proposals to localize and segment objects. Long et al.[150] 

propose the idea of fully convolutional network (FCN), which achieves dramatic 

improvements in semantic segmentation. And in the work of Chen et al.[151], responses 

from CNNs are combined with fully connected CRF, which overcomes the poor 

localization property of CNN itself. 

 

There have been multiple methods in exploring for the application of DNN on 

saliency detection, such as [90-93]. The details about how DNN greatly facilitated the 

performance of our proposed DSL method will be discussed in Chapter 5. We will also 

see that in general, the DNN-based methods greatly outperforms conventional low-level 

feature based methods, which is attributed to their learning processes. 
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3 Conventional Low-Level 

Feature Based Saliency Detection 

In the first two chapters of this thesis, the general background of saliency detection is 

introduced, which covers the origins of saliency detection, the challenges faced in 

existing methods, and the related works in various aspects. Starts from Chapter 3, we 

will present our proposed saliency detection methods in detail.  

In this chapter, we propose a novel conventional low-level feature based saliency 

detection method, the regularized random walks ranking (RR) method. Section 3.1 

summarizes the challenge we are going to address; section 3.2 lists our contributions and 

the two major steps in our proposed RR method; section 3.3 reviews the models of 

manifold ranking and random walks as related works; section 3.4 illustrates the 

methodology step by step; section 3.5 includes experimental results and discussion; and 

finally, section 3.6 concludes this chapter. 

3.1 Problem Formulation 

As introduced in Chapter 1.3.1, in the field of saliency detection, many graph-based 

algorithms heavily depend on the accuracy of the pre-processed superpixel segmentation, 

which leads to significant sacrifice of detail information from the input image. On the 

other hand, a part of existing methods are based on problematic pre-assumptions to 

guide the saliency estimation, which are easily violated on broader datasets with more 

unusual-patterned images. As a typical example, the MR method [52] adopts the four 

boundaries of the input image as background reference, which is implausible in many 

Chapter 
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cases. In other words, one or more boundaries may be adjacent to the foreground object 

and undesirable results may emerge if we still use them as background queries, as shown 

in Figure 1.2. Another drawback of MR is that it depends on the pre-processed 

superpixel segmentation, whose inaccuracy may directly lead to the failure of the entire 

algorithm. Besides, assigning the same saliency value to all pixels in a superpixel node 

cannot exploit the full potential of the detail information from the original image. 

3.2 Contributions 

To address the issues above, we propose a novel bottom-up saliency detection method 

that takes the advantage of both region-based features and image details. Our method 

has two main steps: 

(1) We first optimize the image boundary selection by the proposed erroneous 

boundary removal step.  

(2) By taking the image details and region-based estimations into account, we then 

propose the regularized random walks ranking (RR) to formulate pixel-wised saliency 

maps from the superpixel-based background and foreground saliency estimations.  

Experimental results on two public datasets indicate the significantly improved 

accuracy and robustness of our proposed algorithm, in comparison with 12 state-of-the-

art saliency detection methods. 

3.3 Related Works 

In this section, as preliminary knowledge introduction, we provide a brief review of the 

manifold ranking model and the random walks model, which are closely related to our 

proposed RR method. 
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3.3.1 Manifold Ranking 

Manifold ranking is a kind of ranking algorithm that is initially used in pattern 

classification [163], [164]. It assigns ranks to the elements in a dataset, which reveal 

their likelihood being in a certain class with respect to their intrinsic manifold structure. 

Given a dataset 
1 1{ ,..., , ,..., } m

s s nx x x x   , where n  is the element number, the 

first s  elements are the labeled queries, while the rest are the unknown elements that 

need to be ranked. This identification is recorded in an indication vector 
1[ ,..., ]T

ny y y , 

where 1iy   if 
ix  belongs to the queries, and 0iy   otherwise. Note that if prior 

knowledge about the confidences of the queries is available, we can assign different 

ranking scores to the queries proportional to their confidences, instead of just 0 and 1. 

The manifold algorithm functions in the following steps: 

1) Sort the pairwise distance of elements in ascending order. Repeat connecting two 

elements with an edge according the order until a fully connected graph is formed. 

2) Establish the weight matrix [ ]ij n nW w   linking 
ix  and 

jx . Note that 0iiW  . 

3) Symmetrically normalize W  by 
1/2 1/2S D WD  , where 

1( ,..., )nD diag d d  is the 

degree matrix with 

i ijj
d w  (3.1) 

When applied to graphs, a graph structure ( , )G V E  with nodes V  and edges E  is 

first established, where V  corresponds to the dataset  , and E  collects all the 

connections of any two nodes in G  quantified by the weight matrix W . 

Let : nf    be the ranking function assigning rank values 
1[ ,..., ]T

nf f f  to  , 

which would be obtained by solving the following minimization problem, 
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(3.2) 

where   is a controlling parameter. The optimized solution is given in [52], [164], [165] 

as 

 
1*f D W y


   
(3.3) 

where  1/ 1   . 

The manifold ranking model is used to estimate the rough saliency in our proposed 

RR method, which will be presented in section 3.4. The input image is first segmented 

into n  superpixels via the simple linear iterative clustering (SLIC) approach [166]. A 

superpixel-based graph ( , )G V E  is subsequently constructed with nodes V  as 

superpixels. The edge set E  is defined with the following three criteria [52]:  

1) Neighboring nodes with shared edges are connected to each other;  

2) Each node is also connected to the neighbor nodes of its own neighbors;  

3) Any two nodes from the four boundaries of the graph are treated as connected.  

The weight matrix W  is established based on E , in which the weight of adjacent 

nodes is defined as 

2

2
exp

i j

ij

c c
w



 
  
 
 

 
(3.4) 

where 
ic  and 

jc  are the mean CIELab colors of the two nodes i  and j , and   is a 

controlling constant. The remaining elements of W  for the unconnected nodes are all 

assigned as zeros, and the degree matrix D  is computed in (3.1). 
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3.3.2 Random Walks 

Random walks is a mathematical formalization of a random sequence path, which leads 

an element to a seed location with the highest likelihood [117]. Given a dataset 

1{ ,..., } m

nx x   , where n  is the element number, the task is to group the elements 

into K  classes. We first mark s  elements from   as the seed nodes with at least one 

element of each class. Without loss of generality, we assume that the first s  elements of 

  are the seeds, so that [ , ]T T

M Ux x  , in which 
Mx  are the seed nodes and 

Ux  are the 

unseeded nodes. The graph ( , )G V E , weight matrix W , and degree matrix D  are 

constructed similarly to those in section 3.3.1. We further define the n n  Laplacian 

matrix L  as 

u

uv uv

d

L = -w

0







if ,

if and are adjacent nodes,

otherwise.

u v

u = v

x x  
(3.5) 

Note that we use u  and v  as element subscripts in pixel-wise graphs to differentiate 

from i  and j  used in superpixel-wise graphs. Since the edges E  are undirected, L  is 

symmetric. Accordingly, we define the label function for seed nodes as 

( ) , , 0uQ x k k k K     (3.6) 

Then we let 1 , ,
T

k k k

np p p     denote the probability vector of   for label k , 

which can similarly be partitioned as    ,
T T

k k k

M Up p p 
  

. Here k

Mp  is for the seed 

nodes, which has fixed value as 

1

0

k

up


 


 
( ) ,

otherwise.

uQ x k
 

(3.7) 
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The optimized kp  is achieved by minimizing the Dirichlet integral [117], [128], 
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2

1
 

2

T
k k k

k
T T Mk k M

M U T k
U U

Dir p p L p

L B p
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(3.8) 

We differentiate [ ]kDir p  with respect to k

Up , and the critical point is found as 

1k T k

U U Mp L B p   
(3.9) 

In section 3.4.3, the random walks model is reformulated for the final saliency map 

computation. The graph ( , )G V E  is pixel-wise, and the weight matrix W  is defined 

as 

2

2
exp

u v

uv

g g
w



 
  

 
 

 (3.10) 

where 
ug  and 

vg  are the intensities at pixel u  and v , and   is the same controlling 

constant used in (3.4). 

3.4 Saliency Detection with Regularized Random 

Walks Ranking (RR) 

The proposed RR method consists of three major steps. Step one removes the boundary 

with the lowest probability belonging to the background, and generates saliency 

estimation via the refined background queries; step two generates foreground saliency 

estimation based on the complementary values of the background estimation; step three 

extracts seed references from step two, and calculates the pixel-wise saliency map with 

the proposed regularized random walks ranking. 
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Figure 3.1 The effect of erroneous boundary removal in section 3.4.1. From left to right: input images, 

background saliency estimations with all boundaries, background saliency estimations after 

erroneous boundary removal, ground truth. 

3.4.1 Background Saliency Estimation 

As stated in section 1.3.1, it is possible for a boundary in the input image to be occupied 

by the foreground object. Using such a problematic boundary as queries in the 

background saliency estimation may lead to undesirable results, such as the typical 

example illustrated in the second column of Figure 3.1. We therefore optimize the 

boundary queries by locating and eliminating the erroneous boundaries before the 

background saliency estimation. 

Given the conspicuous difference of color and contrast between the background and 

the salient object, the erroneous boundary tends to have distinctive color distribution 

compared to the remaining three. Hence, we treat the superpixel boundaries as 

connected regions, and calculate their normalized pixel-wise RGB histogram 

respectively, 

   
1

1

q

l

b qH I
l

hh 


   (3.11) 

where { , , , }b top bottom left right  indicates the four boundary locations; l  is the total 

pixel number in the target region; 0,...,255h   is the intensity bin variable; 
qI  is the 
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intensity value of pixel q ; and ( )   is the unit impulse function. The red, green and blue 

channels are calculated separately using 256 bins. We then compute the Euclidean 

distance of any two of the four histograms, 

                
1 2 1 2 1 2

255
2 2 2

1 2

0

, red red green green

b b b b

blue ue

b

b

h

b

lA b b H H Hh h h h hH H hH


 


   


  
(3.12) 

This results in a 4 4  matrix A , which is then summed in column-wise. The 

maximum of the summation determines the boundary to be removed. E.g. if the second 

column sums to be the largest, the bottom boundary will be removed.  

The superpixels on each of the three remaining sides of the image will be labeled as 

ones in the indication vector y  in (3.2), while other nodes as zeros. Three ranking results 

*

lf  will be achieved afterwards based on (3.3), where l  corresponds to the three 

remaining locations. Since the ranking results show the background relevance of each 

node, we still need to calculate their complement values to obtain the foreground-based 

saliency, 

*( ) 1 ( ), 1,...,l lS i f i ni    
(3.13) 

where n  is the total superpixel number. The results are then put into element-by-element 

multiplication to calculate the saliency estimation result of this section, 

   1 .step l

l

S i S i  (3.14) 

The major advantage of erroneous boundary removal is that it helps to relieve the 

inaccuracy of using all boundaries in cases that one or more of the boundaries happen to 

be adjacent to the foreground object. As shown in Figure 3.1, removal of the most 

irrelevant boundary (right for the first row, and bottom for the second row) leads to more 

accurate outputs. 



60 
 

3.4.2 Foreground Saliency Estimation 

Section 3.4.1 calculates the foreground saliency by complementary subtraction of the 

background saliency estimation, which leads to favorable results in images with 

conspicuous contrasts between the foreground and the background. However, the 

background queries alone are sometimes insufficient to fully illustrate the foreground 

information, especially in cases where the salient object has complicated structure or 

similar patterns to the background. Subsequent foreground-query-based saliency 

estimation is hence desired.  

The foreground queries are obtained by extracting 
1stepS  with a threshold 

1( )stept mean S , followed by re-performance of (3.3) with the newly defined indication 

vector y . The ranking function f  can be directly calculated from (3.3) and is treated as 

the foreground saliency estimation as follows, 

2( ) ( ), 1,...,stepS i f i ni   
(3.15) 

which will be used in the next step as seed references. 

3.4.3 Saliency Map Formulation by Regularized Random Walks 

Ranking 

Former manifold-ranking-based saliency detection [52] completely depends on the SLIC 

superpixel segmentation, which may generate undesirable results if the superpixel 

segmentation itself is imprecise. In addition, assigning the same saliency value to all 

pixels within a same node enormously sacrifices the detail information. To overcome 

these disadvantages, we develop a regularized random walks ranking model to formulate 
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saliency maps, which is independent of the superpixel segmentation, and may reveal 

pixel-wised saliency map of the input image. 

The regularized random walks ranking is extended from the random walks model 

introduced in section 3.3.2. We suggest a fitting constraint, which restricts the Dirichlet 

integral to be as close to the prior saliency distribution as possible, 

    (
1

) (
2

)
2

T
k k k k T kp Y p YDir p p L p


     

(3.16) 

where   is the same controlling parameter used in (3.2), and Y  is a pixel-wise 

indication vector inheriting the values of 
2stepS . In other words, different pixels within a 

same superpixel in 
2stepS  share the same saliency value in Y . Note that the regularized 

random walks ranking is computed in pixel-wise, thus both kp  and Y  are 1N   vectors, 

and L  is an N N  matrix, where N  is the total pixel number in the image. We define 

two thresholds 
hight  and 

lowt  as follows, 

2 2

2

mean( ) max( )

2

mean( ),

step step

high

low step

S S
t

t S






 
(3.17) 

which are used to select pixels with 
u highY t  as foreground seeds, and 

u lowY t  as 

background seeds. The seeds are then combined into , 1,2,...k

Mp k  , where 1k   

corresponds to the background label, and 2k   corresponds to the foreground label. The 

matrix decomposition of (3.16) is conducted as follows, 
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2
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T T Mk k k M

M U T k
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(3.18) 
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After setting the differentiation of kDir p    with respect to k

Up  as zero, the 

optimized solution is obtained, 

   
1k T k k

U U M Up L I B p Y 


     
(3.19) 

k

Up  and k

Mp  are then combined to form 
kp . We set 2k   to select the foreground 

possibility 2p  and reshape it to a matrix 
finalS

 
with same size of the input image as the 

final foreground saliency output. 

 

Figure 3.2 Examples that (3.16) leads to more precise saliency outputs. From left to right: input 

images, saliency estimation results, saliency outputs with random walks, saliency outputs with 

regularized random walks ranking, ground truth. 

 

Since the seeds are automatically generated from the result of section 3.4.2, unlike 

classical random walks [117], no user interaction is required. The fitting constraint in 

(3.16) provides a prior saliency estimation to all pixels instead of the seed pixels alone, 

which offers a better guidance in calculating the final saliency map. The effect of the 

fitting constraint in (3.16) is shown in Figure 3.2, where the regularized random walks 

ranking not only greatly improves the saliency map from the previous saliency 

estimation step, but also remarkably outperforms random walks. 

