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ABSTRACT   

This paper presents a study on the seismic response trends evaluation and finite element model updating of a reinforced 
concrete building monitored for a period of more than two years. The three story reinforced concrete building is 
instrumented with five tri-axial accelerometers and a free-field tri-axial accelerometer. The time domain N4SID system 
identification technique was used to obtain the frequencies and damping ratios considering flexible base models taking 
into account the soil-structure-interaction using 50 earthquakes. Trends of variation of seismic response were developed 
by correlating the peak response acceleration at the roof level with identified frequencies and damping ratios. A general 
trend of decreasing frequencies was observed with increased level of shaking. To simulate the varying behavior of the 
building with response levels, a series of three dimensional finite element models were calibrated considering several 
points on the developed frequency-response amplitude trend lines as targets for updating. To incorporate real in-situ 
conditions, soil underneath the foundation and around the building was modeled using spring elements and non-
structural components (claddings and partitions) were also included. Sensitivity based model updating technique was 
applied taking into account concrete, soil and cladding stiffness as updating parameters. It was concluded from the 
investigation that knowledge of the variation of seismic response of buildings is necessary to better understand their 
behavior during earthquakes, and also that the participation of soil and non-structural components is significant towards 
the seismic response of the building and these should be considered in models to simulate the real behavior.   

Keywords: Instrumented RC building, structural health monitoring, seismic response, system identification, model 
updating, soil-structure-interaction 
 

1 INTRODUCTION 
The full scale, in-situ investigations of instrumented buildings present an excellent opportunity to observe their dynamic 
response in as-built environment, which includes all the real physical properties of a structure under study and its 
environment. Previous studies have shown that the dynamic characteristics tend to vary with vibration amplitude1-3. It is, 
therefore, important to investigate the behavior of buildings under different excitation scenarios. The trends of variation 
of dynamic characteristics, including modal frequencies and damping ratios, thus developed will provide quantitative 
data for the variations in the behavior of buildings. Moreover, such studies will provide invaluable information for the 
development and calibration of realistic models for the prediction of seismic response of structures in model updating 
and structural health monitoring studies4,5. An important factor in the modeling of civil engineering structures is the 
effect of soil-structure-interaction (SSI). SSI involves transfer of energy from the ground to the structure and back to the 
ground6. Another important factor is consideration of non-structural components (NSCs) such as cladding, partition 
walls. These factors, if modeled adequately in FEMs, can affect dynamic simulations 7,8. Proper modeling of SSI and 
NSCs is, therefore, necessary to better predict the actual response of structures.  

This study comprises two parts. In the first part, seismic response trends of an instrumented RC building under 50 
earthquakes were evaluated. For this purpose, relationships between natural frequencies and damping ratios with peak 
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response acceleration (PRA) at the roof were statically examined. Natural frequencies and damping ratios, accounting for 
SSI, were identified using the state-of-the-art N4SID system identification technique. For natural input modal analysis, 
this technique is considered to belong to the most powerful class of the known system identification techniques in the 
time domain9.  

The second part of this study comprises the development and updating of a series of FEMs of the building incorporating 
the soil flexibility and non-structural components (NSCs). The FEM is updated using a sensitivity based technique 
considering several points on the developed trends as targets for updating routines. The study attempts to highlight the 
importance of modeling soil and NSCs and replicating the actual varying behavior under seismic excitations to simulate 
the real behavior of structures. The outcome of the two aforementioned studies is expected to further the understanding 
of dynamic behavior of buildings during earthquakes and provide new quantitative data for studying seismic responses of 
as-built structures, structural health monitoring and model updating.  

2 DESCRIPTION OF THE BUILDING AND INSTRUMENTATION 
The building under study is situated at Lower Hutt approximately 20km north-east of Wellington, New Zealand. It is a 
three story RC structure with a basement, 44m long, 12.19m wide and 13.4m high (measured from the base level). The 
structural system consists of 12 beam-column frames and a 2.54×1.95m RC shear core with the wall thickness of 
229mm, which houses an elevator. The plan of the building is rectangular but the shear core and, to a lesser extent, 
additional beams along the longitudinal direction inside the perimeter beams and staircase make it unsymmetrical in 
terms of stiffness distribution (Figure 1a). The exterior beams are 762×356mm except at the roof level where these are 
1067×356mm. All the interior beams and all the columns are 610×610mm. Floors are 127mm thick reinforced concrete 
slabs except a small portion of the ground floor near the stairs where it is 203mm thick. The roof comprises corrugated 
steel sheets over timber planks supported by steel trusses. The building is resting on separate pad type footings of base 
dimensions 2.29×2.29m at the perimeter and 2.74×2.74m inside the perimeter and 610×356mm tie beams are provided to 
join all the footings together. This building is instrumented with five tri-axial accelerometers. Two accelerometers are 
fixed at the base level, one underneath the first floor slab, and two at the roof level as shown in Figure 1b. There is also a 
free field tri-axial accelerometer mounted at the ground surface and located 39.4m from the south end of the building. 
Figure 1 also shows the common global axes x and y used for identifying directions in the subsequent discussions. 

