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Abstract

C#, Dart, Pyret, Racket, TypeScript, VB: many recent languages integrate dynamic and static types
via gradual typing. We systematically develop four calculi for gradual typing and the relations
between them, building on and strengthening previous work. The calculi are as follows: λB, based
on the blame calculus of Wadler and Findler (2009); λC, inspired by the coercion calculus of
Henglein (1994); λS inspired by the space-efficient calculus of Herman, Tomb, and Flanagan (2006);
and λT based on the threesome calculus of Siek and Wadler (2010). While λB and λT are little
changed from previous work, λC and λS are new. Together, λB, λC, λS, and λT provide a coher-
ent foundation for design, implementation, and optimization of gradual types. We define translations
from λB to λC, from λC to λS, and from λS to λT. Much previous work lacked proofs of correctness
or had weak correctness criteria; here we demonstrate the strongest correctness criterion one could
hope for, that each of the translations is fully abstract. Each of the calculi reinforces the design of
the others: λC has a particularly simple definition, and the subtle definition of blame safety for λB is
justified by the simple definition of blame safety for λC. Our calculus λS is implementation-ready:
the first space-efficient calculus that is both straightforward to implement and easy to understand.
We give two applications: first, using full abstraction from λC to λS to establish an equational theory
of coercions; and second, using full abstraction from λB to λS to easily establish the Fundamental
Property of Casts, which required a custom bisimulation and six lemmas in earlier work.

1 Introduction

Contracts and blame. Findler & Felleisen (2002) introduced two seminal ideas: higher
order contracts to monitor adherence to a rich dependent type discipline and blame to
indicate which of the two parties is at fault if the contract is violated. In particular, at higher
order, a contract allocates blame to the environment if it supplies an incorrect argument or
to the function if it supplies an incorrect result. Blame characterizes correctness: one cannot
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2 J.G. Siek et al.

guarantee that a contract interposed between typed and untyped code will not be violated,
but one can guarantee that if it is violated then blame is allocated to the untyped code, a
result first established by Tobin-Hochstadt & Felleisen (2006).

Findler and Felleisen’s innovation led to a bloom of others. Siek & Taha (2006) intro-
duced gradual typing; Flanagan (2006) introduced hybrid typing, later implemented in
Sage (Gronski et al., 2006); Ou et al. (2004) integrated simple and dependent types. These
systems relied crucially on contracts, and all used a similar translation from a source lan-
guage to an intermediate language of explicit casts. Alas, they ignored blame. Wadler &
Findler (2009) restored blame to this intermediate language and formalized it as as the
blame calculus. They established blame safety, a generalization of the correctness crite-
rion for contracts: given a cast between a less-precise and a more-precise type, blame is
always allocated to the less-precisely typed side of the cast—“Well-typed programs can’t
be blamed”.

Coercions. Henglein was the first to discuss coercions in the context of dynamic typ-
ing. Coercions are built from injections into the dynamic type and projections from the
dynamic type and then lifted to pairs, functions, etc. The primary goal of his coercion
calculus is a global optimization that eliminates compositions of an injection followed by
its accompanying projection (Henglein, 1992). This optimization is formalized in terms
of an equational theory (Henglein, 1994). The coercion calculus neither had a concept of
blame nor did it receive much attention until Herman et al. (2007, 2010) proposed it as an
intermediate language that provides a theory for space efficient casts.

Space-efficient coercions and casts. A naive implementation of contracts (or the blame
calculus or the coercion calculus) suffers space leaks. For example, two mutually recursive
procedures should run in constant space when the recursive calls are in tail position; but
if one of them is statically typed and the other is dynamically typed, the intervening casts
break the tail call property, and the program requires space proportional to the number of
calls.

Herman et al. (2007, 2010) proposed a solution to this problem based on the coercion
calculus of Henglein (1994). Alas, they also ignored blame. Their calculus represents casts
as coercions. When two coercions are applied in sequence, they are composed and nor-
malized. The height of the composition of two coercions is bounded by the heights of the
two original coercions; the size of a coercion in normalized form is bounded if its height
is bounded, ensuring that computation proceeds in bounded space. However, normalizing
coercions requires that sequences of compositions are treated as equal up to associativity.
While this is not a difficult problem in symbol manipulation, it does pose a challenge when
implementing an efficient evaluator.

Siek & Wadler (2009, 2010) proposed an alternative solution using casts. At first, they
also ignored blame. They observed that any cast factors into a downcast from the source
to a mediating type, followed by an upcast from the mediating type to the target—called a
threesome because the two casts involve three types. Two successive threesomes collapse
to a single threesome, where the mediating type is the greatest lower bound of the two
original mediating types. In this way, an arbitrarily long sequence of casts collapses to a
pair of casts. The height of the greatest lower bound of any two types is bounded by their
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Blame and coercion: Together again for the first time 3

heights; and the size of a type is bounded if its height is bounded, again ensuring that
computation proceeds in bounded space.

Siek & Wadler (2010) then restored blame by decorating the mediating type with
labels that indicate how blame is to be allocated, and showed decorated types are in
one-to-one correspondence with normalized coercions. A recursive definition computes
the meet of the two decorated types (or equivalently the composition of the two corre-
sponding coercions); it is straightforward to calculate, avoiding the associativity problem
of coercions.

However, the notation for decorated types is far from transparent. Siek reports that
Tanter attempted to implement Gradualtalk with threesomes, but found it too difficult.
Wadler reports that while preparing a lecture on threesomes a few years after the paper was
published, he required several hours to puzzle out the meaning of his own notation, ⊥mGp.
Eventually, he could only understand it by relating it to the corresponding coercion—a hint
that coercions may be clearer than threesomes once blame is involved.