The main process of our proposed algorithm is summarized in Table 3.1. 
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Table 3.1 Algorithm description of our proposed RR method 

 

Step Content 

Input An image and related parameters. 

1 
Establish the graph structure with superpixels as nodes; calculate W  

and D  with (3.4) and (3.1). 

2 Conduct erroneous boundary removal with (3.12). 

3 Acquire the background saliency estimation 1stepS  with (3.14). 

4 Acquire the foreground saliency estimation 2stepS  with (3.15). 

5 
Establish the pixel-wise graph structure and obtain L  with (3.5); then 

compute the saliency possibilities kp  with (3.19). 

6 Set 2k   and reshape 2p  into finalS  as the final saliency output. 

Output A saliency map with the same size as the input image. 

 

3.5 Experimental Results 

In this section, we present the experimental results of our proposed RR method. We first 

introduce the datasets, evaluation metrics and algorithm parameters we used, then 

evaluate the two design options in our method (i.e. erroneous boundary removal, and 

regularized random walks ranking), and finally exhibit the comparison experiment 

against 12 state-of-the-art saliency detection methods. The efficiency and limitation of 

our method are also presented. 

3.5.1 Datasets 

Two public datasets are adopted in our experiments: 

(1) The MSRA10K dataset [63], [64], which contains 10,000 randomly chosen 

images from the MSRA dataset [8], [167]; 

(2) The DUT-OMRON dataset [52], which contains 5,168 manually selected highly-

complex images.  



64 
 

Both datasets come with human-labeled ground truth. In our evaluation, we use all of 

the images in the datasets. 

3.5.2 Evaluation Metrics  

In referring to the experimental evaluations of most existing saliency detection methods, 

we use precision, recall and F-measure as our evaluation metrics. These terms are 

defined in [168] as,  

1
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(3.20) 

where ( )G i  is the corresponding pixel-wise ground truth. In other words, precision is the 

ratio of retrieved true salient pixels to all the salient pixels retrieved, and recall is the 

ratio of retrieved true salient pixels to all the true salient pixels in the image.  

Since the two terms precision and recall are in general contradictive to each other, i.e. 

the unilateral promotion of one term will often result in the deterioration of the other, the 

F-measure is prevalently adopted as a weighted average between precision and recall. 

We set 2 0.3   to grant more importance to the precision, as suggested in [66]. 

In practice, precision and recall are usually displayed pairwise as the precision-recall 

(PR) curves, which are constructed by binarizing the saliency map with thresholds from 

0 to 255. 
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3.5.3 Parameters 

To conduct fair experimental comparisons, we adopt the same parameter settings in [52], 

where the superpixel number is set to 200n  , and the two controlling parameters are 

set to 
2 0.1   and 0.01  , respectively. No particular parameter needs to be defined 

in the proposed regularized random walks ranking algorithm. 

3.5.4 Implementation 

Our experiments are conducted in MATLAB on a 64-bit PC with Intel Core i5-4570 

CPU @ 3.2 GHz and 8GB RAM. The MATLAB implementation of the proposed 

method is available at our website: https://github.com/yuanyc06/rr/. 

3.5.5 Evaluation of Design Options 

We first examine the major innovations of our proposed algorithm on the MSRA10K 

dataset, as shown in Figure 3.3. The blue and green curves illustrate the final saliency 

output comparison with and without the erroneous boundary removal. Obviously the 

erroneous boundary removal promotes the curve of the proposed method to a higher 

level. After that, we generate the saliency maps right after section 3.4.2 without using 

regularized random walks ranking. As shown by the blue and red curves in Figure 3.3, 

the complete algorithm also excels the algorithm without using regularized random 

walks ranking. 

Based on the observations above, both the erroneous boundary removal and the 

regularized random walks ranking have contributions to the overall performance. We 

therefore adopt both of them in the following evaluations. 

https://github.com/yuanyc06/rr/
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Figure 3.3 Precision-recall curves on the MSRA10K dataset with different design options of the 

proposed approach. 

 

3.5.6 Evaluation Against State-of-the-Art 

We then evaluate our proposed algorithm against twelve state-of-the-art saliency 

detection approaches, namely CA [78], CB [75], FT [66], GS [71], IT [5], LR [77], MR 

[52], PBO [169], PCA [79], SEG [61], SF [70] and SR [67]. 

The evaluation is first performed on the MSRA10K dataset, the results of which are 

shown in Figure 3.4 to Figure 3.6. The precision-recall curves in Figure 3.4 and Figure 

3.5 demonstrate that the proposed method obviously outperforms all of the state-of-the-

art algorithms. The proposed method is especially better than CA and CB, which are two 

of the top-performance algorithm from a recent benchmark of saliency detection [8]; the 

proposed method also completely excels its predecessor, i.e. the MR method, which 
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embodies the integrated strength of the improvements we made. On the other hand, 

Figure 3.6 demonstrates the F-measure comparison; the proposed method achieves the 

highest F-measure score 0.855, which is 1.06% over the second best algorithm (MR, 

0.846).  

To provide a qualitative comparison of the different saliency outputs, we select five 

example saliency maps from each of the thirteen methods, and tile them in Figure 3.7. 

The methods are sorted by the F-measure in Figure 3.6. We notice that our proposed RR 

method generates saliency maps with clearer details and finer boundary adherences. 

 
Figure 3.4 Precision-recall curves (part 1) of different methods on the MSRA10K dataset. 
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Figure 3.5 Precision-recall curves (part 2) of different methods on the MSRA10K dataset. 

 

 

Figure 3.6 Average F-measures of different methods on the MSRA10K dataset. 
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Figure 3.7 Saliency map examples of different methods on the MSRA10K dataset. (a) – (e): Image 

case IDs. 
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Next, we further evaluate the proposed algorithm on the DUT-OMRON dataset. The 

experiment process and evaluation metrics are the same as what we applied on the 

MSRA10K dataset. Precision-recall curves are shown in Figure 3.8 and Figure 3.9, and 

the F-measure comparison is shown in Figure 3.10. Again, our method outperforms all 

of the other approaches throughout different precision-recall curves. It also has the 

optimal F-measure 0.615, which is 0.82% over the second best algorithm (MR, 0.610). 

Besides the comparison among algorithms, we also notice that the performance of all 

methods on the DUT-OMRON dataset is in general far poorer than those on the 

MSRA10K dataset, which indicates that the images in DUT-OMRON are more 

challenging than MSRA10K, and higher performance on more challenging datasets is 

one of the potential directions of improvement to the proposed method. 

Similar to Figure 3.7, we also select five example saliency maps from each of the 

thirteen methods, and tile them in Figure 3.11. Again, our proposed RR method 

outperforms the comparison method on various challenging cases, such as the images 

with boundary-adjacent salient objects (Figure 3.7(a) – (d)), or images with low contrast 

(Figure 3.7(c) and Figure 3.7(e)). 
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Figure 3.8 Precision-recall curves (part 1) of different methods on the DUT-OMRON dataset. 

 

 
Figure 3.9 Precision-recall curves (part 2) of different methods on the DUT-OMRON dataset. 
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Figure 3.10 Average F-measures of different methods on the DUT-OMRON dataset. 

 



73 
 

 
Figure 3.11 Saliency map examples of different methods on the DUT-OMRON dataset. (a) – (e): 

Image case IDs. 
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3.5.7 Efficiency 

Average running time is computed on the first 1,000 images of the MSRA10K dataset. 

We choose the five methods with the closest performances to the proposed approach in 

the test, and the results are shown in Table 3.2. The proposed algorithm is significantly 

faster than CB, LR and PCA; and although being slower than MR and GS, our method 

still outperforms them both considering the overall evaluation performances. 

Table 3.2 Running time test results of selected methods (seconds per image) 

 

Method Ours CB GS MR PCA LR 

Time(s) 1.12 1.71 0.324 0.869 3.15 13.8 

3.5.8 Limitation 

One limitation of our proposed RR method is that the erroneous boundary removal step 

is still based on major voting, i.e. when more than two of the four boundaries are 

actually covered by the foreground object, the foreground will become major, while the 

background will become minor. Such phenomenon will result in the less significant 

background boundary be treated as “foreground” as be removed, which will lead to 

completely reversed saliency maps. This issue, however, will only emerge occasionally 

since the images with most boundaries covered by the foreground object are less 

common. On most cases, our method still prevails over the comparison state-of-the-art 

methods in the overall performance. 

3.6 Summary 

In this chapter, we propose a novel bottom-up saliency detection method with erroneous 

boundary removal and regularized random walks ranking. There are two major 
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innovation aspects: firstly, the erroneous boundary removal process effectively 

eliminates the image boundary with boundary-adjacent foreground superpixels, and thus 

neutralizes their negative influences in the saliency estimations; secondly, the proposed 

regularized random walks ranking provides prior saliency estimation to all pixels in the 

input image, which leads to pixel-wisely detailed and superpixel-independent saliency 

map outputs. Our approach is fully-automatic without any user supervision requirement. 

Results of experiments on two public datasets show that the proposed method 

significantly outperforms twelve state-of-the-art saliency detection algorithms in terms 

of both accuracy and robustness, as well as maintaining high efficiency compared with 

other methods.  
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4 Improved Low-Level 

Feature Based Saliency Detection 

In the previous chapter, we have introduced the RR method, which is a novel saliency 

detection method based on conventional low-level features. RR has exhibited higher 

performance against state-of-the-art methods; nevertheless, there are still limitations that 

restrict RR from its full potential. 

In this chapter, to further improve the performance, we present the reversion 

correction and regularized random walks ranking (RCRR) method, which is based on the 

RR method but has significant technical innovations. Section 4.1 summarizes the 

challenge we are going to address; section 4.2 lists our contributions and the major steps 

in our proposed RCRR method; section 4.3 reviews the k-means clustering algorithm, 

which is an additional related work besides the manifold ranking and random walks in 

section 3.3; section 4.4 gives step-by-step methodology of RCRR; section 4.5 includes 

experimental results and discussion; and finally, section 4.6 concludes this chapter. 

4.1 Problem Formulation 

Studies in [1], [54] and [52] show that boundary-based bottom-up saliency detection 

algorithms are becoming popular according to related state-of-the-art researches. These 

algorithms are generally facilitated by superpixel segmentation, and their results 

outperform most of the other state-of-the-art saliency detection algorithms. Nevertheless, 

there still exist drawbacks that hinder these algorithms, with two major issues as below: 

Chapter 
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(1) It may be implausible to directly apply four image boundaries as the background 

queries for the background saliency detection. More specifically, one or more of the 

boundaries may contain part of the foreground object, and undesired error may occur if 

they are still considered as the background. Examples are shown in Figure 4.1, where the 

salient objects take considerable parts of the image boundaries, leading to the failure of 

the MR method [52]. We also note that due to the negative influences of the boundary-

adjacent foreground objects, the saliency maps in Figure 4.1(b) look similar to the 

“reversed” version of the ground truth in Figure 4.1(d), i.e., most of the background 

regions are classified as foreground, and most of the foreground regions are classified as 

background.  

(2) The superpixel segmentation [166] facilitates the pre-processing of boundary-

based (and many other graph-based) saliency detection algorithms. However, inaccuracy 

in the superpixel segmentation itself may directly lead to the failure of the entire 

algorithm. Moreover, the operation of assigning the same saliency value to all the pixels 

within a fix-sized patch unavoidably ignores some detailed information from the original 

image, making the saliency map as if being covered by mosaics, and hence lowering the 

overall visual quality. It is thus desirable to combine both superpixel-wise and pixel-

wise image data in the saliency detection, in which the pixel-wise process can provide 

better smoothness and hence improve the overall quality and accuracy of the output 

saliency map. 
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(a) (b) (c) (d)  

Figure 4.1 Examples showing the problem of using boundaries as background queries when the 

salient objects are boundary-adjacent. (a) Input images; (b) results of a boundary-based method [52]; 

(c) results of our proposed RCRR method; (d) ground truth. Our method can effectively prevent the 

“saliency reversion” problem. 

4.2 Contributions 

In this chapter, in order to overcome the two issues above, we propose the reversion 

correction and regularized random walks ranking (RCRR) for saliency detection, a novel 

graph-based bottom-up saliency detection method. Our key contributions are 

summarized below: 
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(1) We present the reversion correction (RC) process, which locates and eliminates 

the boundary-adjacent foreground superpixels, preventing the saliency reversions from 

emerging, such as the cases in Figure 4.1(b). This mechanism provides increased 

robustness, as shown in Figure 4.1(c). 

(2) We build the regularized random walks ranking (RRWR) model, which takes 

both prior saliency estimations and pixel-wise image data into account. RRWR is 

independent of superpixel segmentation, and is able to generate pixel-wise saliency 

maps that reflect full-details of the input images.  

(3) We explore the extensibility of RC as an optimization algorithm on existing 

boundary based saliency detection methods, which has the potential of significant 

performance boosting. 

(4) We also propose the boundary-adjacent object saliency (BAOS) dataset, which 

contains 200 images that have large proportions of the salient objects on the image 

boundaries. This dataset provides an objective evaluation for saliency detection methods’ 

performances on boundary-adjacent salient objects. 

This work is an extension to our previous study [1] with marked improvements, 

especially the technical contributions above. In addition, we have conducted a more 

detailed and comprehensive evaluation with 14 state-of-the-art methods, including our 

previous work [1], on five datasets. The results imply the superiority of our proposed 

RCRR method in terms of both accuracy and robustness. 

4.3 Related Works 

Our proposed RCRR method is based on manifold ranking, random walks, and k-means 

clustering. Section 3.3 has already introduced the basic principles of manifold ranking 
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and random walks. In this section, we will briefly introduce the k-means clustering 

algorithm as supplementary knowledge. 

4.3.1 K-Means Clustering 

The k-means clustering partitions the elements in   into K  clusters 
1 2{ , ,..., }KS S S S , 

on the condition that the within-cluster sum of squared error is minimized: 

2

1

arg min ,
k

K

k
S

k x S

S x m
 

 
  

 
  (4.1) 

where 
km  is the mean of observations in 

kS .  

In the proposed algorithm, given its efficiency, robustness and accuracy, the k-means 

clustering is used to group the initial saliency estimation result into foreground / 

background clusters. The boundary-adjacent foreground superpixels are then recognized 

and removed. Detailed steps are presented in section 4.4.1. 

