11 research outputs found

    Safe and Secure Wireless Power Transfer Networks: Challenges and Opportunities in RF-Based Systems

    Full text link
    RF-based wireless power transfer networks (WPTNs) are deployed to transfer power to embedded devices over the air via RF waves. Up until now, a considerable amount of effort has been devoted by researchers to design WPTNs that maximize several objectives such as harvested power, energy outage and charging delay. However, inherent security and safety issues are generally overlooked and these need to be solved if WPTNs are to be become widespread. This article focuses on safety and security problems related WPTNs and highlight their cruciality in terms of efficient and dependable operation of RF-based WPTNs. We provide a overview of new research opportunities in this emerging domain.Comment: Removed some references, added new references, corrected typos, revised some sections (mostly I-B and III-C

    Massive Wireless Energy Transfer with Multiple Power Beacons for very large Internet of Things

    Get PDF
    The Internet of Things (IoT) comprises an increasing number of low-power and low-cost devices that autonomously interact with the surrounding environment. As a consequence of their popularity, future IoT deployments will be massive, which demands energy-efficient systems to extend their lifetime and improve the user experience. Radio frequency wireless energy transfer has the potential of powering massive IoT networks, thus eliminating the need for frequent battery replacement by using the so-called power beacons (PBs). In this paper, we provide a framework for minimizing the sum transmit power of the PBs using devices' positions information and their current battery state. Our strategy aims to reduce the PBs' power consumption and to mitigate the possible impact of the electromagnetic radiation on human health. We also present analytical insights for the case of very distant clusters and evaluate their applicability. Numerical results show that our proposed framework reduces the outage probability as the number of PBs and/or the energy demands increase.Comment: 7 pages, 6 figures, Submitted to "The International Workshop on Very Large Internet of Things (2021)

    Delay-Constrained Mobile Energy Charging in Wireless Sensor Networks

    Get PDF
    为了延长无线传感网的生存期,基于可充电的移动设备,研究设计了一种无线传感网中移动式能量补充的方法,移动节点可以在为传感器节点补充能量的同时收集数; 据.首先,通过将无线传感器网络监测区域分割为大小相同的子区域,该子区域内的节点组成一个簇;其次,以一个簇内的总能量为计算依据,设计移动节点的路径; 生成算法以确定能量高效的移动路线;最后,使用10种不同的随机网络拓扑图进行了仿真实验,以节点移动速度和时延为限制条件分别得到了对比数据.结果表明; ,本文提出的算法与NJNP( nearest-job-next with preemption)算法相比在时延相同的条件下( 800; s),生存期提升了6 000 s左右,在节点速度5 m/s条件下生存期提升了将近14 000; s.证明本文所提方法有效地提高了充电效率,延长了网络的生存期,可用于大规模的无线传感器网络.In order to prolong the lifetime of wireless sensor networks by using; energy-rechargeable mobile devices,this paper designs a mobile energy; replenishment method wherein a mobile element gathers data and recharges; sensors simultaneously. Firstly,the whole sensor network is divided into; several sub-regions equally and the sensors in each sub-region are; formed into a cluster. Secondly, considering the energy in a whole; cluster,the mobility path is designed to find the energy-efficient; mobile trace of the mobile element. Finally,in the simulation; experiment,we used ten different random network topologies to show the; comparisons with extensive simulation experiments under different; velocities and deadlines. The results indicate that the proposed; algorithm increases lifetime by approximately 6 000 s compared with; Nearest-Job-Next with Pre-emption( NJNP) under the deadline of 800 s.; Moreover,the proposed algorithm increases lifetime by approximately 14; 000 s compared with NJNP at velocity of 5 m/s. Thus,the proposed; algorithm can improve recharging efficiency and prolong the lifetime of; wireless sensor networks,which can be used in large-scale sensor; networks.国家自然科学基金资助项目; 福建省高等学校杰出青年科研人才培育计划资助项

