3,138 research outputs found

    Static dependency analysis of recursive structures for parallelisation

    Get PDF

    Abstract Interpretation-based verification/certification in the ciaoPP system

    Get PDF
    CiaoPP is the abstract interpretation-based preprocessor of the Ciao multi-paradigm (Constraint) Logic Programming system. It uses modular, incremental abstract interpretation as a fundamental tool to obtain information about programs. In CiaoPP, the semantic approximations thus produced have been applied to perform high- and low-level optimizations during program compilation, including transformations such as mĂșltiple abstract specialization, parallelization, partial evaluation, resource usage control, and program verification. More recently, novel and promising applications of such semantic approximations are being applied in the more general context of program development such as program verification. In this work, we describe our extensiĂłn of the system to incorpĂłrate Abstraction-Carrying Code (ACC), a novel approach to mobile code safety. ACC follows the standard strategy of associating safety certificates to programs, originally proposed in Proof Carrying- Code. A distinguishing feature of ACC is that we use an abstraction (or abstract model) of the program computed by standard static analyzers as a certifĂ­cate. The validity of the abstraction on the consumer side is checked in a single-pass by a very efficient and specialized abstractinterpreter. We have implemented and benchmarked ACC within CiaoPP. The experimental results show that the checking phase is indeed faster than the proof generation phase, and that the sizes of certificates are reasonable. Moreover, the preprocessor is based on compile-time (and run-time) tools for the certification of CLP programs with resource consumption assurances

    Formal Verification of Industrial Software and Neural Networks

    Get PDF
    Software ist ein wichtiger Bestandteil unsere heutige Gesellschaft. Da Software vermehrt in sicherheitskritischen Bereichen angewandt wird, mĂŒssen wir uns auf eine korrekte und sichere AusfĂŒhrung verlassen können. Besonders eingebettete Software, zum Beispiel in medizinischen GerĂ€ten, Autos oder Flugzeugen, muss grĂŒndlich und formal geprĂŒft werden. Die Software solcher eingebetteten Systeme kann man in zwei Komponenten aufgeteilt. In klassische (deterministische) Steuerungssoftware und maschinelle Lernverfahren zum Beispiel fĂŒr die Bilderkennung oder Kollisionsvermeidung angewandt werden. Das Ziel dieser Dissertation ist es den Stand der Technik bei der Verifikation von zwei Hauptkomponenten moderner eingebetteter Systeme zu verbessern: in C/C++ geschriebene Software und neuronalen Netze. FĂŒr beide Komponenten wird das Verifikationsproblem formal definiert und neue VerifikationsansĂ€tze werden vorgestellt

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    MineSweeper: A “Clean Sweep” for Drop-In Use-After-Free Prevention

    Get PDF
    • 

    corecore