4.4 Saliency Detection with Reversion Correction 

and Regularized Random Walks Ranking 

(RCRR) 

Our saliency detection algorithm (RCRR) consists of two major steps. The first step 

comprises the saliency reversion correction (RC) process on an initial saliency 

estimation, which eliminates the boundary-adjacent foreground regions from the image 

boundaries; the second step extracts seed references from the first step, and calculates 

the final pixel-wise saliency map with regularized random walks ranking (RRWR). 
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4.4.1 Saliency Reversion Correction 

As stated in section 4.1, it is possible that the foreground object is on one or more 

boundaries of the input image. Using such problematic boundaries as queries in the 

saliency estimation may lead to undesirable results. Typical examples are illustrated in 

Figure 4.1(b), where, due to the negative influences of the boundary-adjacent foreground 

superpixels, the corresponding saliency maps are nearly “reversed” in comparison with 

the ground truth in Figure 4.1(d). To address this issue, it is tempting to directly conduct 

classification among all the boundary superpixels; however, such classification with the 

boundary information alone may be too subjective without the global context. We thus 

propose the reversion correction (RC) process, which functions as a posterior 

classification method based on initial saliency estimation. The boundary-adjacent 

foreground regions will then be detected and removed, improving the overall robustness 

of our algorithm. 

For an input image, we first obtain an initial saliency estimation, which can be 

generated by any boundary-based saliency detection method (e.g. [52], [54], [80]). The 

graph-based manifold ranking [52] is used in our method due to its relatively high 

performance and efficiency. With (3.3), the initial saliency estimation is acquired as: 

*( ) , 1,..., ,( )init f iS i i n   (4.2) 

where n  is the number of superpixels in the image. 
initS  is then partitioned into 

background/foreground superpixels by k-means clustering with Lloyd’s algorithm [170]: 

(1) Two uniformly-distributed mean values of 
initS  are generated: 

max( ), 1,2
3

k init

k
m S k  ;  
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(2) Associate each element of 
initS  to one of the two clusters with the closest mean 

value 
km ;  

(3) Each 
km  is then replaced by the mean saliency value of all the elements just 

assigned to the corresponding cluster;  

(4) Repeat steps (2) and (3) until a convergence of the two clusters or a desired 

number of iteration is reached. The labeling map 
kmeansL  is obtained afterwards. 

In 
kmeansL , background superpixels are labeled with 1, while foreground superpixels 

are labeled with 2. The next step is to recognize if 
initS  is “reversed”. Empirically there 

are less (or no) foreground superpixels on the boundaries of most “normal” saliency 

maps; if the majority (or all) of the boundaries of a saliency map are covered with 

foreground superpixels, we may confidently assume it as “reversed”. Therefore, we 

calculate the average label 
bL  of all the boundary-adjacent superpixels in 

kmeansL ; if 
bL  

is greater than a pre-defined threshold 
reverset , we will treat 

initS  as reversed.  

The following step is based on the judgment of 
initS : 

(1) If 
initS  is determined as reversed, we will find and remove all of the boundary-

adjacent superpixels under the guidance of 
kmeansL , i.e. remove all of the background 

(marked as 1) boundary superpixels in 
kmeansL , because due to the saliency reversion, 

they are actually the foreground superpixels. And then, the initial saliency estimation 

step is re-performed with the newly formed boundary queries. 

(2) If 
initS  is determined as not reversed, nothing will be conducted.  

The workflow of RC is summarized in Table 4.1. 

Table 4.1 Algorithm description of the RC process 
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Step Content 

Input Initial saliency estimation 
initS , threshold 

reverset . 

1 
Calculate 

kmeansL . The background and foreground superpixels are 

labeled with 1 and 2, respectively. 

2 Calculate the average boundary label 
bL . 

3 

If 
b reverseL t , locate and remove the boundary superpixels of 

initS  

with label 2 on 
kmeansL ; Repeat the initial saliency estimation with 

refined boundary to obtain the updated result 
RCS . 

4 If 
b reverseL t , directly output 

RC initS S . 

Output The saliency estimation after RC 
RCS . 

 

The major advantage of RC is that it directly counters the source of the saliency 

reversion, i.e. the boundary-adjacent foreground superpixels. By locating and 

eliminating the boundary-adjacent foreground superpixels, their negative influences can 

be neutralized, which reverses the “reversed” saliency map back to normal, as shown in 

Figure 4.2(c). In addition, nothing will be done if the initial saliency estimation is 

detected as normal, which ensures that no further error will be introduced by RC to the 

good results. 
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(a) (b) (c) (d)  

Figure 4.2 Examples of RC. (a) Input images; (b) saliency estimations without RC; (c) saliency 

estimations with RC; (d) ground truth. The RC step can effectively counteract the saliency reversion 

problem due to the boundary-adjacent objects. 

4.4.2 Regularized Random Walks Ranking 

As introduced in section 1.3, many state-of-the-art saliency detection algorithms (e.g. 

[52-54]) heavily depend on the pre-processed superpixel segmentation, which may 

generate undesirable results if the superpixel segmentation itself is imprecise. Besides 

that, assigning the same saliency value to all pixels within a superpixel sacrifices the 

detail information from the original image. To overcome these drawbacks, we develop 

the regularized random walks ranking (RRWR) model, which is independent of the 

superpixel segmentation, and can reveal accurate pixel-wise saliency of the input image.  
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RRWR is initially proposed in our previous study [1]. It is based on (3.8), but we 

suggest a new fitting constraint, which restricts the Dirichlet integral to be as close to the 

prior saliency distribution as possible: 

   
2

) ( )
1

(
2

l l l
T

l T lp Y p YDir p p L p


     
(4.3) 

where the second term ( )
2

( )l T lp Y p Y


   is the newly added fitting constraint,   is a 

controlling parameter, similar to the   used in (3.2), and Y  is a pixel-wise indication 

vector inheriting the values of 
RCS  from section 4.4.1. Note that RRWR is computed 

pixel-wisely, hence both lp  and Y  are 1N   vectors, and L  is an N N  matrix, where 

N  is the total pixel number in the image. We define two thresholds 
hight  and 

lowt  as: 

mean( ) max( )

2

mean( )

RC RC
high

low RC

t

t

S S

S






 
(4.4) 

which are used to select pixels with 
u highY t  as foreground seeds, and 

u lowY t  as 

background seeds. The seeds are then combined into , 1,2,...l

Mp l   in section 3.3.2, 

where 1l   corresponds to the background label, and 2l   corresponds to the 

foreground label. The matrix decomposition of (4.3) is conducted as below: 

   
1

 
2

2

T T M M

l

l l l

l

l l l l
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 (4.5) 

Similar to (3.9), after setting the differentiation of (4.5) with respect to l

Up  as zero, 

the optimal solution is obtained as: 
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1

.T

U U

l l

M U

lp L I B p Y 


     
(4.6) 

Then l

Up  and l

Mp  are united as lp . We set 2l   to select the foreground possibility 

2p , and reshape it to a matrix 
finalS  with same size of the input image as the final 

foreground saliency output. 

Since the seeds are automatically generated from the result of the RC, unlike 

classical random walks [117], no user interaction is required in RRWR. The fitting 

constraint in (4.3) provides a prior saliency estimation to all pixels instead of the seed 

pixels alone, which offers a better guidance in calculating the final saliency map. The 

effect of the fitting constraint is shown in Figure 4.3, where RRWR (Figure 4.3(d)) not 

only improves the saliency map from the initial saliency estimation (Figure 4.3(b)), but 

also remarkably outperforms classical random walks (Figure 4.3(c)), which uses the first 

term of (4.3)) alone. 

The complete workflow of our proposed RCRR method is listed in Table 4.2. 



87 
 

 

Figure 4.3 Examples of RRWR. (a) Input images; (b) initial saliency estimations; (c) saliency outputs 

with classical random walks; (d) saliency outputs with RRWR; (e) ground truth. RRWR is able to 

further refine the initial saliency estimations. Column (c) and (d) shows that RWRR remarkably 

outperform the classical random walks. 

 

Table 4.2 Algorithm description of our proposed RCRR method 

 

Step Content 

Input An image and related parameters. 

1 Establish superpixel graph; calculate W  and D . 

2 Conduct initial saliency estimation and obtain 
initS . 

3 Conduct RC in Table 4.1 and obtain 
RCS . 

4 Compute the pixel-wise saliency lp with (4.6). 

5 Set 2l   and reshape 2p  into 
finalS . 

Output A saliency map with the same size of the input image. 
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4.5 Experimental Results 

In this section, we present the experimental results of our proposed RCRR method. We 

first introduce the datasets, evaluation metrics and algorithm parameters we used, and 

then evaluate the two design options in our method (i.e. RC and RWRR). After that, we 

present the comparison experiment against fourteen state-of-the-art saliency detection 

methods, with both quantitative and qualitative analyses. We also explore the 

extensibility of our method as a saliency optimization algorithm, which is conducted on 

any existing saliency detection method to further refine its performance. Finally, we 

present the efficiency and limitation of our method. 

4.5.1 Datasets 

Our experiments are conducted on five datasets, including four publicly available 

datasets and one newly designed dataset. The four public datasets (based on a recent 

saliency detection benchmark [20]) are: 

(1) MSRA10K [64], which contains 10,000 randomly-chosen images from the 

MSRA dataset [8];  

(2) ECSSD [69], which contains 1,000 complex natural images with diversified 

patterns;  

(3) SED [171], which contains 100 images with one salient object and 100 images 

with two salient objects (200 images in total); and 

(4) PASCAL-S [172], which ascends from the PASCAL VOC [173] segmentation 

challenge and contains 850 images with complex background.  

We also propose and use the new boundary-adjacent object saliency (BAOS) dataset, 

which is specifically designed to evaluate the images where large portions (at least 30%) 
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of their boundaries are covered by the foreground object(s). It contains 200 images 

(selected from MSRA10K, ECSSD, and Microsoft Grabcut [115]).  

All of the datasets come with human-labeled pixel-wise ground truth. 

4.5.2 Evaluation Metrics 

We follow the existing metrics in [20], and use precision-recall curve, F-measure, and 

mean absolute error (MAE) score as our evaluation metrics. The terms of precision, 

recall and F-measure are defined in [168] as: 
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F
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 (4.9) 

where G  is the ground truth; ( )I   is the indicator function that equals to 1 if the 

condition inside is satisfied, and 0 otherwise; finalS  is the output saliency map 

corresponding to Algorithm 2; th  is the threshold used to binarize finalS ; and N  is the 

number of pixels in the image. Precision and recall are usually displayed together as 

precision-recall curves, which are constructed by binarizing the saliency map with 

thresholds changing from 0 to 255. The F-measure is adopted as a weighted average 

between precision and recall. As suggested in [174], the average F-measure of a 

precision-recall curve is computed as its maximal single-point F-measure. We set 
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2 0.3   to grant more importance to the precision, which is consistent to [20]. When 

used to evaluate a saliency map, the higher the evaluation metric (precision, recall or f-

measure), the better the estimation. 

On the other hand, MAE is defined as the mean of the difference between the 

saliency map and the ground truth: 

1

1
( ) ( )

N

final

i

MAE S i G i
N 

   (4.10) 

Note that different to the previous evaluation metrics, it is smaller MAE that means 

better estimation.  

In addition, to evaluate the statistical significance level of RCRR against a 

comparison method A, we conduct Student’s t-test between the two methods. We 

equally divide the images of a particular dataset into 10 subgroups and compute the 

evaluation metric (F-measure or MAE) in each group. This enables us to obtain the 

sample mean and sample standard deviation of RCRR and A, namely RCRRX , AX , 

RCRRXs and 
AXs . The t-statistic is then computed as: 

2

10RCRR A

RCRR A

X X

X X
t
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where 

2 2

2
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RCRR A

X X

X X

s s
s


  

(4.12) 

We then find the one-sided p-value corresponding to t with 10-1=9 as the degree of 

freedom, since our alternative hypothesis is that the metric from RCRR is significantly 
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larger (F-measure) or lower (MAE) than that of A, but not both. The p-value is given 

together with its corresponding evaluation metric in our experiments. 

4.5.3 Parameters 

To objectively compare our algorithm with other algorithms, we use the same parameter 

settings as in [52], where the superpixel number is set to 200n  , and the two 

controlling parameters in (3.4) and (3.3) are set to 
2 0.1   and 0.01  , respectively. 

The only new parameter in RC is the average boundary label threshold 
reverset , which is 

one of the inputs of Table 4.1. We empirically set 1.5reverset  , which results in the peak 

performance in Figure 4.4. And the only new parameter in RRWR is the controlling 

parameter  . We empirically set 0.01  , which results in the peak performance in 

Figure 4.5. 

 

Figure 4.4 Average F-measures with different reverset  used in RC on the MSRA10K dataset. The value 

1.5reverset  , which corresponds to the optimal F-measure, is adopted in our following experiments. 
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Figure 4.5 Average F-measures with different   used in RRWR on the MSRA10K dataset. The 

value 0.01  , which corresponds to the optimal F-measure, is adopted in our following experiments. 

 

4.5.4 Implementation 

Our method is implemented in MATLAB on a 64-bit PC with Intel 6-Core i7-5820K 

CPU @ 3.3GHz and 64GB RAM. The source code of the RCRR method, together with 

the BAOS dataset, are both available at online: https://github.com/yuanyc06/rcrr/. 

4.5.5 Evaluation of Design Options 

We first examine the contributions of our algorithm, namely RC and RRWR. The red 

and blue curves in Figure 4.6 show the improvements in the precision-recall curves with 

the use of RC when compared to the saliency output without RC. Similarly, Figure 4.7 

exhibits that the F-measure of our method (0.857) is higher than that without using RC 

(0.850). After that, we generate the saliency maps without the use of RRWR. As shown 

by the red and brown curves in Figure 4.6, the complete algorithm exhibits superiority 

https://github.com/yuanyc06/rcrr/
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over the algorithm without RRWR. We also notice in Figure 4.7 that our proposed 

method achieves a higher F-measure than that without RRWR, in which the values are 

0.857 in comparison with 0.848, respectively.  

Based on the analyses above, both RC and RRWR have contributions in improving 

the overall performance. 

 

Figure 4.6 The precision-recall curves of our method, our method without using RC, and our method 

without using RRWR. 
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Figure 4.7 The average F-measures of our method, our method without using RC, and our method 

without using RRWR. 

4.5.6 Comparison with State-of-the-Art 

We evaluate the proposed RCRR method on the five datasets introduced in section 4.5.1, 

in comparison with fourteen state-of-the-art saliency detection methods, namely CA [78], 

CB [75], DSR [80], FES [76], FT [66], HS[69], IT[5], LR[77], MC [54], MR [52], RR 

[1], SF [70], SR [67], and wCtr* [53]. All of the algorithms above are evaluated by the 

corresponding authors’ online available software codes. Our evaluation is conducted 

both quantitatively and qualitatively. Note that all of the methods above (including our 

RCRR method) are non-training-based. Other methods such as DRFI [57] are excluded 

as they require additional training data, the choice of which will significantly affect their 

performances. 
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Quantitative Evaluation: 

The complete quantitative evaluation results are summarized in Table 4.3, and detailed 

analyses of individual datasets are presented in Figure 4.8 to Figure 4.22.  