    Wireless power transfer: a review

    Get PDF
    The ubiquitous nature and the proliferation of mobile devices has made wireless power transfer (WPT) a very important area of research. The flexibility and cost effectiveness of charging these enormous devices in our world without having to connect physically to any electrical port especially when the user is indisposed to do so is a very attractive characteristic of WPT. Conventional means of charging the batteries of these mobile devices are wired which invariably meansthey requirephysical connection to power sources through electrical cables. Electric power istransmitted wirelessly when a magnetic field produced by the inductive coupling of coils or electrical field produced by the capacitive coupling between electrodes is transferred over a short distance through the air interface and later received by an antenna for utilisation. This article gives a detailed review of the existing wireless power transfer technologies, principles of operation, applications and the opportunities for future research in this area of emerging technology. However, WPT has some drawbacks but it is a disruptive technology with the ability to revolutionise the dynamics of mobile wireless systems, internet of things and otherallied future technologies

    Energy harvesting and wireless transfer in sensor network applications: Concepts and experiences

    Get PDF
    Advances in micro-electronics and miniaturized mechanical systems are redefining the scope and extent of the energy constraints found in battery-operated wireless sensor networks (WSNs). On one hand, ambient energy harvesting may prolong the systems lifetime or possibly enable perpetual operation. On the other hand, wireless energy transfer allows systems to decouple the energy sources from the sensing locations, enabling deployments previously unfeasible. As a result of applying these technologies to WSNs, the assumption of a finite energy budget is replaced with that of potentially infinite, yet intermittent, energy supply, profoundly impacting the design, implementation, and operation of WSNs. This article discusses these aspects by surveying paradigmatic examples of existing solutions in both fields and by reporting on real-world experiences found in the literature. The discussion is instrumental in providing a foundation for selecting the most appropriate energy harvesting or wireless transfer technology based on the application at hand. We conclude by outlining research directions originating from the fundamental change of perspective that energy harvesting and wireless transfer bring about

    Specific Absorption Rate-Aware Beamforming in MISO Downlink SWIPT Systems

    Full text link
    This paper investigates the optimal transmit beamforming design of simultaneous wireless information and power transfer (SWIPT) in the multiuser multiple-input-single-output (MISO) downlink with specific absorption rate (SAR) constraints. We consider the power splitting technique for SWIPT, where each receiver divides the received signal into two parts: one for information decoding and the other for energy harvesting with a practical non-linear rectification model. The problem of interest is to maximize as much as possible the received signal-to-interference-plus-noise ratio (SINR) and the energy harvested for all receivers, while satisfying the transmit power and the SAR constraints by optimizing the transmit beamforming at the transmitter and the power splitting ratios at different receivers. The optimal beamforming and power splitting solutions are obtained with the aid of semidefinite programming and bisection search. Low-complexity fixed beamforming and hybrid beamforming techniques are also studied. Furthermore, we study the effect of imperfect channel information and radiation matrices, and design robust beamforming to guarantee the worst-case performance. Simulation results demonstrate that our proposed algorithms can effectively deal with the radio exposure constraints and significantly outperform the conventional transmission scheme with power backoff.Comment: to appear in TCO

    Optimization of 8-Plate Multi-Resonant Coupling Structure Using Class-E\u3csup\u3e2\u3c/sup\u3e Based Capacitive-Wireless Power Transfer System