a) 

b) 

Figure 1. a) Typical floor plan showing general dimensions and location of stairs and elevator shaft, and b) Sensor 
array. 
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3 SYSTEM IDENTIFICATION FOR EVALUATING SSI EFFECTS 
This section provides a brief explanation of the N4SID system identification technique, its application to the building and 
evaluating SSI effects using N4SID technique. After sampling of a continuous time state space model, the discrete time 
state space model can be written as: 
 ࢞௞ାଵ = ௞࢞࡭ + ௞࢛࡮ + ࢝௞																																																																																											(1) ࢟௞ = ௞࢞࡯ + ௞࢛ࡰ + ࢜௞																																																																																																(2) 
 
where A, B, C and D are the discrete time state, input, output and feedthrough matrices, respectively, whereas xk and yk 
are the state and output vectors and uk is the excitation vector, respectively. Vectors wk and vk are the process and 
measurement noise, respectively, that are always present in real-life applications. The identification involves two steps. 
The first step takes projections of certain subspaces calculated from input and output observations (in the block Hankel 
matrix) to estimate the state sequence of the system. In the second step, a least square problem is solved to estimate the 
system matrices A, B, C and D. Then the modal parameters, i.e. natural frequencies, damping ratios and mode shapes, 
are found by eigenvalue decomposition of the system matrix A. Full details of the technique can be found in Van 
Overschee and De Moor10. 

To avoid spurious results, the approach based on observing trends of the estimated modal parameters in the so-called 
stabilization charts (Figure 2) is often used: a range of system orders is tried and modal parameters which repeat 
themselves across that range are accepted as correct results. Stability tolerances are chosen based on the relative change 
in the modal properties, i.e. modal frequencies, damping ratios and mode shapes, of a given mode as the system order 
increases. For mode shapes stability, model assurance criterion (MAC) between the mode shapes of the present and 
previous orders was examined. MAC is an index that determines the similarity between two mode shapes. For modes ࣘ௜	and ࣘ௝, MAC is defined as11: 

ܥܣܯ = ൫ࣘ௜் ࣘ௝൯ଶ൫ࣘ௜் ࣘ௜൯൫ࣘ௝்ࣘ௝൯																																																																																																										(3) 
 
In Equation (3), superscript T denotes vector transpose. 
For evaluation of SSI effects using system identification procedures, Stewart and Fenves12 proposed the following 
approach. Consider structure shown in Figure 2. The height h is the vertical distance from the base to the roof (or another 
measurement point located on the building). The symbols denoting translational displacements are as follows: ug for the 
free field translational displacement, uf for the foundation translational displacement with respect to the free field, and u 
for the roof translational displacement with respect to the foundation. Foundation rocking angle is denoted by θ, and its 
contribution to the roof translational displacement is hθ.  The Laplace domain counterparts of these quantities will be 
denotes as ˆgu , ˆ fu , û  and θ̂ , respectively. 
Stewart and Fenves12 consider, among others, the flexible base model and associated transfer functions H as follows: ܪ = ො௚ݑ + ො௙ݑ + ොݑ + ℎߠ෠ݑො௚ 																																																																																									(4) 
where input is the free field acceleration and output is the total roof displacement ug+uf+u+hθ. 

In this study, we have considered the flexible base model to ascertain the dynamic behavior (frequencies, damping ratios 
and mode shapes) of the building including SSI. Stewart and Fenves12 demonstrate that the poles of the flexible base 
transfer function H give natural frequencies and damping ratios of the entire dynamical system comprising the structure, 
foundation and soil. In other words, the identified modal parameters are influenced by the translational and rotational 
stiffness and damping of soil. To provide a simple quantification of the effects of SSI on the response of the building, in 
this study modal vibration parameters were sought through N4SID technique for the flexible base case using input-output 
pairs consisting of a combination of free field, foundation and superstructure level recordings as explained in Equation 
(4). For the building under study, sensor 10 (the free field sensor) was considered as the input and sensors 3, 4, 5, 6 and 7 
as the outputs for the flexible base case. 
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Figure 2. 