We first conduct our quantitative evaluation on the MSRA10K dataset, which is 

large enough to cover most types of natural images. The results are shown in Figure 4.8 

to Figure 4.10. It is obvious that our method excels all of the other methods among the 

precision-recall curves in Figure 4.8, where its highest precision value reaches up to 0.96. 

Our method also achieves the best F-measure 0.857 in Figure 4.9, and the second best 

MAE score 0.117 in Figure 4.10. In addition, the p-values on Figure 4.9 and Figure 4.10 

also indicate that the advantages of RCRR against the comparison methods in both F-

measure and MAE are statistically significant. 

 

Table 4.3 F-measure and MAE evaluation results.  
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CA 0.621 0.513 0.603 0.496 0.605 0.237 0.343 0.246 0.301 0.392 

CB 0.764 0.672 0.693 0.625 0.665 0.209 0.289 0.254 0.286 0.362 

DSR 0.834 0.699 0.806 0.651 0.693 0.121 0.226 0.151 0.215 0.335 

FES 0.717 0.618 0.672 0.624 0.613 0.185 0.265 0.207 0.223 0.389 

FT 0.583 0.426 0.605 0.406 0.545 0.242 0.329 0.247 0.316 0.412 
HS 0.845 0.698 0.806 0.645 0.729 0.149 0.269 0.179 0.264 0.303 

IT 0.480 0.415 0.507 0.421 0.483 0.217 0.285 0.233 0.246 0.413 

LR 0.773 0.631 0.720 0.580 0.691 0.225 0.313 0.247 0.288 0.365 

MC 0.847 0.703 0.810 0.658 0.684 0.145 0.251 0.172 0.232 0.346 

MR 0.846 0.708 0.802 0.612 0.711 0.126 0.236 0.154 0.259 0.330 

RR 0.850 0.710 0.806 0.639 0.737 0.121 0.229 0.151 0.232 0.306 

SF 0.749 0.549 0.719 0.496 0.670 0.171 0.268 0.202 0.241 0.382 

SR 0.528 0.450 0.541 0.454 0.570 0.249 0.345 0.253 0.294 0.407 

wCtr* 0.853 0.687 0.815 0.659 0.724 0.112 0.225 0.147 0.208 0.330 

Ours 0.857 0.714 0.811 0.663 0.742 0.117 0.223 0.150 0.212 0.296 

The best and second best results are marked in red and blue, respectively. 
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Figure 4.8 Precision-recall curves on the MSRA10K dataset. 

 

 

Figure 4.9 F-measures on the MSRA10K dataset. 
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Figure 4.10 MAE scores on the MSRA10K dataset. 

 

And then we proceed to the ECSSD dataset, which contains 1,000 images with 

complicated backgrounds. Again, our method outperforms all of the other methods 

among the precision-recall curves in Figure 4.11. This observation is further validated in 

Figure 4.12 and Figure 4.13, where our method achieves the highest F-measure 0.711 

and the lowest MAE score 0.224 simultaneously, with statistically significant 

advantages. 
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Figure 4.11 Precision-recall curves on the ECSSD dataset. 

 

 

Figure 4.12 F-measures on the ECSSD dataset. 
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Figure 4.13 MAE scores on the ECSSD dataset. 

 

Our method behaves similarly on the SED dataset and the PASCAL-S dataset 

(Figure 4.14 to Figure 4.19), where it outperforms most of the comparison methods 

among the precision-recall curves, and only marginally worse to wCtr* at some points. 

Our method, DSR, HS and wCtr* have entangled curves in Figure 4.14 and Figure 4.17, 

and have close scores in F-measure and MAE. Nevertheless, our method still achieves 

the best F-measure (0.663) on PASCAL-S, the second best F-measure (0.811) on SED, 

and the second best MAE scores (0.150 and 0.212) on SED and PASCAL-S, 

respectively. The statistical p-values of our method on SED and PASCAL-S are not as 

significant as those on MSRA10K and ECSSD, which match the mixed performances 

we observed above; but our p-values still maintain being under 0.1. 
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Figure 4.14 Precision-recall curves on the SED dataset. 

 

Figure 4.15 F-measures on the SED dataset. 
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Figure 4.16 MAE scores on the SED dataset. 

 
Figure 4.17 Precision-recall curves on the PASCAL-S dataset. 
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Figure 4.18 F-measures on the PASCAL-S dataset. 

 

 
Figure 4.19 MAE scores on the PASCAL-S dataset. 
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Finally, we conduct evaluation on the newly proposed BAOS dataset. The results in 

Figure 4.20 to Figure 4.22 display the absolute advantage of our method. It not only has 

a significantly higher precision-recall curve in Figure 4.20, but also obtains the optimal 

F-measure (0.742) and MAE (0.296) in Figure 4.21 and Figure 4.22, with statistically 

significant advantages. The dominance of our method on the BAOS dataset 

demonstrates its elevated robustness to salient objects on the image boundaries. 

 

Figure 4.20 Precision-recall curves on the BAOS dataset. 
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Figure 4.21 F-measures on the BAOS dataset. 

 

 
Figure 4.22 MAE scores on the BAOS dataset. 
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Qualitative Evaluation: 

To provide a qualitative comparison of the different saliency outputs, we select eight 

example saliency maps from each of the fifteen methods, and tile them in Figure 4.23.  

We select the top six methods in Table 4.3 with the best performances, namely DSR, 

HS, MC, MR, wCtr* and RR, in the qualitative evaluation against our proposed RCRR 

method. Through the visual examples in Figure 4.23, we observe that in general, RCRR 

achieves the best performance among the chosen images. The comparison methods are 

analyzed below. 

(1) The DSR [80] method computes saliency via multi-scale reconstruction errors 

followed by an object-based Gaussian refinement. However, since the saliency map 

boundaries are frequently suppressed by the Gaussian refinement, DSR will always tend 

to produce dark boundaries, which is clearly visible on all of the chosen images.  

(2) The HS [69] method is ideal in dealing with small-scale high-contrasts regions by 

the use of a tree model. Yet, since it depends on the extraction of cue maps with low-

level features such as color and position, it does not work well with images that have 

low contrast between the foreground and the background, e.g. Figure 4.23(b) and (c).  

(3) The MC [54] model applies absorbed time of Markov chain in calculating the 

saliency value, and provides fair enough estimations in most cases. Nevertheless, it tends 

to highlight the center due to its longer distance to the boundaries, and will frequently 

fail in detecting boundary-adjacent salient objects, which is seen in Figure 4.23(a), (b) 

and (h).  

(4) The MR [52] method evaluates superpixel saliency via graph-based manifold 

ranking, which functions well in images with centered salient objects. However, it 

completely relies on the image boundaries as background queries, which greatly suffers 
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the aforementioned saliency reversion problem when boundary-adjacent salient objects 

are presented, as witnessed in Figure 4.23(a), (b), (e), (f) and (g).  

(5) The wCtr* [53] method optimizes the saliency detection by exploiting the 

proportion that a region connects to the boundaries, which shows good results on 

centered salient objects. However, its core idea, the boundary connectivity, still uses 

image boundaries as background queries, which suffers similar drawbacks as the MR 

method does.  

(6) Finally, the RR [1] method is a former version of RCRR, and instead of applying 

RC, it uses 3 of the 4 image boundaries as background queries. Figure 4.23(a), (b), (d) 

and (g) demonstrate that the proposed RC step can provide even higher robustness than 

the boundary selection strategy of RR.  

On the other hand, our method generates saliency maps that visually correlate with 

the ground truth better. It exhibits high robustness under various cases, even in the cases 

with complex backgrounds such as in Figure 4.23(b) and (f). With the improvement 

from the proposed RC step, it shows marked advantage in handling boundary-adjacent 

salient object images, minimizing the emergence of saliency reversion. Moreover, the 

proposed RRWR step helps to provide elevated accuracy and smoothness to the output 

saliency map, which are seen in Figure 4.23(c), (d) and (h). We further note that our 

method is good at suppressing background regions that share similar patterns to the 

salient object, such as Figure 4.23(b). 
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Figure 4.23 Saliency map examples of state-of-the-art methods against our RCRR method. (a) – (h): 

Image case IDs. 
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4.5.7 Extensibility as A Saliency Optimization Algorithm 

As stated in section 4.4.1, the initial saliency estimation can also be generated by other 

boundary-based methods. In such a case, we suggest that our method, including the RC 

step and the RRWR step, functions as a saliency optimization algorithm. To evaluate its 

optimization performance, we compare our method with RBD [53], which is a state-of-

the-art saliency optimization algorithm that can be widely applied on different saliency 

detection methods for performance improvements.  

We select two boundary-based methods as the to-be-optimized methods, namely MR 

[52] and MC [54]. The same five datasets from section 4.5.6 are used. The results are 

listed in Figure 4.24 to Figure 4.27. It is obvious that our method outperforms RBD 

among all of the F-measure bars in Figure 4.24 and Figure 4.26. Our method also 

achieves the lowest MAE scores on all of the five datasets in Figure 4.25 and Figure 

4.27, when compared to both the original methods and their RBD-optimized versions. 

The improvement of our method over RBD lies in the fact that RBD is reliant on image 

boundaries as the background queries, which inevitably suffers from the saliency 

reversion cases. It is also worth noting that our method shows especially high 

performance on the BAOS dataset, which further validates its high robustness on 

boundary-adjacent salient objects.  

We note that RC and RRWR can also be independently exploited as two separate 

saliency optimization algorithms, which provides further flexibility of our method in 

practical applications. 
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Figure 4.24 Optimization evaluation results of F-measure on the MR method. 

 

 

Figure 4.25 Optimization evaluation results of MAE on the MR method. 
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Figure 4.26 Optimization evaluation results of F-measure on the MC method. 

 

 

Figure 4.27 Optimization evaluation results of MAE on the MC method. 
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4.5.8 Efficiency 

Our method is implemented on the machine described in section 4.5.4. The average 

calculation time per image of our method is 0.408s (excluding the time for superpixel 

generation and initial saliency estimation), in which the RC step takes less than 0.01s, 

and the RRWR step takes 0.358s. 

4.5.9 Limitation 

One limitation of RCRR, as observed in the experiments, is that in images where the 

salient object occupies more than half (or even all) of the image boundaries, the 

originally correct initial saliency estimation 
initS  will be mistakenly detected as 

“reversed”, and thus be unnecessarily processed by the RC step, as the example in 

Figure 4.28 shows. Nevertheless, considering that such cases only appear occasionally, 

our method still prevails over the other state-of-the-art methods in the overall 

performance. 

 

Figure 4.28 Example case showing the limitation of our proposed RCRR method. (a) Input image; (b) 

result of MR; (c) result of RCRR; (d) ground truth. 

 

4.6 Summary 

In this chapter, we have proposed RCRR, a novel saliency detection method based on 

improved low-level image features. The significant contributions of our method lie in 

two aspects: firstly, the RC step can effectively neutralize the negative influences of the 
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boundary-adjacent foreground regions, and thereby reversing the “reversed” saliency 

maps back to normal, leading to more accurate and robust saliency estimations; secondly, 

the RRWR step can provide prior saliency estimation to all of the pixels in an image, 

resulting in smoother and more detailed saliency map output. We also distribute the 

BAOS image dataset, which can be used to evaluate the performance on boundary-

adjacent salient objects. Our method is fully automatic without any user supervision. 

Results of experiments on five datasets show that our method significantly outperforms 

fourteen state-of-the-art saliency detection methods in both accuracy and robustness, 

while maintaining relatively high efficiency. We further demonstrate the extensibility of 

our method as a saliency optimization algorithm. 
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5 DNN Based Saliency 

Detection 

In Chapter 3 and Chapter 4, we have introduced two saliency detection methods based 

on low-level image features. These methods perform well against other state-of-the-art 

methods that also based on low-level features. However, the absence of high-level 

feature extraction makes them particularly vulnerable when encountering low contrast 

images and complex patterned images, as seen in section 1.3.3. On the other hand, the 

recently prevalent deep neural networks (DNNs), especially the convolutional neural 

networks (CNNs), are proved to be of great value in high-level feature extraction for 

saliency detection. 

In this chapter, we propose two DNN based methods to further improve our saliency 

detection performance, namely the adaptive background search and foreground 

estimation (BSFE) method, and the dense and sparse labeling (DSL) method. Section 5.1 

summarizes the challenges we are going to address; section 5.2 lists our contributions 

and the major steps in the two methods we propose; section 5.3 reviews the related 

works to our DNN based methods, namely auto-encoder, DNN based sparse labeling, 

and DNN based dense labeling; section 5.4 and 5.5 give step-by-step methodology of 

BSFE as well as its experimental results; section 5.6 and 5.7 give step-by-step 

methodology of DSL as well as its experimental results; and finally, section 5.8 

concludes this chapter. 

Chapter 
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5.1 Problem Formulation 

As introduced in section 2.1, conventional low-level image feature based saliency 

detection methods have shown promising results in both bottom-up methods and top-

down methods. Nevertheless, at least three major drawbacks hinder the performances of 

these methods. 

(1) In general, without feature abstraction and learning, the hand-crafted low-level 

features are only effective on relatively high contrast images and do not perform well on 

images with complex foreground / background contexts. This drawback, however, can 

be readily solved via high-level feature learning, which is seen in Figure 5.1(a). 

(2) Most of the prior knowledge applied in low-level feature based methods is 

largely empirical with specific pre-assumptions, e.g. image boundary regions are 

assumed as background [52], [53], or image center regions are assumed as foreground 

[54], [55]. These pre-assumptions are easily violated on broader datasets with more 

unusual-patterned images, as in the example in Figure 5.1(b). This issue has been 

discussed in chapter 3 and chapter 4, and remarkable improvements have been presented. 

Yet, these boundary refinement processes (such as the RC step in chapter 4) are still 

restricted in empirical pre-assumptions of image boundaries, and a high-level image 

feature based approach is desired to provide prior knowledge for saliency estimations. 

(3) Each low-level feature is usually advantageous only in a specific aspect, e.g. 

color histogram is good at differentiating texture patterns, while frequency spectrum is 

good at differentiating energy patterns. It is generally difficult to combine different low-

level features into a single algorithm to benefit from them all. Although some integration 
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trials have been made [57], [58], these specially designed algorithms are bulky and 

inefficient due to the large number of features involved. 

