10 research outputs found

    Learning to Purify Noisy Labels via Meta Soft Label Corrector

    Full text link
    Recent deep neural networks (DNNs) can easily overfit to biased training data with noisy labels. Label correction strategy is commonly used to alleviate this issue by designing a method to identity suspected noisy labels and then correct them. Current approaches to correcting corrupted labels usually need certain pre-defined label correction rules or manually preset hyper-parameters. These fixed settings make it hard to apply in practice since the accurate label correction usually related with the concrete problem, training data and the temporal information hidden in dynamic iterations of training process. To address this issue, we propose a meta-learning model which could estimate soft labels through meta-gradient descent step under the guidance of noise-free meta data. By viewing the label correction procedure as a meta-process and using a meta-learner to automatically correct labels, we could adaptively obtain rectified soft labels iteratively according to current training problems without manually preset hyper-parameters. Besides, our method is model-agnostic and we can combine it with any other existing model with ease. Comprehensive experiments substantiate the superiority of our method in both synthetic and real-world problems with noisy labels compared with current SOTA label correction strategies.Comment: 12 pages,6 figure

    Towards Robust Learning with Different Label Noise Distributions

    Get PDF
    Noisy labels are an unavoidable consequence of labeling processes and detecting them is an important step towards preventing performance degradations in Convolutional Neural Networks. Discarding noisy labels avoids a harmful memorization, while the associated image content can still be exploited in a semi-supervised learning (SSL) setup. Clean samples are usually identified using the small loss trick, i.e. they exhibit a low loss. However, we show that different noise distributions make the application of this trick less straightforward and propose to continuously relabel all images to reveal a discriminative loss against multiple distributions. SSL is then applied twice, once to improve the clean-noisy detection and again for training the final model. We design an experimental setup based on ImageNet32/64 for better understanding the consequences of representation learning with differing label noise distributions and find that non-uniform out-of-distribution noise better resembles real-world noise and that in most cases intermediate features are not affected by label noise corruption. Experiments in CIFAR-10/100, ImageNet32/64 and WebVision (real-world noise) demonstrate that the proposed label noise Distribution Robust Pseudo-Labeling (DRPL) approach gives substantial improvements over recent state-of-the-art. Code is available at https://git.io/JJ0PV

    Image Classification with Deep Learning in the Presence of Noisy Labels: A Survey

    Full text link
    Image classification systems recently made a giant leap with the advancement of deep neural networks. However, these systems require an excessive amount of labeled data to be adequately trained. Gathering a correctly annotated dataset is not always feasible due to several factors, such as the expensiveness of the labeling process or difficulty of correctly classifying data, even for the experts. Because of these practical challenges, label noise is a common problem in real-world datasets, and numerous methods to train deep neural networks with label noise are proposed in the literature. Although deep neural networks are known to be relatively robust to label noise, their tendency to overfit data makes them vulnerable to memorizing even random noise. Therefore, it is crucial to consider the existence of label noise and develop counter algorithms to fade away its adverse effects to train deep neural networks efficiently. Even though an extensive survey of machine learning techniques under label noise exists, the literature lacks a comprehensive survey of methodologies centered explicitly around deep learning in the presence of noisy labels. This paper aims to present these algorithms while categorizing them into one of the two subgroups: noise model based and noise model free methods. Algorithms in the first group aim to estimate the noise structure and use this information to avoid the adverse effects of noisy labels. Differently, methods in the second group try to come up with inherently noise robust algorithms by using approaches like robust losses, regularizers or other learning paradigms

    Safeguarded Dynamic Label Regression for Noisy Supervision

    Full text link
    Learning with noisy labels is imperative in the Big Data era since it reduces expensive labor on accurate annotations. Previous method, learning with noise transition, has enjoyed theoretical guarantees when it is applied to the scenario with the class-conditional noise. However, this approach critically depends on an accurate pre-estimated noise transition, which is usually impractical. Subsequent improvement adapts the preestimation in the form of a Softmax layer along with the training progress. However, the parameters in the Softmax layer are highly tweaked for the fragile performance and easily get stuck into undesired local minimums. To overcome this issue, we propose a Latent Class-Conditional Noise model (LCCN) that models the noise transition in a Bayesian form. By projecting the noise transition into a Dirichlet-distributed space, the learning is constrained on a simplex instead of some adhoc parametric space. Furthermore, we specially deduce a dynamic label regression method for LCCN to iteratively infer the latent true labels and jointly train the classifier and model the noise. Our approach theoretically safeguards the bounded update of the noise transition, which avoids arbitrarily tuning via a batch of samples. Extensive experiments have been conducted on controllable noise data with CIFAR10 and CIFAR-100 datasets, and the agnostic noise data with Clothing1M and WebVision17 datasets. Experimental results have demonstrated that the proposed model outperforms several state-of-the-art methods

    Safeguarded Dynamic Label Regression for Noisy Supervision

    No full text
    Learning with noisy labels is imperative in the Big Data era since it reduces expensive labor on accurate annotations. Previous method, learning with noise transition, has enjoyed theoretical guarantees when it is applied to the scenario with the class-conditional noise. However, this approach critically depends on an accurate pre-estimated noise transition, which is usually impractical. Subsequent improvement adapts the preestimation in the form of a Softmax layer along with the training progress. However, the parameters in the Softmax layer are highly tweaked for the fragile performance and easily get stuck into undesired local minimums. To overcome this issue, we propose a Latent Class-Conditional Noise model (LCCN) that models the noise transition in a Bayesian form. By projecting the noise transition into a Dirichlet-distributed space, the learning is constrained on a simplex instead of some adhoc parametric space. Furthermore, we specially deduce a dynamic label regression method for LCCN to iteratively infer the latent true labels and jointly train the classifier and model the noise. Our approach theoretically safeguards the bounded update of the noise transition, which avoids arbitrarily tuning via a batch of samples. Extensive experiments have been conducted on controllable noise data with CIFAR10 and CIFAR-100 datasets, and the agnostic noise data with Clothing1M and WebVision17 datasets. Experimental results have demonstrated that the proposed model outperforms several state-of-the-art methods

    Safeguarded Dynamic Label Regression for Noisy Supervision

    No full text
    corecore