1,431,399 research outputs found

    Safety Engineering with COTS components

    Get PDF
    Safety-critical systems are becoming more widespread, complex and reliant on software. Increasingly they are engineered through Commercial Off The Shelf (COTS) (Commercial Off The Shelf) components to alleviate the spiralling costs and development time, often in the context of complex supply chains. A parallel increased concern for safety has resulted in a variety of safety standards, with a growing consensus that a safety life cycle is needed which is fully integrated with the design and development life cycle, to ensure that safety has appropriate influence on the design decisions as system development progresses. In this article we explore the application of an integrated approach to safety engineering in which assurance drives the engineering process. The paper re- ports on the outcome of a case study on a live industrial project with a view to evaluate: its suitability for application in a real-world safety engineering setting; its benefits and limitations in counteracting some of the difficulties of safety en- gineering with COTS components across supply chains; and, its effectiveness in generating evidence which can contribute directly to the construction of safety cases

    Engineering psychology: Contribution to system safety

    Get PDF
    There has been a growing interest in the area of engineering psychology. This article considers some of the major accidents which have occurred in recent years, and the contribution which engineering psychology makes to designing systems and enhancing safety. Accidents are usually multi-causal, and the resident pathogens in the design and operation of human-machine systems can lead to devastating consequences not only for the workers themselves but also for people in the surrounding communities. Specifically, in each of the accidents discussed, operators were unaware of the seriousness of the system malfunctions because warning displays were poorly designed or located, and operators had not been sufficiently trained in dealing with these emergency situations. Since the 1940s machines and equipment have become more complex in nearly every industry. This, coupled with the continuing need to produce effective and safe systems, has resulted in psychology professionals being called to assist in designing even more efficient operating systems. In earlier times, a worker who made a mistake might spoil a piece of work or waste some time. Today, however, a worker's erroneous action can lead to dire consequences

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Fire design in safety engineering: likely fire curve for people’s safety

    Get PDF
    The present study analyses fire design settings according to Fire Safety Engineering (FSE) for the simulation of fire in civil activities and compares these simulations developed using natural and analytic fire curves. The simulated Heat Rate Release (HRR) curve, appropriately linearized, allows for the estimation of a Likely Fire Curve (LFC). The analytic curves have been introduced for the purpose of evaluating the strength and integrity of the structure, and the adoption of these curves in the fire safety engineering was made following the assumption that the phenomena of major intensity ensure the safe approach of fire design. This argument describes the method adopted for determining a likely fire model that guarantees a greater adherence of the virtualized phenomenon with respect to the potential event. The study showed that the analytic curve, adopted in order to verify the structural strength, in the beginning phases of fire produces fields of temperature and toxic concentrations lower than those obtained by simulation of the Likely Fire Curve. The assumption of the Likely Fire Curve model safeguards exposed people during self-rescue and emergency procedure. The programs used since 2011 for the simulation are FDS (Fire Dynamic Simulator v. 5.4.3) and Smokeview (5.4.8). Comparative analysis was developed using thermo-fluid dynamic parameters (temperature and heat release rate) relevant to the safety of the exposed persons; the case study focuses on children and employees of the nursery. The main result shows that the safety criterion, implicitly included in the analytical fire curves - normally used for fire resistance - doesn’t have the same applicability of a performance based approach on safety evaluation involving people. This paper shows that the Likely Fire Curve assumption involves a thermo-chemical stress more relevant to assessing the safety of exposed people

    SASICE: Safety and sustainability in civil engineering

    No full text
    The performance of the built environment and the construction sector are of major importance in Europe’s long term goals of sustainable development in a changing climate. At the same time, the quality of life of all European citizens needs to be improved and the safety of the built environment with respect to man-made and natural hazards, such as flooding and earthquakes, needs to be ensured. Education has a central role to play in the transformation of a construction sector required to meet increasing demands with regard to safety and sustainability. In this work, the SASICE project is presented. The aim of this project is to promote the integration of safety and sustainability in civil engineering education. The project is organised in the context of the Lifelong Learning Programme, funded by the European Community. The coordinator organisation is the University of Bologna. Nine partner universities from different countries are involved in this transnational project. The universities participating to the project constitute a network of high level competences in the civil engineering area, with several opportunities to improve lifelong learning adopting different media: joint curricula, teaching modules and professor and student exchanges. As a response to the challenge regarding new educational methods in sustainable engineering, teaching modules are developed in 4 thematic areas: (1) Safety in construction, (2) Risk induced by Natural Hazards Assessment, (3) Sustainability in construction, and (4) Sustainability at the territorial level. The development of the teaching modules is based on an extensive analysis of the need for highly qualified education on Safety and Sustainability involving all relevant stakeholders (European and national authorities, companies, research institutes, professional organizations, and universities).The main target is enabling students to introduce these advanced topics in their study plans and curricula and reach, at the end of their studies, a specific skill and expertise in safety and sustainability in Civil Engineering. With our natural resources fading away and our infrastructure in dire need of repair, new trends and challenges in civil engineering education in the concept of “Sustainable Development” are needed to be adressed.<br/

    Efficient method for probabilistic fire safety engineering

    Get PDF
    A growing interest exists within the fire safety community for the topics of risk and reliability. However, due to the high computational requirements of most calculation models, traditional Monte Carlo methods are in general too time consuming for practical applications. In this paper a computationally very efficient methodology is for the first time applied to structural fire safety. The methodology allows estimating the probability density function which describes the uncertain response of the fire exposed structure or structural member, while requiring only a very limited number of model evaluations. The application of the method to structural fire safety is illustrated by two examples in the area of concrete elements exposed to fire

    Security-Informed Safety: Supporting Stakeholders with Codes of Practice

    Get PDF
    Codes of practice provide principles and guidance on how organizations can incorporate security considerations into their safety engineering lifecycle and become more security minded

    Assisted assignment of automotive safety requirements

    Get PDF
    ISO 26262, a functional-safety standard, uses Automotive Safety Integrity Levels (ASILs) to assign safety requirements to automotive-system elements. System designers initially assign ASILs to system-level hazards and then allocate them to elements of the refined system architecture. Through ASIL decomposition, designers can divide a function & rsquo;s safety requirements among multiple components. However, in practice, manual ASIL decomposition is difficult and produces varying results. To overcome this problem, a new tool automates ASIL allocation and decomposition. It supports the system and software engineering life cycle by enabling users to efficiently allocate safety requirements regarding systematic failures in the design of critical embedded computer systems. The tool is applicable to industries with a similar concept of safety integrity levels. © 1984-2012 IEEE

    Finite element model updating of a RC building considering seismic response trends

    Get PDF
    ACKNOWLEDGEMENTS The authors would like to thank their supporters. GeoNet staff, particularly Dr Jim Cousins, Dr S.R. Uma and Dr Ken Gledhill, helped with access to seismic data and building information. Faheem Butt’s PhD study was funded by Higher Education Commission (HEC) Pakistan. Piotr Omenzetter’s work within The LRF Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by The Lloyd's Register Foundation (The LRF). The LRF supports the advancement of engineering-related education, and funds research and development that enhances safety of life at sea, on land and in the air.Peer reviewedPostprin
    corecore