 

Figure 5.1 Illustration of challenges encountered by conventional low-level feature based saliency 

detection methods. (a) – (d): Image case IDs. From left to right: input images, saliency maps by a 

low-level feature based method [52], saliency maps by our proposed DSL method, ground truth. 

5.2 Contributions 

In this chapter, to address the three issues above faced by conventional low-level feature 

based methods, we propose BSFE and DSL, which are two DNN-based methods for 

saliency detection. The key contributions of these two methods are listed below. 

For BSFE: 

(1) We propose an adaptive background extractor, which approximates background 

regions semantically and cognitively, contributing to higher detection accuracy; 
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(2) We apply the auto-encoder (AE) hierarchically for foreground estimation, which 

is guided by the background mask, to reconstruct the final saliency map with higher 

performance. 

And for DSL: 

 (1) We combine the DNN-based dense labeling (DL) and sparse labeling (SL) 

together for initial saliency estimation, in which DL conducts dense labeling that 

maximally preserves the global image information and provides accurate location 

estimation of the salient object, while SL conducts sparse labeling that focuses more on 

local features of the salient object; 

(2) For the SL step, both low-level features and RGB features of the image are 

applied as the network inputs. Such multi-dimensional input features enable the 

complementary advantage of low-level features and RGB features, by which the image 

is more accurately abstracted and represented; 

(3) In the last deep convolution (DC) step, a 6-channeled input structure is proposed, 

which provides significantly better guidance in generating the final saliency map. On the 

one hand, the combined initial saliency estimations from the DL and SL steps provide 

accurate location guidance of the salient object, effectively excluding any false salient 

region (Figure 5.1(c)); on the other hand, the superpixel indication channel precisely 

represents the current to-be-classified superpixel, which leads to more consistent and 

accurate saliency labeling (Figure 5.1(d)). 

Both of the proposed methods are evaluated on publically available datasets, where 

BSFE is evaluated on four datasets against six state-of-the-art methods, and DSL is 

evaluated on six datasets against sixteen state-of-the-art methods (including ten 
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conventional methods and six learning based methods). Both methods have shown their 

superior performances in the experimental results. 

5.3 Related Works 

Section 2.4 has already introduced the fundamentals of DNN, as well as its sparse and 

dense labeling applications. In this section, we briefly review the basic principles and 

applications of auto-encoder (AE) as supplementary preliminary knowledge. 

5.3.1 Auto-Encoder 

Auto-encoder (AE) is one of the simplest forms of neural networks. It aims to convert 

the network input data into outputs with the least amount of distortion by learning 

patterns from the input data [175].  

Classical AE is an unsupervised learning algorithm that applies back-propagation 

and makes the target values of the network outputs equal to the inputs [176].Specifically, 

it consists of an encoding process and a decoding process. The encoding process takes 

an encoding function ( , )i ff x   (usually the sigmoid function ( ) 1/ (1 exp( ))sig x x   ) 

to make the transformation  

( , ) ( )i i f iy f x sig Wx b    (5.1) 

where 
iy  is the output of the hidden layer, { , }f W b  , W  is a projection matrix, and b  

is a bias term. On the other hand, the decoding process adopts a decoding function 

( , )i gg y   to map the hidden representation 
iy  to a reconstruction representation 

iz : 

( , ) ( ' ')i i g iz g x sig W y b    (5.2) 
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where { ', '}g W b  . After the decoding process, 
iz  is taken as the prediction of the input 

ix .  

The training of an AE is to optimize the parameters { , }f W b   and ( , )i gg y   so 

that the mean-squared error between the training data and their predictions is minimized: 

,

arg min ( , )
f g

L X Z
 

 (5.3) 

2

1

1
( , )

2

m

i i

i

L X Z x z


   (5.4) 

where { }, { }, 1,2,...,mi iX x Z z i   . 

In practice, the stacked auto-encoder (SAE) is more prevalently used. An SAE is 

comprised of multiple unsupervised feature learning layers, which can be trained via 

greedy methods for each additional layer. To be specific, once the first layer is trained, 

its output will become the input of the second layer, and all the additional layers will be 

trained this way. The deep architecture of SAE grants it the ability to learn more 

complex and abstract features during training. 

5.4 Saliency Detection with Adaptive Background 

Search and Foreground Estimation (BSFE) 

Using Comprehensive Auto-Encoder  

Our proposed BSFE consists of two individual SAEs, one for the adaptive background 

search (BS), and the other one for the foreground estimation (FE).  
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Figure 5.2 Flowchart of our proposed BSFE method. 

 

5.4.1 Adaptive Background Search 

We first extract a rough background estimation of an image by our proposed BS SAE 

model. Specifically, for an RGB image patch 
bsp  with the size of m m  pixels from the 

training image I , the input vector ( )bsf p  of BS SAE is obtained by 

( )
( )

( )

bs

bs

g p
f p

g I

 
  
 

 
(5.5) 

 

where 3m mI    is the resized image of I , and following [90], m  is set to 51; ( )g   is 

the vectorization operation, and thus 15606 1( )bsf p  . As ( )bsf p  is the concatenation of 
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local context (
bsp ) and global context ( I ), the trained BS SAE model can infer 

background region from a holistic view, rather than be restricted to local view [90] or 

regional view [177]. 

After obtaining the feature representations of an image patch by the trained BS SAE 

model, we use the softmax function to measure its probability of being background. This 

grants us a background mask 
bsM  of I , which can be utilized for foreground estimation 

in section 5.4.2. As shown in Figure 5.3, compared with conventional boundary-

background priors [1], [52], [54], [87], [175], [178], [179], the adaptive background 

mask 
bsM  is able to capture the background region semantically and cognitively. 

 

Figure 5.3 Examples of the background mask by the BS SAE model. 

 

5.4.2 Foreground Estimation 

In the last section, we have generated the background mask 
bsM . To improve the 

efficiency of our method, we transform 
bsM  to a superpixel-wise background mask and 

use superpixel as the unit for further operations. We partition each image into 250 

superpixels using the SLIC algorithm [166]. The superpixel-wise background mask is 
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achieved by calculating the mean value of pixels within each superpixel. For brevity, we 

still use 
bsM  to denote the superpixel-wise background mask, unless otherwise specified.  

With the testing image I  and the corresponding background mask 
bsM , we then 

construct the foreground estimation SAE model (FE SAE) to extract the foreground 

saliency of I . Different from BS SAE, the RGB histogram of the superpixel (with 20 

bins in each color channel) is exploited as the input vector, and there is no softmax 

regression in FE SAE, which makes it a completely unsupervised learning model. Only 

the superpixels on 
bsM  with values more than 0.7 are selected as the training set for the 

FE SAE model. 

After the training of FE SAE, we calculate the reconstruction residual 
fepr  for each 

superpixel 
fep  of I  by 

( ) ( )
fep fe fer h p h p   

(5.6) 

where ( )feh p  is the original input vector corresponding to 
fep  and ( )feh p  is the data 

reconstruction of ( )feh p  by FE SAE. Inspired by [175], the idea of our method is that as 

FE SAE is constructed by the background superpixels, the superpixels belonging to 

background have low reconstruction residual, while the superpixels belonging to 

foreground have high reconstruction residual. The reconstruction residual is thus 

adopted to measure the saliency value of 
fep  with the following formula: 
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(5.7) 

where   is the smooth factor (which is set to 6 empirically); 
pr  is the reconstruction 

residual of superpixel p  by (5.6); and D  is the training set of FE SAE. 

Considering that complex background may impede the accuracy of the foreground 

estimation, we hierarchically conduct the foreground estimation algorithm in regional 

scales for better performance. Specifically, the testing image I  is first segmented into 

two regions by the Ncut algorithm [180]. Two individual FE SAEs are then constructed 

respectively under these two regions and each superpixel of I  is assigned to the saliency 

value by (5.7) with the corresponding FE SAE. In the next hierarchy, we segment the 

two regions respectively to generate four smaller regions and construct four individual 

FE SAEs corresponding to these regions. Each superpixel of I  is assigned to the new 

saliency value by (5.7) in this hierarchy. Note that in each segmentation operation, only 

two sub-regions are generated and the region is no longer segmented when 

' 0.3D A   or ' 0.7D A  , where 'D  and A  are the training set and superpixel set 

respectively corresponding to the region. This process is repeated until no more regions 

to be segmented. Finally, the saliency value of the superpixel is obtained by linearly 

combining the saliency values of each hierarchy.  

The complete flowchart of the BSFE method is shown in Figure 5.4, and the 

foreground estimation algorithm is summarized in Table 5.1. 
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Figure 5.4 Flowchart of our proposed BSFE method. 

 

Table 5.1 Algorithm description of our proposed foreground estimation 

 

Step Content 

Input Input image I  and background mask bsM . 

1 { } 1p bsS s M    

2 Segment I  into two regions 1I  and 2I  by Ncut [180]. 

3 1 2{ , }O I I  

4 while O  : 

5  for each R O : 

6   select training set 'RD  according to bsM  

7   train FE SAE 

8   for each superpixel p R : 

9    calculate saliency value 'ps  by (5.7) 

10    ( ' ) / 2p p ps s s   

11   end for 

12   remove R  from O  

13   if 0.3 ' 0.7RR D R     then: 

14    segment R  into 1R  and 2R  by Ncut 

15    1 2{ , }O O R R   

16   end if 

17  end for 

18 end while 

Output Saliency map { }pS s . 
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5.5 Experimental Results of BSFE 

In this section, the experimental results of our proposed BSFE method are presented. We 

first introduce the necessary setup of our experiments, including datasets, evaluation 

metrics and parameter assignments. And then we exhibit the comparison experiment of 

BSFE against six state-of-the-art methods. 

5.5.1 Datasets 

We select the MSRA10K [64] dataset for training, which contains 10,000 natural images 

with large variety and the corresponding pixel-wise saliency annotations. We randomly 

select 9,000 images from the dataset to train the BS SAE, and use the remaining 1,000 

images for validation. 

In testing, we adopt four public benchmark datasets, namely ECSSD [69], PASCAL-

S [172], SED1 [171] and SED2 [171].  

5.5.2 Evaluation Metrics 

Following section 4.5.2, the precision-recall curve, F-measure and MAE score are also 

used in our experiments as the evaluation metrics. 

5.5.3 Parameters 

For the BS SAE model, we stack three AEs to extract feature representation in high-

level manners, with 7,000, 3,500 and 2,000 hidden nodes in each AE, respectively. As 

suggested in [175], [177], before fed into BS-SAE, ( )bsf p  is corrupted to enhance the 

robustness across a large training set, in which some of the units are set to be zero 

randomly.  
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For the FE SAE model, we stacked two AEs to boost the performance of data 

reconstruction, with 60 hidden nodes in each of the AE. As the number of training 

samples is small (generally less than 250), we did not corrupt the original input vector in 

FE SAE to make the trained model more specific to the small training set. 

The hyper-parameters for the training of BS SAE and FE SAE are listed in Table 5.2. 

Table 5.2 Hyper-parameters for the training of BS SAE and FE SAE 

 

 
BS SAE FE SAE 

Pre-training Fine-tuning Pre-training Fine-tuning 

Training epoch 15 60 15 100 

Learning rate 1e-2 

1e-6 for first 20 

epochs; 

8e-8 for next 40 

epochs. 

1e-2 1e-3 

 

5.5.4 Implementation 

Both BF SAE and FE SAE are implemented with the Theano frame [181], [182]. The 

machine used for our experiments is a PC with Intel 6-Core i7-5820K 3.3GHz CPU, 

64GB RAM, GeForce GTX TITAN X 12GB GPU, and 64-bit Ubuntu 14.04.3 LTS. 

5.5.5 Evaluation Against State-of-the-Art 

Six popular state-of-the-art saliency detection methods are chosen as comparison 

methods against our proposed BSFE methods, which includes FT [66], LR [77], HS [69], 

MC [54], MR [52] and RR [1].  

The quantitative experimental results are shown in Figure 5.5 to Figure 5.16. They 

demonstrate the superiority of our method on most datasets. Note that our BSFE method 

even achieved double-best results in terms of both FM and MAE on the PASCAL-S and 
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SED2 datasets, which are two of the datasets with more challenging scenarios and 

complex image patterns. 

 
Figure 5.5 Precision-recall curves on the ECSSD dataset. 

 

 
Figure 5.6 F-measures on the ECSSD dataset. 
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Figure 5.7 MAE scores on the ECSSD dataset. 

 

 
Figure 5.8 Precision-recall curves on the PASCAL-S dataset. 
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Figure 5.9 F-measures on the PASCAL-S dataset. 

 

 
Figure 5.10 MAE scores on the PASCAL-S dataset. 
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Figure 5.11 Precision-recall curves on the SED1 dataset. 

 

 
Figure 5.12 F-measures on the SED1 dataset. 
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Figure 5.13 MAE scores on the SED1 dataset. 

 

 
Figure 5.14 Precision-recall curves on the SED2 dataset. 
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Figure 5.15 F-measures on the SED2 dataset. 

 

 
Figure 5.16 MAE scores on the SED2 dataset. 
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We then conduct the qualitative evaluation of our proposed BSFE method, and the 

visual saliency map examples are shown in Figure 5.17. It depicts that BSFE achieves 

the best qualitative performance against the comparison methods. For example, Figure 

5.17(b), (c), (d), (g), (h) and (j) involve images with low contrast salient objects, in 

which BSFE successfully extracts the whole salient object, while all of the comparison 

methods miss part of the object more or less. Figure 5.17(a), (e), (f), (i), (k) and (l) 

involve images with complex foreground / background patterns, in which BSFE 

managed to recognize the salient object from the complex background (even for images 

with two objects such as Figure 5.17(k) and (l)), while most of the comparison methods 

fail to correctly detect the salient object.  
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Figure 5.17 Saliency map examples of state-of-the-art methods against our BSFE method. (a) – (l): 

Image case IDs. 
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5.6 Saliency Detection with Multi-Dimensional 

Features Using DNN Based Dense and Sparse 

Labeling (DSL) 

In this section, the DSL method will be introduced in detail. As mentioned in section 5.2, 

our DSL method has three major steps, namely DL, SL and DC. The complete flowchart 

of DSL is shown in Figure 5.18. Considering the topological structure of the three steps, 

two independent training datasets 
1T  and 

2T  are used, in which 
1T  is used for DL and SL, 

and 
2T  is used for DC. 
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Figure 5.18 Flowchart of our DSL method. The three major steps DL, SL and DC are highlighted in 

yellow. An input image is first processed by DL and SL, respectively; the resulting initial saliency 

estimations are then concatenated with the image RGB channels and the superpixel indication 

channel to form the 6-channel input of DC, which is used to generate the final saliency map. 
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5.6.1 Dense Labeling for Initial Saliency Estimation 

Dense labeling is a category of classification in which each pixel in the input image is 

assigned a label that indicates the type of object it most likely belongs to. Saliency 

detection can be treated as a binary dense labeling problem, since the salient (foreground) 

and background regions can be seen as two separate objects.  

