127 research outputs found

    Safeguarding the transmission of biometric measurements used for authenticating individuals

    Get PDF
    Various biometric measurements can be used to establish the identity of individuals. Common to many of them is the fact that a significant amount of information is collected and transmitted; this information is then used to compare the captured biometric data with the previously recorded information identifying a particular individual. If the two pieces of information are similar, it is assumed that the identification is carried out correctly. An important problem in this process is the safeguarding of the transmission of the captured information. In many cases, it cannot be assumed that the channel over which this information is transmitted is secure. Therefore it is crucial that the process be viable even if the channel is insecure. We outline an approach that ensures the security and integrity of this process. We demonstrate that this approach is highly effective in that it requires only minimal additional storage capacity and virtually no additional processing capacity to be functional. Support of this research under NSF grants DUE 0313880, SCI 0453498, and OISE 0519316 is acknowledged.5th IFIP International Conference on Network Control & Engineering for QoS, Security and MobilityRed de Universidades con Carreras en Informática (RedUNCI

    Assistive multimodal robotic system (AMRSys): security and privacy issues, challenges, and possible solutions

    Get PDF
    Assistive robotic systems could be a suitable solution to support a variety of health and care services, help independent living, and even simulate affection, to reduce loneliness. However, adoption is limited by several issues, as well as user concerns about ethics, data security, and privacy. Other than the common threats related to internet connectivity, personal robotic systems have advanced interaction possibilities, such as audio, video, touch, and gestures, which could be exploited to gain access to private data that are stored in the robot. Therefore, novel, safer methods of interaction should be designed to safeguard users’ privacy. To solicit further research on secure and private multimodal interaction, this article presents a thorough study of the state-of-the-art literature on data security and user privacy in interactive social robotic systems for health and care. In our study, we focus on social robotics to assist older people, which is a global challenge that is receiving a great deal of attention from the robotics and social care communities. This application will have a significant positive impact on the economy and society, but poses various security and privacy issues. This article analyses the key vulnerable areas where data leakage could occur during a multimodal interaction with a personal assistive robotic system. Thus, blockchain with a resource-aware framework, along with a continuous multifactor authentication mechanism, are envisaged as a potential solution for making such systems secure by design; therefore, increasing trust, acceptability, and adoption. Among the key cybersecurity research challenges, it is crucial to create an intelligent mechanism that autonomously determines the right trade-off between continuous user prompts and system usability, according to data types and personal preferences

    Athlete Biometric Data in Soccer: Athlete Protection or Athlete Exploitation?

    Get PDF
    This article is divided into three parts. Part I gives a synopsis of the current law in the United States dealing with the collection of biometric data. Part II provides an overview of how soccer is organized and regulated on an international level. Part III discusses the technology used in soccer to collect soccer players’ biometric data and the legal issues that arise from the collection of biometric data

    Regulation for E-payment Systems - Analytical Approaches Beyond Private Ordering

    Get PDF
    Technology-driven payment instruments and services are facilitating the development of e-commerce; however, security concerns beleaguer their implementation, particularly in developing countries. This article considers the limits of private ordering in the regulation of e-payment systems. It uses Nigeria to exemplify a developing country that is increasingly pushing for the adoption of a regulatory framework for e-payment systems based on private ordering. It argues that, although technical standards and self-regulation by the financial industry are important, law is an essential regulatory mechanism that is largely absent. The article proposes that law be used as a mechanism to set and compel compliance with technical and industry standards, thus building trust, catering to public interest concerns and legitimizing the regulatory process

    Continuous User Authentication Using Multi-Modal Biometrics

    Get PDF
    It is commonly acknowledged that mobile devices now form an integral part of an individual’s everyday life. The modern mobile handheld devices are capable to provide a wide range of services and applications over multiple networks. With the increasing capability and accessibility, they introduce additional demands in term of security. This thesis explores the need for authentication on mobile devices and proposes a novel mechanism to improve the current techniques. The research begins with an intensive review of mobile technologies and the current security challenges that mobile devices experience to illustrate the imperative of authentication on mobile devices. The research then highlights the existing authentication mechanism and a wide range of weakness. To this end, biometric approaches are identified as an appropriate solution an opportunity for security to be maintained beyond point-of-entry. Indeed, by utilising behaviour biometric techniques, the authentication mechanism can be performed in a continuous and transparent fashion. This research investigated three behavioural biometric techniques based on SMS texting activities and messages, looking to apply these techniques as a multi-modal biometric authentication method for mobile devices. The results showed that linguistic profiling; keystroke dynamics and behaviour profiling can be used to discriminate users with overall Equal Error Rates (EER) 12.8%, 20.8% and 9.2% respectively. By using a combination of biometrics, the results showed clearly that the classification performance is better than using single biometric technique achieving EER 3.3%. Based on these findings, a novel architecture of multi-modal biometric authentication on mobile devices is proposed. The framework is able to provide a robust, continuous and transparent authentication in standalone and server-client modes regardless of mobile hardware configuration. The framework is able to continuously maintain the security status of the devices. With a high level of security status, users are permitted to access sensitive services and data. On the other hand, with the low level of security, users are required to re-authenticate before accessing sensitive service or data

    Defending secrets, sharing data: new locks and keys for electronic information

    Get PDF
    This report examines Federal policies directed at protecting information, particularly in electronic communications systems