    Get PDF
    Capacitive-wireless power transfer (CPT) effectively charges battery-powered devices without a physical contact. It is an alternative to inductive-wireless power transfer (IPT) which is available in the present market. Compared with IPT, CPT offers flexibility in designing the coupling section. Because of its flexibility, CPT utilizes various coupling methods to enhance the coupling capacitance. Misalignment is a common issue in any WPT system. Among IPT and CPT, IPT has better performance for misalignments, but it requires bulk and expensive ferrite core to attain a high coupling coefficient. This work focuses on designing a CPT system to minimize the impact of misalignments. In this research, a novel 8-plate multi-resonant Class-E2 CPT system is developed to improve the performance of the CPT system for misalignments. The proposed CPT model expands the resonant frequency band, which results in better performance for misalignments compared with the regular 4-plate CPT system. The 8-plate coupling structure is designed to charge a 100 Ah drone battery. For this application, the coupling is formed when the drone lands on the capacitive- wireless charging pad. This work also presents the analysis of several dielectric materials with different dielectric constants. A well-designed capacitive coupler can effectively limit harmonics during the interaction between transmitter and receiver. Also, the effect of coupling plate shape is identified on the CPT system. The hardware tests indicate the round-shaped plates have better stability in coupling capacitance with the variation in frequency. The effect of misalignments is studied through the impedance tracking of the Class-E2 power converter. Impedance plots for 50 μH, and 100 μH resonant inductors are used to determine input current peak for each case. Additionally, hardware tests are performed to study the variation of input current and output voltage for a range of frequencies. The test results indicate the efficiency at optimal impedance point for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor which highlights the effects of the resonant inductor on efficiency. The zero-voltage-switching (ZVS) limits are also identified for varying frequencies and duty cycles. Later in this research, the optimal design of the Class-E rectifier is identified to enhance the power transfer. Several cases were considered to investigate the impact of the secondary inductor on the output voltage and the ZVS property. Hardware tests validate that under optimal conditions the efficiency of the Class-E2 based CPT system improves by 18% compared with Ar \u3e\u3c 1. Further work presents the advantages of 8-plate multi-resonant coupling for misalignments. The proposed model has a simple design procedure which enhances the power flow from the inverter to the rectifier section. The hardware results of the proposed 8-plate multi-resonant coupling show an increase in efficiency to 88.5% for the 20.8 W test, which is 18% higher than regular 4-plate coupling. Because of the wider resonant frequency band [455- 485 kHz], compared with regular 4-plate coupling, the proposed design minimized the output voltage drop by 15% for 10% misalignment. Even for large misalignments, 8-plate improves the CPT performance by 40% compared with 4-plate coupling

    Design and Analysis of SWIPT with Safety Constraints

    Get PDF
    Simultaneous wireless information and power transfer (SWIPT) has long been proposed as a key solution for charging and communicating with low-cost and low-power devices. However, the employment of radio frequency (RF) signals for information/power transfer needs to comply with international health and safety regulations. In this paper, we provide a complete framework for the design and analysis of far-field SWIPT under safety constraints. In particular, we deal with two RF exposure regulations, namely, the specific absorption rate (SAR) and the maximum permissible exposure (MPE). The state-of-the-art regarding SAR and MPE is outlined together with a description as to how these can be modeled in the context of communication networks. We propose a deep learning approach for the design of robust beamforming subject to specific information, energy harvesting and SAR constraints. Furthermore, we present a thorough analytical study for the performance of large-scale SWIPT systems, in terms of information and energy coverage under MPE constraints. This work provides insights with regards to the optimal SWIPT design as well as the potentials from the proper development of SWIPT systems under health and safety restrictions

    Efficient Magnetic Resonance Wireless Power Transfer Systems

    Get PDF
    This thesis aims to improve the performance of magnetic resonance wireless power transfer systems. Different factors have different effects on the performance and the efficiency of the maximum transfer of power in the system. These factors are: the resonance frequency; the quality factor of the resonators; the value and shape of the coils; the mutual inductance, including the distance between the coils; and the load. These systems have four potential types of connection in the transmitter and receiver. These types are Serial to Serial (SS), Serial to Parallel (SP), Parallel to Serial (PS) and Parallel to Parallel (PP). Each type has different applications because it has a different performance from the others. Magnetic resonance wireless power systems in some applications consist of one transmitter and one receiver, while in other applications there is a demand to transfer the power to more than one receiver simultaneously. Hence the importance of studying multiple receiver systems arises. The serial to serial type connection was studied along with the effects of all the other factors on the efficiency, including the existence of multiple receivers. The symmetric capacitance tuning method was presented as a solution to the frequency splitting problem that usually appears in SS wireless power transfer systems with a small gap between the two resonators. Compared to other existing methods, this method provides advantages of high efficiency and keeps the frequency within the chosen Industrial Scientific Medical (ISM) band. The impact of the connection type on the efficiency of wireless power transfer systems and the effect of the load impedance on each type was studied. Finally, an algorithm for intelligent management and control of received wireless power was offered to run a load that requires more than the received power
    corecore