VGG-16

Dense labeling 

network

Discard final classifier and 

convert all fully connected 

layers to conv layers

Upsampling

Appended 1x1 

conv layer with 2 

channels

Input image
Coarse output

Pixel-wise dense 

labeling result  

Figure 5.19 Flowchart of the DL step. 

 

The flowchart of our DL network is shown in Figure 5.19. It is inspired by [150], 

which has achieved state-of-the-art performance in dense labeling tasks such as semantic 

segmentation. The network architecture is shown in Table 5.3. The main differences 

between DL and a normal CNN are that DL takes enlarged input images (up to 384*384), 

and the last few originally fully-connected (fc) layers are converted to 1*1 convolutional 

layers. As a result, the heatmaps (instead of scalar labels) of foreground and background 

can be directly generated at layer conv8, both with size 12*12. We then apply the 

bilinear interpolation to upsample the heatmaps from 12*12 (
8convM ) to 224*224 

(
32deconvM ), which is the input size of the following DC step. For each to-be-interpolated 

pixel on 
32deconvM , its upsampled value is calculated by bilinear interpolation of its 

closest four values on 
8convM , as indicated in Figure 5.20: 
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where [0,1]l  stands for the salient (foreground) layer and background layer. Note that 

all coordinates are normalized to [0,1] to facilitate calculation. After that, similar to the 

softmax regression in normal CNNs, we take each two pixels on 
32deconvM  with the same 

x  and y  coordinates (but at different layers) as a pair, and apply the softmax function 

on them: 
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The L2 loss is then computed between the pixel-wise ground truth G  and smM : 
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DL sm
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(5.10) 

where “==” means the logical “equal to”. Equation (5.10) is later used in the back-

propagation for training.  

Table 5.3 Architecture of our DL network 

 

Layer Type Output Size 
Conv (size, 

channel, pad) 

Max 

Pooling 

input in 384*384*3 N/A N/A 

conv1_1 c+r 384*384*64 3*3,64,1 N/A 

conv1_2 c+r+p 192*192*64 3*3,64,1 2*2 

conv2_1 c+r 192*192*128 3*3,128,1 N/A 

conv2_2 c+r+p 96*96*128 3*3,128,1 2*2 

conv3_1 c+r 96*96*256 3*3,256,1 N/A 

conv3_2 c+r 96*96*256 3*3,256,1 N/A 

conv3_3 c+r+p 48*48*256 3*3,256,1 2*2 

conv4_1 c+r 48*48*512 3*3,512,1 N/A 

conv4_2 c+r 48*48*512 3*3,512,1 N/A 
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conv4_3 c+r+p 24*24*512 3*3,512,1 2*2 

conv5_1 c+r 24*24*512 3*3,512,1 N/A 

conv5_2 c+r 24*24*512 3*3,512,1 N/A 

conv5_3 c+r+p 12*12*512 3*3,512,1 2*2 

conv6 c+r+d 12*12*4096 7*7,4096,3 N/A 

conv7 c+r+d 12*12*4096 1*1,4096,0 N/A 

conv8 c 12*12*2 1*1,2,0 N/A 

deconv32 us 384*384*2 N/A N/A 

loss sm+log 1*1 N/A N/A 

Annotations - in: input layer; c: convolutional layer; r: ReLU layer; p: pooling layer; d: dropout 

layer; us: upsampling layer; sm: softmax layer; log: log loss layer. 

 

 

Figure 5.20 Bilinear interpolation from the conv8 layer to the deconv32 layer. 

 

As mentioned at the beginning of section 5.6, the DL network is trained by the 

training set 
1T . After desired validation results are obtained, it is used to test the training 

set 
2T , the results of which are then used as part of the 6-channeled inputs in training the 

DC step, as Figure 5.18 shows. Figure 5.21 illustrates example outputs of DL. It is 

observed that DL is capable of producing accurate contours of the salient object, which 

contains much more boundary information than the bounding box approximation in 
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[147]. In addition, it also has shown high robustness in various challenging scenarios, 

such as low contrast images (Figure 5.21(c)) and complex images (Figure 5.21(d)). 

 
Figure 5.21 Example outputs of the DL step. First row: input images; second row: outputs of the DL 

network; third row: ground truth. 

 

5.6.2 Sparse Labeling for Initial Saliency Estimation 

Similar to the DL step which produces initial saliency estimation with macro object 

contours, the SL step produces initial saliency estimation with low-level image features. 

The idea of the SL step is to conduct superpixel-wise sparse labeling of the image 

based on its corresponding low-level features. Each image is first segmented into 

superpixels by the SLIC method [166]. We adopt a zoom-out-like feature fusion of each 

superpixel [149], which involves 708 local features, 204 neighborhood features, and 

4096 global features (5,008 features in total for each superpixel). The three different 

types of features are introduced below. 
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Figure 5.22 Flowchart of the SL step. The input image after superpixel segmentation is processed by 

local, neighborhood and global feature extractions for the complete feature vector. The sparse 

labeling network then intakes the complete feature vector and conducts image-feature-based initial 

saliency estimation. 

 

(1) Local Features 

The local features are on the smallest scope in our feature extraction, which focus on 

the current superpixel itself, as the red regions in Figure 5.22 indicate. Due to the narrow 

scope, the local features tend to have large variance among neighboring superpixels. 

There are 708 local features in total that we have adopted, including 204 color features, 

4 location features, and 500 local CNN features. 

Color: We first extract the bounding box of the current superpixel, and then 

calculate its histograms for each of the three channels in both RGB and L*a*b color 

spaces, with 32 color bins each. In addition, the mean and variance for each of the three 

channels in the two color spaces are also calculated. This yields 32*3*2 + 2*3*2 = 204 

color features. 

Location: We compute the min / max x  and y  coordinates of the current 

superpixel’s bounding box, and conduct normalization to the size of the image. This 

yields 4 location features in the range of [0, 1]. 
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Local CNN: The last part of local feature is a representation of the current 

superpixel by a local CNN, which is fine-tuned from the LeNet model for hand-written 

digit recognition [183]. Table 5.4 shows the architecture of the local CNN, which has 

three convolutional layers separated by batch normalization [184], max pooling and 

ReLU layers. It takes the bounding box of the current superpixel in the L*a*b color 

space as input (resized to 28*28*3), and outputs a binary label that indicates the current 

superpixel being salient or background. We select the output of conv3, which is the 

activation value of the last fully connected layer fc4, as the local CNN feature. This 

yields the 500 CNN features. 

Table 5.4 Architecture of our local CNN 

 

Layer Type Output Size 
Conv (size, 

channel, pad) 
Max Pooling 

input in 28*28*3 N/A N/A 

conv1 c+b+p 12*12*20 5*5,20,0 2*2 

conv2 c+b+p 4*4*50 5*5,50,0 2*2 

conv3 c+b+r 1*1*500 4*4,500,0 N/A 

fc4 fc+r 1*1*2 1*1,2,0 N/A 

loss sm+log 1*1 N/A N/A 

Annotations - in: input layer; c: convolutional layer; b: batch normalization layer; p: pooling layer; 

r: ReLU layer; fc: fully connected layer; sm: softmax layer; log: log loss layer. 

 

(2) Neighborhood Features 

The neighborhood features are on the second scope in our feature extraction, which 

focuses on the neighboring regions of the current superpixel. The neighboring region is 

defined as the second order neighboring superpixels of the current superpixel, as the 

blue regions in Figure 5.22 indicate. They are designed to reflect an intermediate level of 

features of the current superpixel, which are more enriched than the local features, but 

are less macro-scoped than the global features. Due to its definition, the neighborhood 

features are expected to have lower variance among different superpixels than the local 
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features. We adopt the same set of color features defined in the previous section as the 

neighborhood features, which yields 204 features. 

(3) Global Features 

The global features consist of representations of the whole image, as the yellow 

region (outer boundary) in Figure 5.22 indicates. We use a CNN designed for ImageNet 

classification to generate the global features. By considering the overall performance, 

the VGG-16 model [161] is adopted, which is the same model used in our DC step  (see 

section 5.6.3 for detailed discussion). Images are resized to 224*224 before being fed 

into the network, and the 1*1*4,096 activation value of the last fully connected layer is 

treated as the global feature. Following [149], we directly use the pre-trained network 

without fine-tuning. 

(4) SL Network Training 

By feature extraction and concatenation of the three steps above, a 1*5,008 feature 

vector will be generated per superpixel per image. We then establish the SL network 

with three fully connected layers (see section 5.7.5 for detailed discussion), which takes 

the feature vectors as inputs, and output a scalar label indicating the saliency of the 

current superpixel. After training for enough epochs, the SL network is used to generate 

the low-level feature based initial saliency channel for the next DC step. 

5.6.3 Sparse Labeling for Final Saliency Map 

While the DL and SL steps are designed to provide coarse initial saliency estimations, 

the DC step is designed to generate the final saliency map with superpixel-wise binary 

sparse labeling, i.e. obtain the saliency of each individual superpixel in the image via 

DNN-based classification, and then integrate them together to form the complete final 
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saliency map, as shown in Figure 5.18. Considering the overall performance, we adopt 

the VGG-16 [161] as the baseline model of our DC network (see section 5.7.6 for 

detailed discussion). Table 5.5 shows the architecture of the DC network. The input 

structure of DC, being one of our key novelties, is 6-channeled data with fixed size as 

224*224*6. The first three channels are the RGB data from the image; the fourth and 

fifth channels are the initial saliency estimations from the DL and SL steps, respectively 

(both resized to 224*224); and the sixth channel is the superpixel indication channel, 

which precisely marks the current to-be-classified superpixel, as the “Superpixel 

indication channel” in Figure 5.18 indicates.  

Table 5.5 Architecture of our DC network 

 

Layer Type Output Size 
Conv (size, 

channel, pad) 
Max Pooling 

input in 224*224*6 N/A N/A 

conv1_1 c+b+r 224*224*64 3*3,64,1 N/A 

conv1_2 c+b+r 112*112*64 3*3,64,1 2*2 

conv2_1 c+b+r 112*112*128 3*3,128,1 N/A 

conv2_2 c+b+r 56*56*128 3*3,128,1 2*2 

conv3_1 c+b+r 56*56*256 3*3,256,1 N/A 

conv3_2 c+b+r 56*56*256 3*3,256,1 N/A 

conv3_3 c+b+r 28*28*256 3*3,256,1 2*2 

conv4_1 c+b+r 28*28*512 3*3,512,1 2*2 

conv4_2 c+b+r 28*28*512 3*3,512,1 N/A 

conv4_3 c+b+r 14*14*512 3*3,512,1 2*2 

conv5_1 c+b+r 14*14*512 3*3,512,1 N/A 

conv5_2 c+b+r 14*14*512 3*3,512,1 N/A 

conv5_3 c+b+r 7*7*512 3*3,512,1 2*2 

fc6 fc+r 1*1*4096 7*7,4096,0 N/A 

fc7 fc+r 1*1*4096 1*1,4096,0 N/A 

fc8 fc+r 1*1*2 1*1,2,0 N/A 

loss sm+log 1*1 N/A N/A 

Annotations - in: input layer; c: convolutional layer; b: batch normalization layer; p: pooling layer; 

r: ReLU layer; fc: fully connected layer; sm: softmax layer; log: log loss layer. 

 

To obtain the superpixel indication channel, we first segment the image into 

superpixels, also by the SLIC method used in section 5.6.2. The to-be-classified 

superpixel is then selected and marked on a 224*224 black background, i.e. assigning 
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the pixels within the superpixel as maximum intensity, while all the other pixels remain 

zero. Note that the superpxiel indication channel is the only channel to differentiate the 

inputs of different superpixels from the same image. Hence, provided that the number of 

images and number of superpixels per image are imN  and 
spN , respectively, there will 

be 
im spN N

 
samples in total.  

Let 
iY  be the activation value of the fc8 layer for the i-th superpixel, whose size is 

changed from the originally 1000 to 2, indicating binary classification (salient or 

background). A softmax loss layer is applied afterwards to compute the logarithm loss, 

with 
spN

 
as the batch size: 
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is the softmax probability of i  being salient; [0,1]iG   is the ground truth label of i ; C  

is the weight decay parameter; j  stands for the layers with trainable weights of the DC 

network; and 
jW  is the weight vector of layer j . 

We then train DC by the 
2T  dataset, as mentioned at the start of section 5.6, with 

spN
 
samples per batch and imN  batches in total. As for testing, the probability 

iP  in 

(5.12) is adopted as the saliency value for the superpixel i, which is assigned to all the 

pixels within i. And the final saliency map is formed when all of the superpixels in the 
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current image have obtained their corresponding saliency values, as indicated in Figure 

5.18. 

The major advantage of DC is attributed to its 6-channeled input structure. Unlike 

existing DNN-based methods like [90], [91] that only use RGB or other features from 

the current image itself, DC integrates two coarse guiding channels via dense labeling 

(DL) and sparse labeling (SL). The two guiding channels provide reliable prior 

knowledge with learned high-level features from the entire training dataset, and can 

accurately approximate the salient region as well as exclude false salient proposals. The 

6-channeled input structure also contains the superpixel indication channel, which 

directly and precisely marks the current to-be-classified superpixel, unlike [91] which 

only vaguely indicates the superpixel by putting it to the image center. The examples in 

Figure 5.23 exhibit the combined strength of the DL, SL and DC steps. Note that DL and 

SL contribute complementarily to the DC step (i.e. the final output of DSL), especially 

in cases where one of DL or SL encounters difficulty in estimating the initial saliency 

accurately, as seen in Figure 5.23(c) and Figure 5.23(d). The combination of DL and SL 

thus significantly increases the overall robustness of DSL. 
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Figure 5.23 Example outputs of the DL, SL, and DC steps. Note that DL and SL contributes 

complementarily to the DC step, which generates the final output of the proposed DSL method. 