    Non-Intrusive Continuous User Authentication for Mobile Devices

    Get PDF
    The modern mobile device has become an everyday tool for users and business. Technological advancements in the device itself and the networks that connect them have enabled a range of services and data access which have introduced a subsequent increased security risk. Given the latter, the security requirements need to be re-evaluated and authentication is a key countermeasure in this regard. However, it has traditionally been poorly served and would benefit from research to better understand how authentication can be provided to establish sufficient trust. This thesis investigates the security requirements of mobile devices through literature as well as acquiring the user’s perspectives. Given the findings it proposes biometric authentication as a means to establish a more trustworthy approach to user authentication and considers the applicability and topology considerations. Given the different risk and requirements, an authentication framework that offers transparent and continuous is developed. A thorough end-user evaluation of the model demonstrates many positive aspects of transparent authentication. The technical evaluation however, does raise a number of operational challenges that are difficult to achieve in a practical deployment. The research continues to model and simulate the operation of the framework in an controlled environment seeking to identify and correlate the key attributes of the system. Based upon these results and a number of novel adaptations are proposed to overcome the operational challenges and improve upon the impostor detection rate. The new approach to the framework simplifies the approach significantly and improves upon the security of the system, whilst maintaining an acceptable level of usability

    Authentication Aura: A cooperative and distributed approach to user authentication on mobile devices

    Get PDF
    As information technology pervades our lives we have increasingly come to rely on these evermore sophisticated and ubiquitous items of equipment. Portability and the desire to be connected around the clock has driven the rapid growth in adoption of mobile devices that enable us to talk, message, tweet and inform at will, whilst providing a means to shop and administer bank accounts. These high value, high risk, desirable devices are increasingly the target of theft and improvement in their protection is actively sought by Governments and security agencies. Although forms of security are in place they are compromised by human reluctance and inability to administer them effectively. With typical users operating across multiple devices, including traditional desktop PCs, laptops, tablets and smartphones, they can regularly find themselves having a variety of devices open concurrently. Even if the most basic security is in place, there is a resultant need to repeatedly authenticate, representing a potential source of hindrance and frustration. This thesis explores the need for a novel approach to user authentication, which will reduce the authentication burden whilst providing a secure yet adaptive security mechanism; a so called Authentication Aura. It proposes that the latent security potential contained in surrounding devices and possessions in everyday life can be leveraged to augment security, and provides a framework for a distributed and cooperative approach. An experiment was performed to ascertain the technological infrastructure, devices and inert objects that surround individuals throughout the day. Using twenty volunteers, over a fourteen-day period a dataset of 1.57 million recorded observations was gathered, which confirmed that between 6am and 12pm a significant device or possession is in near proximity 97.84% of the time. Using the data provided by the experiment as the basis for a simulation of the framework, it suggests a reduction of up to 80.36% in the daily number of required authentications for a user operating a device once every 30 minutes, with a 10 minute screen lock in place. Examining the influence of location alone indicated a reduction of 50.74% in user interventions lowering the average from 32 to 15.76, the addition of the surroundings reducing this further to 13.00. The analysis also investigated how a user’s own authentication status could be used to negate the need to repeatedly manually authenticate and it was found that it delayed the process for up to 90 minutes for an individual user. Ultimately, it confirms that during device activation it is possible to remove the need to authenticate with the Authentication Aura providing sufficient assurance.Orange/France Teleco

    Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future

    Full text link
    Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed for investigating and mitigating such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Future prospects and challenges in IoT research and development are also highlighted. As demonstrated in the literature, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. Utilizing a blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.Comment: 77 pages, 5 figures, 5 table

    Electronic security - risk mitigation in financial transactions : public policy issues

    Get PDF
    This paper builds on a previous series of papers (see Claessens, Glaessner, and Klingebiel, 2001, 2002) that identified electronic security as a key component to the delivery of electronic finance benefits. This paper and its technical annexes (available separately at http://www1.worldbank.org/finance/) identify and discuss seven key pillars necessary to fostering a secure electronic environment. Hence, it is intended for those formulating broad policies in the area of electronic security and those working with financial services providers (for example, executives and management). The detailed annexes of this paper are especially relevant for chief information and security officers responsible for establishing layered security. First, this paper provides definitions of electronic finance and electronic security and explains why these issues deserve attention. Next, it presents a picture of the burgeoning global electronic security industry. Then it develops a risk-management framework for understanding the risks and tradeoffs inherent in the electronic security infrastructure. It also provides examples of tradeoffs that may arise with respect to technological innovation, privacy, quality of service, and security in designing an electronic security policy framework. Finally, it outlines issues in seven interrelated areas that often need attention in building an adequate electronic security infrastructure. These are: 1) The legal framework and enforcement. 2) Electronic security of payment systems. 3) Supervision and prevention challenges. 4) The role of private insurance as an essential monitoring mechanism. 5) Certification, standards, and the role of the public and private sectors. 6) Improving the accuracy of information on electronic security incidents and creating better arrangements for sharing this information. 7) Improving overall education on these issues as a key to enhancing prevention.Knowledge Economy,Labor Policies,International Terrorism&Counterterrorism,Payment Systems&Infrastructure,Banks&Banking Reform,Education for the Knowledge Economy,Knowledge Economy,Banks&Banking Reform,International Terrorism&Counterterrorism,Governance Indicators
    • …
    corecore