Figure 3. 
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6 DEVELOPING AND UPDATING FEM CONSIDERING SEISMIC RESPONSE TRENDS  
This section describes the development of a series of FEMs and application of the sensitivity base model updating 
technique for replicating the varying behavior of the building under seismic excitation. A three dimensional FEM of the 
instrumented building was developed in the FEMtools software17 using the available structural drawings and at-site 
measurements. Beams and columns were modeled as two nodes LINE2 elements, and slabs, stairs, shear core, cladding 
and roof steel sheeting as four node QUAD4 elements. The density and modulus of elasticity of concrete for all the 
elements were taken as 2400kg/m3 and 30GPa, respectively. The steel density and modulus of elasticity were taken as 
7800kg/m3 and 200GPa, respectively. The steel trusses present at the roof level were modeled as equivalent steel beams. 
The masses of the timber purlins, planks and corrugated steel sheets were calculated and lumped at the equivalent steel 
beams. All the dead and superimposed loads were applied as area loads or line loads at their respective positions.  

Since the structure under study is an office building, there are a large number of partition walls present. The stiffness 
values of gypsum wall partitions were taken from Kanvinde and Deierlein20 as 2800kN/m and were modeled as two-
node spring elements along the diagonal directions. The mass due to partition walls, false ceilings, attachments, furniture 
and live loads were collectively applied at the floor slabs as area mass of 450kg/m2. External cladding in the building is 
made up of fiberglass panels with insulating material on the inner side. The density and modulus of elasticity values of 
fiberglass were taken as 1750kg/m3 and 10GPa, respectively, from literature21 and their mass was calculated manually 
(100kg/m) and applied at the perimeter beams.  

Soil-structure-interaction at the base is idealized as six DOFs springs along three translations and rotations. The partial 
submersion of the building is idealized as springs at mid height of the basement columns. For the column springs along 
the longitudinal and lateral directions one translation DOF only, i.e. stiffness and damping coefficients, along X and Y 
direction, respectively, were taken into account, while for the corner column springs both X and Y translation stiffness 
and damping coefficients were considered. The soil interaction underneath the tie beams is idealized as translational 
springs along two horizontal and a vertical direction. The values of spring stiffness and damping coefficients were 
calculated using the procedure explained in Gazetas22.  Soil present at the site is classified according to the New Zealand 
Standard NZS117023 as class D (deep or soft soil). The shear wave velocity was taken as 160m/s based on the 
investigation for the site subsoil classification24 and the correspondingly dynamic shear modulus as 47GPa. Figure 7 
shows the three dimensional FEM having structural and non- structural elements (cladding, partition walls, and stairs) 
and soil flexibility modeled. 

To vary soil stiffness during model updating, only the shear modulus was changed. This was done in order to keep the 
number of updating parameters small and simplify the calculation of sensitivities of natural frequencies to soil stiffness. 
The dynamic stiffness modification factors in Gazetas equations22 depend on the frequency of foundation motion. A 
quick check of their values in the frequency range from 2.5Hz to 4.0Hz, encompassing with some margin the full range 
of frequencies encountered in this study, showed a very small maximum relative variation of less than 1%. For this 
reason the frequency dependence of soil stiffness was ignored and constant values corresponding to 3.04Hz (the lowest 
modal frequency observed experimentally in Table 2) adopted. 

 

 
Figure 7. Three dimensional FEM of the building showing stairs, shear core and partition walls (cladding removed from the view to 

show the inner details). 
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Five points were selected on each of the bilinear frequency vs. PRA plots (see Figures 5a-c) in such a way that the whole 
range of PRAs was covered. The points are also marked on the frequency vs. PRA trend lines in Figures 6a-c. The model 
updating routine started from Point 1 and concluded at Point 5. An updated FEM for a point served as an initial FEM for 
the next target point. In the model updating procedure, error interpreted as an objective function is minimized to improve 
the response prediction of the model. The following objective function, representing mean weighted absolute relative 
frequency error, is considered in this study: 

௙݁ = 1݊෍ܿ௥೔௡
௜ୀଵ

|∆ ௜݂|௜݂ 		× 100%																																																																																									(11) 
where n is the total number of target frequencies considered, and ௜݂ and ∆ ௜݂are the target frequency and frequency error, 
respectively, whereas coefficients  ܿ௥௜ account for the estimated relative variabilities of responses. 