 

5.7 Experimental Results of DSL 

In this section, we present the experimental results of our proposed DSL method. We 

first introduce the datasets, evaluation metrics and implementation details that we used, 

and then systematically analyze the parameters for each of three steps in our method, 

namely DL, SL and DC. We then compare the contributions of the three steps in our 

proposed DSL method. After that, we present the comparison experiments against 

sixteen state-of-the-art saliency detection methods, with ten conventional methods and 

six learning based methods. Finally, we present the efficiency and limitation of our DSL 

method. 
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5.7.1 Datasets 

As mentioned at the beginning of section 5.6, since DL and SL are both serially 

connected to DC (Figure 5.18), it is necessary to use two independent training sets for 

DL / SL and DC respectively, in order to conduct fair trainings. 

For the training of DL and SL, we use the DUT-OMRON dataset [52], which 

contains 5,168 manually selected high quality images and corresponding pixel-wise 

ground truth. We randomly select 80% of the images for training, and the rest 20% 

images for validation.  

For the training of DC, we use the MSRA10K dataset [63], which contains 10,000 

randomly chosen images from the MSRA dataset [10], and their corresponding pixel-

wise ground truth. To make the comparison with state-of-the-art methods fair, we follow 

[91] and randomly choose 80% of the images for training, and the rest 20% images for 

validation. 

For testing, we adopt six well-recognized public datasets, namely ECSSD [69], 

PASCAL-S [172], SED1 [171], SED2 [171], THUR15K [185], and HKU-IS [92]. The 

ECSSD dataset contains 1,000 complex images with diversified contexts. The PASCAL-

S dataset is a subset of the PASCAL-S VOC segmentation challenge [173], which 

contains 850 images with highly challenging backgrounds. The SED1 and SED2 are two 

datasets designed for saliency detection, with 100 images each; the images of SED1 

contain one salient object, while the images of SED2 contain two salient objects. The 

THUR15K dataset contains 15,000 images, among which we only use the 6,233 images 

with pixel-wise ground truth. For the HKU-IS dataset, we only use the 1,447 images in 
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the test set that have no overlap with any of our comparison methods’ training set in our 

following experiments. 

5.7.2 Evaluation Metrics 

Following a recent saliency detection benchmark [8], we choose the precision-recall (PR) 

curve, F-measure, and mean absolute error (MAE) as our evaluation metrics.  

The precision and recall values are obtained by binarizing the saliency map with 

integer thresholds between 0 and 255. The precision value equals to the ratio of retrieved 

salient pixels to all the pixels retrieved, while the recall value equals to the ratio of 

retrieved salient pixels to all salient pixels in the image. The PR curve is plotted by the 

precision and recall values at each threshold point.  

The F-measure is a weighted average between precision and recall, which is 

calculated as: 

2

2

(1 )
,

precision recall
F

precision recall






 



 (5.13) 

where 
2  is set to 0.3 based on most existing methods. As suggested in [174], the 

average F-measure of a PR curve equals to its maximum single-point F-measure.  

The MAE is the mean of the absolute difference between the saliency map S  and the 

pixel-wise ground truth G : 
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N

i

MAE S i G i
N 

   (5.14) 

Different to precision, recall and F-measure, smaller MAE means higher 

performance. 
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5.7.3 Implementation 

Our method is implemented on MatConvNet [186], which is a MATLAB toolbox of 

CNN with various extensibilities. The machine used for our experiments is a PC with 

Intel 6-Core i7-5820K 3.3GHz CPU, 64GB RAM, GeForce GTX TITAN X 12GB GPU, 

and 64-bit Ubuntu 14.04.3 LTS. Software dependencies include CUDA 7.0 and cuDNN 

v3. All images are stored on SSD, which accelerates reading speed. The source code of 

our proposed DSL method is available online: https://github.com/yuanyc06/dsl. 

5.7.4 Parameter Analysis of the DL Step 

The DL network is trained on the DUT-OMRON dataset for 50 epochs, with 50-point 

logarithm space between 10
-3

 and 10
-4

 as the learning rate. As described in section 5.6.1, 

the images are resized to 384*384*3 before fed into the network. 

To evaluate the network architecture of DL, we compare it against two state-of-the-

art dense labeling models extended from [150], namely FCN-8s and FCN-16s. We fine-

tune our DL network on each of the three models, and record the performance of the 

three architectures on the validation set of the 50
th

 epoch. The results are shown in Table 

5.6.  

It is apparent that the proposed DL architecture has the optimal performance against 

the other two models, largely due to its less likelihood of over-fitting. Since the original 

object detection task in [150] was performed on a relatively large dataset (~30K images 

on the VOC2011 dataset), it was reasonable that the more complex models had higher 

performances (i.e. FCN-32s < FCN-16s < FCN-8s). On the other hand, in our DL step 

the training dataset is relatively small (only 5,168 images), thus more complex models 

https://github.com/yuanyc06/dsl
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are more vulnerable to over-fitting. As a result, it is the less complex model DL (FCN-

32s) that performs the best. 

Table 5.6 Performances of the DL network against two state-of-the-art dense labeling models 

 

Model F-Measure MAE 

FCN-8s 0.670 0.149 

FCN-16s 0.727 0.137 

DL 0.747 0.128 

The F-measures and MAEs are recorded on the validation set at the 50
th

 training epoch. The best 

results are marked in red. 

 

5.7.5 Parameter Analysis of the SL Step 

There are two networks to train for the SL step, namely the local CNN and the SL 

network itself. We randomly select 2,000 images from the DUT-OMRON dataset for the 

local CNN, and the rest 3,168 images for the SL network. Both of the networks use 80% 

of their assigned images for training, and the rest 20% for validation. They are both 

trained for 50 epochs, with 50-point logarithm space between 10
-2

 and 10
-4

 as the 

learning rate. We use the SLIC [166] method to generate the superpixels required, with 

200 superpixels per image. As described in section 5.6.2, the input of the local CNN are 

superpixel patches resized to 28*28*3, while the input of the SL network are 1*5,008 

feature vectors of the superpixels.  

The local CNN is fine-tuned from LeNet [183], and the SL network is trained from 

scratch (since no baseline model available). To determine the optimal network 

architecture for SL, we change the network layer number (#layer) and parameter number 

per layer (#param) 2-dimensionally, and record the validation performances on the 50
th

 

training epoch, as shown in Table 5.7. The configuration that gives the best performance 

is #layer = 3 and #param = 2048, which are adopted in our following experiments. 
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After determining the network architecture of SL, we further analyze the influence of 

its three types of features (i.e. local, neighborhood and global features) to the overall 

performance of our DSL method. The analysis is conducted on the two challenging 

datasets ECSSD and PASCAL-S, and we use seven different combinations of the 

features to train the SL network (the feature vector of SL is changed accordingly), and 

use the corresponding feature combinations in the testing processes. Table 5.8 shows the 

evaluation results, in which using all three types of features contributes to the best 

performance in terms of both F-measure and MAE on both of the datasets. We thus 

adopt all three types of features for the SL step. 

Table 5.7 Performances of the SL network with different layer number (#layer) and parameters per 

layer (#param) 

 

Configuration F-Measure MAE 

#layer=3, #param=1024 0.664 0.182 

#layer=3, #param=2048 0.670 0.171 

#layer=3, #param=4096 0.666 0.178 

#layer=4, #param=1024 0.661 0.180 

#layer=4, #param=2048 0.654 0.186 

#layer=4, #param=4096 0.652 0.193 

The F-measures and MAEs are recorded on the validation set at the 50th training epoch. The best 

results are marked in red. 

 

Table 5.8 Performances of DSL with different SL feature combinations 

 

Dataset Feature of SL F-Measure MAE 

ECSSD 

local 0.783 0.213 

neighborhood 0.778 0.224 

global 0.795 0.181 

local + neighborhood 0.789 0.174 

neighborhood + global 0.801 0.166 

local + global 0.804 0.158 

all 0.808 0.126 

PASCAL-S 

local 0.777 0.178 

neighborhood 0.770 0.195 

global 0.782 0.143 

local + neighborhood 0.780 0.162 

neighborhood + global 0.786 0.136 

local + global 0.788 0.131 

all 0.791 0.122 

The best results are marked in red. 



152 
 

5.7.6 Parameter Analysis of the DC Step 

The DC network is trained on the MSRA10K dataset. We first feedforward MSRA10K 

through DL and SL to obtain the two initial saliency channels of its input images, and 

then form the 6-channeled inputs for DC. The DC network is trained for 20 epochs, with 

20-point logarithm space between 10
-2

 and 10
-4

 as the learning rate. The superpixels are 

generated by the SLIC method as well, with 200 superpixels per image.  

To determine the best baseline model, we fine-tune the DC network on three state-

of-the-art image classification models, namely AlexNet [144], VGG-16 [161], and 

GoogLeNet [146]. We record their performances on the two challenging datasets 

ECSSD and PASCAL-S in Table 5.9. It is observed that VGG-16 has the best overall 

performance than the other two models, and previous works have proved its steadiness 

and robustness in various computer vision tasks [93], [150], [187], [188]. We thus adopt 

VGG-16 as our baseline model for the DC step. 

Table 5.9 Performances of the DC step with different baseline models on the two challenging 

datasets ECSSD and PASCAL-S 

 

Dataset Model F-Measure MAE 

ECSSD 

AlexNet 0.802 0.133 

VGG-16 0.808 0.126 

GoogLeNet 0.807 0.129 

PASCAL-S 

AlexNet 0.782 0.128 

VGG-16 0.791 0.122 

GoogLeNet 0.789 0.127 

The best results are marked in red. 

 

5.7.7 Contribution Comparison 

Next, we examine the contributions of the three steps (i.e. DL, SL and DC) in improving 

the performance of our method. We take the “pad-and-center” method in [91] as the 

comparison baseline, and compare five different configurations below: 
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(1) Baseline: the local pad-and-center model in [91]; the network takes padded 

image as input (224*224*3) (without the superpixel indication channel); 

(2) DC only: the input of DC is thus 224*224*4 (with the superpixel indication 

channel, but without the DL and SL channels); 

(3) DL and DC: the input of DC is thus 224*224*5 (with the superpixel indication 

channel, but without the SL channel); 

(4) SL and DC: the input of DC is thus 224*224*5 (with the superpixel indication 

channel, but without the DL channel); 

(5) Complete DSL model: the DC network takes the 224*224*6 input with all of the 

6 channels. 

Similarly to the previous section, we record the performances of the five 

configurations above on the two challenging datasets ECSSD and PASCAL-S. The 

results are listed in Table 5.10. We see that the complete DSL framework (Configuration 

v: DL+SL+DC) notably outperforms the other four configurations, which indicates that 

DL, SL and DC all have significant contributions in improving the overall performance 

of DSL. 

Table 5.10 Performances of different design option configurations on the two challenging datasets 

ECSSD and PASCAL-S 

 

Dataset Configuration F-Measure MAE 

ECSSD 

 

Config i: Baseline 0.724 0.187 

Config ii: DC only 0.750 0.171 

Config iii: DL+DC 0.788 0.147 

Config iv: SL+DC 0.772 0.162 

Config v: DL+SL+DC 0.808 0.126 

PASCAL-S 

 

Config i: Baseline 0.681 0.168 

Config ii: DC only 0.729 0.148 

Config iii: DL+DC 0.777 0.140 

Config iv: SL+DC 0.759 0.143 

Config v: DL+SL+DC 0.791 0.122 

The best results are marked in red. 
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5.7.8 Evaluation Against Conventional Methods 

Next, we compare our proposed DSL method with ten state-of-the-art conventional 

saliency detection methods (no learning process), namely SF [70], GR [83], MC [54], 

MR [52], DSR [80], HS [69], RBD [53], RR [1], BSCA [72], and BL [87]. All of the ten 

methods are published after 2012, and the last three methods are recently published in 

2015. As mentioned in section 5.7.1, the experiments are conducted on the six datasets 

ECSSD, PASCAL-S, SED1, SED2, THUR15K and HKU-IS. The precision-recall 

curves are shown in Figure 5.24 to Figure 5.29, and the quantitative evaluation results 

are shown in Table 5.11.  

The first thing we notice is that DSL not only achieves the best performance on all of 

the dataset in terms of both F-measure and MAE, but also exceeds the comparison 

methods with dominant advantages. We first analyze the two challenging datasets 

ECSSD and PASCAL-S, where DSL’s PR curves are greatly higher than the comparison 

methods, and its F-measures and MAEs have shown significantly large gaps against the 

second best methods. To be specific, its F-measures are 12.5% and 18.2% higher than 

the second best (0.808 to 0.718, and 0.791 to 0.669), and its MAEs are 78.6% and 65.6% 

lower than the second best (0.126 to 0.225, and 0.122 to 0.202). We attribute the greatly 

improved performance of DSL to its integrated structure of multiple DNNs, in which 

both dense and sparse labeling show their strength in extracting the high-level features 

of the image, as well as their combined advantage that further boost the saliency 

classification accuracy. 

DSL behaves similarly on the other four datasets, where it shows dominant 

advantages on both PR curves and evaluation metrics against all of the comparison 
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methods. It is mentionable that the advantage of DSL on SED2 is not as significant as 

those on the other datasets. This is mainly due to the single-object training set we used, 

while all of the images in SED2 contain double salient objects. 

 
Figure 5.24 Precision-recall curves against conventional methods on the ECSSD dataset. 
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Figure 5.25 Precision-recall curves against conventional methods on the PASCAL-S dataset. 

 

 
Figure 5.26 Precision-recall curves against conventional methods on the SED1 dataset. 
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Figure 5.27 Precision-recall curves against conventional methods on the SED2 dataset. 

 

 
Figure 5.28 Precision-recall curves against conventional methods on the THUR15K dataset. 
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Figure 5.29 Precision-recall curves against conventional methods on the HKU-IS dataset. 

 

Table 5.11 Quantitative evaluation results of DSL against conventional saliency detection methods 

 
Dataset ECSSD PASCAL-S SED1 SED2 THUR15K HKU-IS 
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SF 0.549 0.268 0.496 0.241 0.665 0.234 0.783 0.171 0.469 0.193 0.588 0.183 

GR 0.642 0.317 0.604 0.301 0.791 0.224 0.785 0.192 0.551 0.264 0.672 0.266 

MC 0.703 0.251 0.668 0.232 0.844 0.164 0.775 0.180 0.610 0.199 0.723 0.201 

MR 0.708 0.236 0.612 0.259 0.841 0.143 0.771 0.164 0.573 0.209 0.689 0.192 

DSR 0.699 0.226 0.651 0.208 0.819 0.160 0.793 0.140 0.611 0.139 0.735 0.133 

HS 0.698 0.269 0.645 0.264 0.825 0.163 0.791 0.195 0.585 0.250 0.706 0.253 

RBD 0.686 0.225 0.659 0.202 0.829 0.144 0.826 0.130 0.596 0.163 0.725 0.150 

RR 0.710 0.234 0.639 0.232 0.843 0.141 0.769 0.161 0.590 0.185 0.711 0.175 

BSCA 0.718 0.233 0.669 0.224 0.832 0.155 0.780 0.158 0.609 0.216 0.722 0.210 

BL 0.716 0.262 0.663 0.249 0.840 0.190 0.787 0.189 0.606 0.261 0.716 0.257 

Ours 0.808 0.126 0.791 0.122 0.901 0.099 0.858 0.108 0.730 0.123 0.858 0.125 

For each row, the top 3 results are marked in red, blue and green, respectively. 
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5.7.9 Evaluation Against Learning Based Methods 

Since DSL is learning based, it is not surprising that it achieves large performance 

improvements against the conventional saliency detection methods in section 5.7.8. To 

further validate the effectiveness of DSL, we compare it against six state-of-the-art 

learning based methods, namely DRFI [57], HDCT [89], MCDL [91], LEGS [90], MDF 

[92] and DISC [93]. All of the six methods are published after 2013, and the last four 

methods are recently published in 2015. The experiments are conducted on the same six 

datasets in section 5.7.8, and the comparison results are shown in Figure 5.30 to Figure 

5.35, as well as Table 5.12. 

