624 research outputs found

    In the Age of Web: Typed Functional-First Programming Revisited

    Full text link
    Most programming languages were designed before the age of web. This matters because the web changes many assumptions that typed functional language designers take for granted. For example, programs do not run in a closed world, but must instead interact with (changing and likely unreliable) services and data sources, communication is often asynchronous or event-driven, and programs need to interoperate with untyped environments. In this paper, we present how the F# language and libraries face the challenges posed by the web. Technically, this comprises using type providers for integration with external information sources and for integration with untyped programming environments, using lightweight meta-programming for targeting JavaScript and computation expressions for writing asynchronous code. In this inquiry, the holistic perspective is more important than each of the features in isolation. We use a practical case study as a starting point and look at how F# language and libraries approach the challenges posed by the web. The specific lessons learned are perhaps less interesting than our attempt to uncover hidden assumptions that no longer hold in the age of web.Comment: In Proceedings ML/OCaml 2014, arXiv:1512.0143

    Software Engineering with Incomplete Information

    Get PDF
    Information may be the common currency of the universe, the stuff of creation. As the physicist John Wheeler claimed, we get ``it from bit''. Measuring information, however, is a hard problem. Knowing the meaning of information is a hard problem. Directing the movement of information is a hard problem. This hardness comes when our information about information is incomplete. Yet we need to offer decision making guidance, to the computer or developer, when facing this incompleteness. This work addresses this insufficiency within the universe of software engineering. This thesis addresses the first problem by demonstrating that obtaining the relative magnitude of information flow is computationally less expensive than an exact measurement. We propose ranked information flow, or RIF, where different flows are ordered according to their FlowForward, a new measure designed for ease of ordering. To demonstrate the utility of FlowForward, we introduce information contour maps: heatmapped callgraphs of information flow within software. These maps serve multiple engineering uses, such as security and refactoring. By mixing a type system with RIF, we address the problem of meaning. Information security is a common concern in software engineering. We present OaST, the world's first gradual security type system that replaces dynamic monitoring with information theoretic risk assessment. OaST now contextualises FlowForward within a formally verified framework: secure program components communicate over insecure channels ranked by how much information flows through them. This context helps the developer interpret the flows and enables security policy discovery, adaptation and refactoring. Finally, we introduce safestrings, a type-based system for controlling how the information embedded within a string moves through a program. This takes a structural approach, whereby a string subtype is a more precise, information limited, subset of string, ie a string that contains an email address, rather than anything else

    Blame and coercion: Together again for the first time

    Get PDF

    Towards Practical Gradual Typing

    Get PDF
    Over the past 20 years, programmers have embraced dynamically-typed programming languages. By now, they have also come to realize that programs in these languages lack reliable type information for software engineering purposes. Gradual typing addresses this problem; it empowers programmers to annotate an existing system with sound type information on a piecemeal basis. This paper presents an implementation of a gradual type system for a full-featured class-based language as well as a novel performance evaluation framework for gradual typing

    Trust, but Verify: Two-Phase Typing for Dynamic Languages

    Get PDF
    A key challenge when statically typing so-called dynamic languages is the ubiquity of value-based overloading, where a given function can dynamically reflect upon and behave according to the types of its arguments. Thus, to establish basic types, the analysis must reason precisely about values, but in the presence of higher-order functions and polymorphism, this reasoning itself can require basic types. In this paper we address this chicken-and-egg problem by introducing the framework of two-phased typing. The first "trust" phase performs classical, i.e. flow-, path- and value-insensitive type checking to assign basic types to various program expressions. When the check inevitably runs into "errors" due to value-insensitivity, it wraps problematic expressions with DEAD-casts, which explicate the trust obligations that must be discharged by the second phase. The second phase uses refinement typing, a flow- and path-sensitive analysis, that decorates the first phase's types with logical predicates to track value relationships and thereby verify the casts and establish other correctness properties for dynamically typed languages
    • …
    corecore