6,027 research outputs found

    An Inductive Synthesis Framework for Verifiable Reinforcement Learning

    Full text link
    Despite the tremendous advances that have been made in the last decade on developing useful machine-learning applications, their wider adoption has been hindered by the lack of strong assurance guarantees that can be made about their behavior. In this paper, we consider how formal verification techniques developed for traditional software systems can be repurposed for verification of reinforcement learning-enabled ones, a particularly important class of machine learning systems. Rather than enforcing safety by examining and altering the structure of a complex neural network implementation, our technique uses blackbox methods to synthesizes deterministic programs, simpler, more interpretable, approximations of the network that can nonetheless guarantee desired safety properties are preserved, even when the network is deployed in unanticipated or previously unobserved environments. Our methodology frames the problem of neural network verification in terms of a counterexample and syntax-guided inductive synthesis procedure over these programs. The synthesis procedure searches for both a deterministic program and an inductive invariant over an infinite state transition system that represents a specification of an application's control logic. Additional specifications defining environment-based constraints can also be provided to further refine the search space. Synthesized programs deployed in conjunction with a neural network implementation dynamically enforce safety conditions by monitoring and preventing potentially unsafe actions proposed by neural policies. Experimental results over a wide range of cyber-physical applications demonstrate that software-inspired formal verification techniques can be used to realize trustworthy reinforcement learning systems with low overhead.Comment: Published on PLDI 201

    Control and game-theoretic methods for secure cyber-physical-human systems

    Get PDF
    This work focuses on systems comprising tightly interconnected physical and digital components. Those, aptly named, cyber-physical systems will be the core of the Fourth Industrial Revolution. Thus, cyber-physical systems will be called upon to interact with humans, either in a cooperative fashion, or as adversaries to malicious human agents that will seek to corrupt their operation. In this work, we will present methods that enable an autonomous system to operate safely among human agents and to gain an advantage in cyber-physical security scenarios by employing tools from control, game and learning theories. Our work revolves around three main axes: unpredictability-based defense, operation among agents with bounded rationality and verification of safety properties for autonomous systems. In taking advantage of the complex nature of cyber-physical systems, our unpredictability-based defense work will focus both on attacks on actuating and sensing components, which will be addressed via a novel switching-based Moving Target Defense framework, and on Denial-of-Service attacks on the underlying network via a zero-sum game exploiting redundant communication channels. Subsequently, we will take a more abstract view of complex system security by exploring the principles of bounded rationality. We will show how attackers of bounded rationality can coordinate in inducing erroneous decisions to a system while they remain stealthy. Methods of cognitive hierarchy will be employed for decision prediction, while closed form solutions of the optimization problem and the conditions of convergence to the Nash equilibrium will be investigated. The principles of bounded rationality will be brought to control systems via the use of policy iteration algorithms, enabling data-driven attack prediction in a more realistic fashion than what can be offered by game equilibrium solutions. The issue of intelligence in security scenarios will be further considered via concepts of learning manipulation through a proposed framework where bounded rationality is understood as a hierarchy in learning, rather than optimizing, capability. This viewpoint will allow us to propose methods of exploiting the learning process of an imperfect opponent in order to affect their cognitive state via the use of tools from optimal control theory. Finally, in the context of safety, we will explore verification and compositionality properties of linear systems that are designed to be added to a cascade network of similar systems. To obfuscate the need for knowledge of the system's dynamics, we will state decentralized conditions that guarantee a specific dissipativity properties for the system, which are shown to be solved by reinforcement learning techniques. Subsequently, we will propose a framework that employs a hierarchical solution of temporal logic specifications and reinforcement learning problems for optimal tracking.Ph.D

    Falsification of Cyber-Physical Systems with Robustness-Guided Black-Box Checking

    Full text link
    For exhaustive formal verification, industrial-scale cyber-physical systems (CPSs) are often too large and complex, and lightweight alternatives (e.g., monitoring and testing) have attracted the attention of both industrial practitioners and academic researchers. Falsification is one popular testing method of CPSs utilizing stochastic optimization. In state-of-the-art falsification methods, the result of the previous falsification trials is discarded, and we always try to falsify without any prior knowledge. To concisely memorize such prior information on the CPS model and exploit it, we employ Black-box checking (BBC), which is a combination of automata learning and model checking. Moreover, we enhance BBC using the robust semantics of STL formulas, which is the essential gadget in falsification. Our experiment results suggest that our robustness-guided BBC outperforms a state-of-the-art falsification tool.Comment: Accepted to HSCC 202

    Compositional Verification for Autonomous Systems with Deep Learning Components

    Full text link
    As autonomy becomes prevalent in many applications, ranging from recommendation systems to fully autonomous vehicles, there is an increased need to provide safety guarantees for such systems. The problem is difficult, as these are large, complex systems which operate in uncertain environments, requiring data-driven machine-learning components. However, learning techniques such as Deep Neural Networks, widely used today, are inherently unpredictable and lack the theoretical foundations to provide strong assurance guarantees. We present a compositional approach for the scalable, formal verification of autonomous systems that contain Deep Neural Network components. The approach uses assume-guarantee reasoning whereby {\em contracts}, encoding the input-output behavior of individual components, allow the designer to model and incorporate the behavior of the learning-enabled components working side-by-side with the other components. We illustrate the approach on an example taken from the autonomous vehicles domain

    Research Priorities for Robust and Beneficial Artificial Intelligence

    Get PDF
    Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.Comment: This article gives examples of the type of research advocated by the open letter for robust & beneficial AI at http://futureoflife.org/ai-open-lette
    • …
    corecore