The automatic iterative procedure for minimizing the objective function is controlled by a following three convergence 
criteria:  

i) the minimum value of objective function, assumed 0.1% 

ii) the minimum improvement in the objective function between two consecutive iterations, assumed 0.01%, 
and  

iii) the maximum number of iterations allowed, assumed 50.  

The algorithm searching for the global minimum of the objective function may be lured into local minima instead of the 
global minimum. This undesirable behavior is well known in the context of model updating using sensitivity method. In 
this study, a two-step updating strategy was followed to safeguard against being trapped in a local minimum4: 

• Step 1: Starting with the initially assumed values of updating parameters the objective function is minimized to 
arrive at an intermediate solution. 

• Step 2: The values of the updated parameters obtained in Step 1 are perturbed by +10%, 0% and -10%, 
considering all 27 combinations, and the updating procedure rerun. 

• The best of the 27 solutions is chosen as the final. This will typically be the one that gives the smallest value of 
the objective function but careful judgment still needs to be exercised to avoid physically unacceptable 
solutions.  

6.1 Sensitivity analysis and selection of response and updating parameters 

The updating process starts with identifying target responses and model parameters to update. In this study the measured 
first three natural frequencies were taken as target responses to be replicated by the model. It was assumed that the 
identified frequencies used as targets have a scatter of 2%. The scatter was estimated using the frequencies between 
0.0013g and 0.0017g, where there was enough data for very similar PRAs and not affected by the observed frequency-
PRA trends (see Figures 5a-c). Therefore, this confidence level was applied to the target responses to define any 
uncertainty in the experimental data as the diagonal weighting matrix Ce entries (Equations (9) and (10)).  

The updating parameters were selected based on their expected uncertainty and the sensitivity analysis to determine the 
most influential parameters to produce a genuine improvement in the model. Only stiffness parameters were considered 
for updating as mass can normally be determined with less uncertainty. Three parameters, namely: i) shear modulus of 
soil, ii) modulus of elasticity of cladding, and iii) modulus of elasticity of concrete, were finally selected. Confidence 
levels were applied to the updating parameters as the diagonal weighting matrix Ca entries (Equations (9) and (10)) to 
take into account uncertainty in their estimation. For this study, it is assumed that the updating parameters can have a 
scatter within ±30%. 

6.2 Updating of the series of FEMs and discussion 

In this section updating of the series of FEMs, so that they predictions match the selected Points 1 to 5 on the frequency 
vs. PRA curves, is presented. The first point selected for updating was Point 1 corresponding to the largest PRA of 
0.0434g. (This was chosen as the beginning of the exercise because of the existing experience from preliminary updating 
attempts that considered only these target frequencies.) The final results of updating at Point 1 were used as the starting 

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/app/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will
not be published without this approval. Please contact author_help@spie.org with any questions or concerns.

8694 - 61 V. 1 (p.9 of 13) / Color: No / Format: A4 / Date: 3/14/2013 11:36:35 AM

SPIE USE: ____ DB Check, ____ Prod Check, Notes:



values for updating at Point 2 and so on moving in the direction of diminishing PRAs and concluding at Point 5. The 
case of Point 1 updating is described in some detail, while only the final results for all the points are provided due to 
space limitations.  

The target first three modal frequencies for Point 1 obtained from system identification were 3.039Hz, 3.210Hz and 
3.479Hz (Table 3). The initial FEM calculated the first three frequencies as 2.922Hz, 3.451Hz and 3.723Hz. The relative 
errors between the individual initial FEM and target frequencies did not exceed 7.51%. The overall objective function ef  
(Equation (11)) was 6.12%. The correlation of mode shapes expressed by MAC values (Equation (3)) was very good, 
92%, for the second mode, while for the first and third modes MAC values were reasonably satisfactory being 78% and 
63%, respectively. 