It is observed that the overall performances of the learning based methods are 

significantly higher than those of the conventional methods in Table 5.11, which is 

mainly attributed to the high-level features involved in their learning processes. 

Nevertheless, DSL still maintains remarkable advantages against the comparison 

learning based methods. It achieves the optimal performance on five out of six F-

measures and three out of six MAEs, and achieves the second best on all of the other 

evaluations with close distance to the optimal. We note that MDF is the only method 

that uses the training set of HKU-IS (3,000 images) in the training process, so its 

relatively higher performance on the test set of HKU-IS is expected; nevertheless, DSL 

behaves closely against MDF in F-measure, and even achieves significantly better MAE. 

We attribute the high performance of DSL to its combination of dense and sparse 

labeling that exploits both macro object contours and local low-level image features. 

DSL’s superior performance against the state-of-the-art learning based methods further 

validates its effectiveness and robustness in various scenarios. 
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To demonstrate the greatly improved performance of DSL more straightforwardly, 

we select typical saliency map examples from both the conventional methods and the 

learning based methods, which are assembled together in Figure 5.36. We note that DSL 

exhibits high accuracy and robustness on various challenging scenarios, including 

images with low contrast objects (Figure 5.36(a) - Figure 5.36(c)), images with complex 

foreground / background patterns (Figure 5.36(d) - Figure 5.36(f)), and images with 

highly interfering backgrounds (Figure 5.36(g) - Figure 5.36(h)). 

 

 
Figure 5.30 Precision-recall curves against learning based methods on the ECSSD dataset. 
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Figure 5.31 Precision-recall curves against learning based methods on the PASCAL-S dataset. 

 

 
Figure 5.32 Precision-recall curves against learning based methods on the SED1 dataset. 
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Figure 5.33 Precision-recall curves against learning based methods on the SED2 dataset. 

 

 
Figure 5.34 Precision-recall curves against learning based methods on the THUR15K dataset. 
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Figure 5.35 Precision-recall curves against learning based methods on the HKU-IS dataset. 

 

Table 5.12 Quantitative evaluation results of DSL against learning based saliency detection methods 

 
Dataset ECSSD PASCAL-S SED1 SED2 THUR15K HKU-IS 
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DRFI 0.736  0.226  0.694  0.210  0.864  0.149  0.823  0.140  0.666  0.169  0.775  0.161  

HDCT 0.698  0.166  0.652  0.157  0.821  0.183  0.792  0.134  0.620  0.163  0.747  0.155  

MCDL 0.748  0.175  0.700  0.160  0.858  0.087  0.785  0.137  0.673  0.192  0.789  0.181  

LEGS 0.776  0.182  0.762  0.171  0.867  0.185  0.802  0.104  0.688  0.155  0.837  0.146  

MDF 0.772  0.174  0.768  0.144  0.881  0.158  0.844  0.152  0.701  0.140  0.860  0.209  

DISC 0.756  0.208  0.744  0.172  0.876  0.118  0.780  0.153  0.664  0.084  0.788  0.180  

Ours 0.808 0.126 0.791 0.122 0.901 0.099 0.858 0.108 0.730 0.123 0.858 0.125 

For each row, the top 3 results are marked in red, blue and green, respectively. 
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Figure 5.36 Saliency map examples of state-of-the-art methods against our DSL method. (a) – (c): 

images with low contrast objects; (d) – (f): images with complex foreground / background patterns; 

(g) - (h): images with highly interfering background. 
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5.7.10 Efficiency 

To evaluate the efficiency of DSL, we select two comparison methods from both the 

conventional methods and the learning based methods that have the highest 

performances in Table 5.11 and Table 5.12, namely DSR, RBD, LEGS and MDF. We 

record their average running time per image on the same machine described in section 

5.7.3, and list the results in Table 5.13. Since all of the five methods are implemented in 

MATLAB, the efficiency comparison is fair in terms of coding language. It is seen that 

besides its premium performances against the comparison methods, DSL also achieves 

comparable efficiency to the conventional methods, and notably faster speed than the 

learning based methods. The three steps of DL, SL and DC take approximately 5%, 60% 

and 35% of the total running time, respectively. 

Table 5.13 Efficiency comparison (seconds per image) 

 

Method DSR RBD LEGS MDF DSL 

Time (s) 0.525 0.341 1.75 1.48 0.695 

Code MATLAB MATLAB MATLAB MATLAB MATLAB 

 

5.7.11 Limitation 

As mentioned in section 5.7.8, currently DSL’s high performance is only guaranteed on 

single-object images, which is mainly due to the single-object training set we used to 

train the DL, SL and DC networks. This issue, however, is an inherent limitation with all 

of the learning based methods that depend on the training data. We can solve this issue 

by extending our training set with broader categories of images, which will be covered 

in our future works. 
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5.8 Summary 

In this chapter, we have proposed two DNN-based saliency detection methods, namely 

BSFE and DSL.  

The BSFE method is based on stacked auto-encoder (SAE); compared to most 

existing methods which simply treat image boundaries as background query seeds, 

BSFE self-adaptively searches background via the proposed BS SAE model. The 

saliency map is then produced by the following FE SAE model, which hierarchically 

utilizes the capacity of data reconstruction of AE. BSFE is compared against six popular 

state-of-the-art methods on four datasets, the results of which demonstrate its favorable 

performance both quantitatively and qualitatively. 

On the other hand, the DSL method conducts dense and sparse labeling of image 

saliency with multi-dimensional features. DSL consists of three major steps, namely DL, 

SL and DC. The DL and SL steps conduct effective initial saliency estimations with both 

macro object contours and local low-level features, while the final DC network 

establishes a 6-channeled data structure as input, and conducts accurate final saliency 

classification. Our DSL method achieves remarkably higher performance against sixteen 

state-of-the-art saliency detection methods (including ten conventional methods and six 

learning based methods) on six well-recognized public datasets, in terms of both 

accuracy and robustness. Besides that, DSL also maintains its efficiency in the same 

level of conventional methods, and behaves significantly faster than the other learning 

based methods. 
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6 Conclusions and Future 

Works 

6.1 Conclusions 

This thesis focuses on image saliency detection, which is an important task in computer 

vision. Three main parts of content have been presented.  

In the first part (Chapter 1), we have introduced image saliency detection as a 

computer vision problem, including its history of development, significance in both 

academia and industry, and the challenges face by existing methods.  

In the second part (Chapter 2), we have systematically reviewed the related works to 

this thesis, including saliency detection, image segmentation, object proposal generation 

and deep neural network (DNN). Specifically, in the review of saliency detection, 

various state-of-the-art bottom-up, top-down and unconventional saliency detection 

methods have been introduced; while in the review of DNN, we have illustrated its 

fundamental principles, as well as its applications in sparse labeling and dense labeling. 

In the third part (Chapter 3 to Chapter 5), which is the major part of this thesis, we 

have proposed four novel saliency detection methods in two categories, namely 

conventional low-level feature based saliency detection methods, and DNN based 

saliency detection methods: 

(1) In Chapter 3, we have introduced the RR method, which is based on conventional 

hand crafted low-level image features. It first filters out one of the four boundaries of the 

input image that most unlikely belong to the background, effectively neutralizes the 

Chapter 
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negative influences of boundary-adjacent foreground regions in the saliency estimations. 

The regularized random walks ranking (RRWR) algorithm, which is based on the 

Dirichlet function and has a newly proposed fitting constraint, is then conducted to 

generate pixel-wised saliency maps that reflect full-details of the input image. 

(2) In Chapter 4, we have introduced the RCRR method, which is an improved 

version of the RR method that involves the reversion correction (RC) process to better 

refine the image boundaries. Instead of completely removing one of the problematic 

boundaries, the RC process locates and eliminates the boundary-adjacent foreground 

superpixels, which is more accurate and can maximally prevent the saliency reversions 

from emerging. We also present the extensibility our method as a saliency optimization 

algorithm, which can be directly applied on existing saliency detection methods for 

performance improvement purposes. Besides that, we propose the boundary-adjacent 

object saliency (BAOS) dataset, which is a 200-image dataset that provides an objective 

evaluation for saliency detection methods’ performance on boundary-adjacent salient 

objects. 

(3) In Chapter 5, we have introduced the BSFE method, which is based on stacked 

auto-encoder (SAE). Compared to most existing methods which simply treat image 

boundaries as background query seeds, BSFE self-adaptively searches background via 

the proposed BS SAE model. The saliency map is then produced by the following FE 

SAE model, which hierarchically utilizes the capacity of data reconstruction of AE. 

(4) In Chapter 5, we also introduced the DSL method, which is based on multiple 

convolutional neural networks (CNNs) and multi-dimensional features. DSL consists of 

three major steps, namely DL, SL and DC. The DL and SL steps conduct effective initial 

saliency estimations with both macro object contours and local low-level features, while 
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the final DC network establishes a 6-channeled data structure as input, and conducts 

accurate final saliency classification. 

All of the four methods behave favorably against state-of-the-art saliency detection 

methods in their experimental evaluations, especially the DSL method, which achieves 

remarkably higher performance against sixteen state-of-the-art saliency detection 

methods (including ten conventional methods and six learning based methods) on six 

well-recognized public datasets, in terms of both accuracy and robustness.  

6.2 Future Works 

The successes of our proposed methods demonstrate the combined strength of low-level 

image features and DNNs in saliency detection, and also illustrate more potential 

applications of saliency detection in computer vision tasks. 

In the future, we will focus on addressing the limitations in our existing methods, as 

well as exploring for new and even better models in saliency detection. For example, the 

RC algorithm in section 4 still encounters difficulty when dealing images with large 

portion of boundaries covered by the foreground object, and a better low-level feature 

based method that can extract foreground / background queries beyond the constraint of 

image boundaries is desired. We will also establish new network frameworks that can 

better utilize the dense and sparse labeling capacities of DNN, as well as enriching the 

training dataset, so that more categories of image cases can be covered.  

Moreover, we will further explore for new adaptations of our existing methods in 

more challenging computer vision tasks, such as the applications in part-based object 

detection [189], [190], fine-grained image classification [191], [192], medical image 

segmentation [69], [193] and video data processing [194], [195]. 
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We believe that with the refinements of our proposed methods and the explorations 

of new potential applications, the general task of visual saliency detection will be better 

understood and solved, which will further facilitate other related tasks in computer 

vision, and create more value to the future. 
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Appendix A 

Abbreviations 

AE - Auto-Encoder 

BAOS - Boundary-Adjacent Object Saliency 

BL - Bootstrap Learning based saliency detection 

BMVC - British Machine Vision Conference 

BS - Background Search 

BSCA - Background Seed Cellular Automata based saliency detection 

BSFE - 

Background Search and Foreground Estimation based saliency 

detection 

CA - Context-Aware saliency detection 

CB - Context-Based saliency detection 

CNN - Convolutional Neural Network 

CRF - Conditional Random Field 

CVPR - 

IEEE International Conference on Computer Vision and Pattern 

Recognition 

DC - Deep Convolution 

DISC - Deep Image Saliency Computing 

DL - Dense Labeling 
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DNN - Deep Neural Network 

DRFI - Discriminative Regional Feature Integration based saliency detection 

DSL - Dense and Sparse Labeling based saliency detection 

DSR - Dense and Sparse Reconstruction based saliency detection 

ECCV - European Conference on Computer Vision 

FCN - Fully Convolutional Network 

FE - Foreground Estimation 

FES - Fast and Efficient Saliency detection 

FT - Frequency-Tuned saliency detection 

GC - Global Cues based saliency detection 

GPU - Graphics Processing Unit 

GR - Graph-Regularized saliency detection 

GS - Geodesic Saliency detection 

GT - Ground Truth 

HC - Histogram-based Contrast 

HDCT - High-Dimensional Color Transform based saliency detection 

HS - Hierarchical Saliency detection 

IA - Image Analysis 

ICCV - IEEE International Conference on Computer Vision 

IT - The saliency detection model proposed by Itti et al. in 1998 

JOV - Journal of Vision 

LEGS - Local Estimation and Global Search based saliency detection 

LR - Low Rank matrix recovery based saliency detection 
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MAE - Mean Absolute Error 

MC - Markov Chain based saliency detection 

MCDL - Multi-Context Deep Learning based saliency detection 

MDF - Multiscale Deep Features based saliency detection 

MR - Manifold Ranking based saliency detection 

MRF - Markov Random Field 

PBO - Pseudo-Boolean Optimization based saliency detection 

PCA - Principal Component Analysis based saliency detection 

PDE - Partial Differential Equation 

PR - Precision-Recall 

RBD - Saliency optimization from Robust Background Detection 

RC - Reversion Correction 

ReLU - Rectified Linear Unit 

RRWR - Regularized Random Walks Ranking 

RW - Random Walks 

SA - Saliency Aggregation 

SAE - Stacked Auto-Encoder 

SEG - SEGmenting salient objects from images and videos 

SF - Saliency Filters for saliency detection 

SL - Sparse Labeling 

SLIC - Simple Linear Iterative Clustering 

SM - Softmax 

SPL - Signal Processing Letters 
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SR - Spectral Residual based saliency detection 

SSD - Solid-State Drive 

SUN - Saliency Using Natural statistics 

SVM - Support Vector Machine 

SVO - Salient Visual Objectness 

TCSVT - IEEE Transactions on Circuits and Systems for Video Technology 

TIP - IEEE Transactions on Image Processing 

TNNLS - IEEE Transactions on Neural Network and Learning System 

TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence 

UFO - Uniqueness, Focusness and Objectness based saliency detection 
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