In Step 1 of updating, the objective function improved considerably from 6.12% to 0.31%, and the largest individual 
error did not exceed 0.32%. In Step 2 of updating, a better solution to that of Step 1 was found among them, suggesting 
that the above Step 1 solution was only a local minimum and confirming the advantage and need of using the two-step 
procedure. Step 2 converged to a very small value of ef=0.03% for the objective function, providing excellent match of 
frequencies with the maximum absolute error of 0.05% (see Table 3), and yielding the final updating parameter values of 
42.3MPa for shear modulus of soil, 6.5GPa for modulus of elasticity of cladding, and 38.4GPa for modulus of elasticity 
of reinforced concrete. Compared to the initial values of parameters their relative changes were -10%, -35% and 28% for 
soil, cladding and concrete stiffness, respectively. While MACs were not explicitly included in the objective function, 
improving frequencies typically also improves MACs. This was also the case in the reported exercise: the MAC values 
have improved slightly for the first and second mode and are equal to 80% and 96%, respectively, while for the third 
mode shape it has improved considerably reaching 78%. 

Table 3 and 4 summarize updating results for all the FEMs corresponding to the five points. Table 3 shows frequencies 
and Table 4 MACs, respectively. It can be seen from Table 3 that updating converged to small values of the objective 
function not exceeding 0.60% for all the cases. In fact for four out of five updating cases this number was much smaller, 
0.18%. Individual relative frequency errors were in all cases not exceeding 0.94%. MAC values (Table 4) were between 
80% and 96% for the first and second mode, and between 77% and 86% for the third mode. These numbers indicate 
good match between mode shapes. Table 5 shows the initially assumed updating parameters and their final values at each 
updating point. The final updated values are also shown in Figure 8. These results are now analyses from the following 
two points of view: i) in any updating exercise it is compulsory to assess the plausibility of numerically obtained results 
using engineering judgment, ii) the results help to understand and quantify the contributions of structural and non- 
structural components as well as soil to the overall stiffness of the building. The first observation that can be made is that 
all the stiffness parameters show a general decreasing trend with increasing response amplitude. This is consistent with 
known behavior of materials and structures that normally have ‘softening’ characteristics. The minimum value of shear 
modulus of soil for the updated FEMs is 39.6MPa at Point 2, whereas maximum is 50.4MPa at Point 5. The percentage 
change between the maximum and minimum is 27%. The modulus of elasticity of cladding yielded the minimum value 
for the updated FEMs of 6.5GPa at Point 1, whereas the maximum is 8.2GPa at Point 3. The percentage change for the 
modulus of elasticity of cladding was 26%. The third updating parameter was the modulus of elasticity of reinforced 
concrete which yielded the minimum value of 38.4GPa at Point 1 and maximum at Point 5 as 45.7GPa, producing the 
percentage change of 19%. To quantify in a simple way the dependence of the three updating parameters on response 
amplitude linear regression was performed with PRA of sensor 3 serving as the independent variable. These regression 
lines are shown in Figures 8a-c. The coefficient of determination, R2, also shown in the figures, varies from 0.56 to 0.78, 
and confirms that the linear relationship fits the data reasonably well. 

 

Table 3. Summary of updated frequencies for Points 1-5 

Mode 

Point 
1 2 3 4 5 

fex* 
(Hz) 

fu† 
(Hz) 

e‡ 
(%) 

fex* 
(Hz) 

fu† 
(Hz) 

e‡ 
(%) 

fex* 
(Hz) 

fu† 
(Hz) 

e‡ 
(%) 

fex* 
(Hz) 

fu† 
(Hz) 

e‡ 
(%) 

fex* 
(Hz) 

fu† 
(Hz) 

e‡ 
(%) 

1st 3.039 3.038 -0.05 3.118 3.111 -0.21 3.182 3.179 -0.10 3.322 3.324 0.05 3.427 3.426 -0.02 
2nd 3.210 3.211 0.02 3.399 3.377 -0.65 3.491 3.488 -0.09 3.549 3.547 -0.05 3.650 3.641 -0.24 
3rd 3.479 3.480 0.02 3.560 3.593 0.94 3.713 3.715 0.04 3.798 3.796 -0.06 3.864 3.875 0.28 
Objective function ef 0.03   0.60   0.08   0.05   0.18 
*Experimental frequency, †Updated frequency, ‡Relative error in frequency 
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values with no clear trend. The second part was concerned with numerical modeling of the building and sensitivity based 
model updating for the seismic response trends observed in the first part of the study. A series of FEMs were updated to 
replicate the varying behavior of the building under seismic excitations. The updating parameters included the stiffness 
of concrete, cladding and soil. Excellent matches of frequencies were achieved, with average errors not more than 
0.60%. The updating parameters were found to generally follow decreasing trends and changed in the considered range 
of PRA by 19% for concrete, 26% for cladding, and 19% for soil, respectively.  
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