Hence we have two approaches: Herman et al. (2007, 2010) is easy to understand,
but hard to compute; Siek & Wadler (2010) is easy to compute, but hard to understand.
Garcia (2013) ameliorated this tension by starting with the former and deriving the latter.
However, the derivation necessarily contains all the confusing notation of Siek and Wadler
while also introducing additional notations of its own, notably, a collection of ten super-
coercions. By design, his derived definition of composition matches Siek and Wadler’s
original and so is no easier to read.

Much previous work lacked proofs of correctness or had weak correctness criteria.
Herman et al. (2007, 2010) give no proof relating their calculus to others for gradual typ-
ing. Siek & Wadler (2010) establish that a term in the blame calculus converges if and only
if its translation into the threesome calculus converges, but they do so only at the top level
(Kleene equivalence: roughly, contextual equivalence without the context).

Our approach. We establish new foundations for gradual typing by considering a
sequence of calculi and the relations between them: λB, based on the blame calculus of
Wadler & Findler (2009); λC, inspired by the coercion calculus of Henglein (1994); λS,
inspired by the space-efficient calculus of Herman et al. (2007, 2010); and λT, based on
the threesome calculus without blame of Siek & Wadler (2010). While λB and λT are little
changed from previous work, λC and λS are new.

Our calculi are not targeted to the programmer, but rather to the implementor. In fact,
the low-level calculi λC and λS are equipped with an equational theory that enables space-
efficient implementation as well as compile time optimization of coercions.

The two new calculi are based on ideas so simple it is surprising no one thought of
them years ago. For λC, the novel insight is to present a computational calculus as close
as possible to the original coercion calculus of Henglein (1994). For λS, the novel insight
is to restrict coercions to a canonical form and write out the algorithm that composes two
canonical coercions to yield a canonical coercion.

Henglein (1994) explored optimization of coercions, but remarkably neither he nor any-
one else has written down the obvious reduction rules for evaluating a lambda calculus
with coercions, as we have done here with λC. The result is a pleasingly simple calculus,
close to correct by construction.
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4 J.G. Siek et al.

Our translation from λB to λC resembles many in the literature; it compiles casts into
coercions. We show that this translation is a lockstep bisimulation, where a single reduction
step in λB corresponds to a single reduction step in λC, giving a close correspondence
between the two calculi. There are several subtleties in the design of λB, but essentially
none in the design of λC, and that the two run in lockstep suggests that both designs are
correct.

A key property of the blame calculus is blame safety—“Well-typed programs can’t be
blamed”. Surprisingly, no previous work considers whether translations preserve blame
safety. Here, we show that blame safety is preserved by translations between calculi, and
as a pleasant consequence that the subtle definition of blame safety for λB is justified by
the straightforward definition of blame safety for λC.

Our reverse translation from λC to λB is novel. We observe that a single coercion must
translate into a sequence of casts, because a coercion may contain many blame labels
but a cast contains only one. The challenge is to show that translating from λC to λB
and back again yields a term contextually equivalent to the original. This, together with
the bisimulation, establishes the strongest correctness criterion one could hope for, full
abstraction: translation from λB to λC preserves and reflects contextual equivalence.

For λS we isolate a novel grammar corresponding to coercions in canonical form.
Canonical forms are unique, and in one-to-one correspondence with normal forms. We
present a simple recursive function that takes two coercions in canonical form, s and t, and
returns their composition in canonical form, s � t. Validating the correctness of this defini-
tion against Henglein’s original rules is straightforward. As with threesomes, it avoids the
problems of associativity previously attached to using coercions; but because it is based on
coercions, it avoids the problems of decoding the meaning of the decorated types attached
to threesomes.

Translation from λC to λS is straightforward, but establishing its correctness is the most
challenging result in the paper. The difficulty is that λC breaks compositions into simpler
components,

M〈c ; d〉 −→ M〈c〉〈d〉,

while λS assembles simpler components into compositions,

M〈s〉〈t〉 −→ M〈s � t〉.

(As explained in Sections 3 and 4, c, d range over coercions and s, t over space-efficient
coercions, and M〈c〉 and M〈s〉 denote application to term M of coercions c and s, respec-
tively.) We introduce a relation between terms of λC and λS and show it is a bisimulation.
In this case the bisimulation is not lockstep: one step in λC may correspond to many in
λS, and vice versa. Siek & Wadler (2010) establish a bisimulation similar to the one here,
but our development is simpler because it uses coercions rather than decorated types, and
because it uses λC as an intermediate step. Because the mapping of λS back to λC is sim-
ply an inclusion, the bisimulation easily establishes full abstraction of the translation from
λC to λS.

The λS calculus and its correctness proof plays an important role as a mathemat-
ical model of an efficient implementation of gradual typing. Indeed, Kuhlenschmidt
et al. (2019) implement a compiler for a language with first-class functions and mutable
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Blame and coercion: Together again for the first time 5

references based on λS and present empirical evidence that demonstrates how such a cast
representation contributes to both the space efficiency and runtime efficiency for a suite of
gradually typed benchmarks.

Lastly, we introduce λT, inspired by the threesomes without blame of Siek & Wadler
(2010). Although we no longer require the analogy to types and decorated types to repre-
sent casts efficiently, we believe it is useful to clarify that a coercion can be characterized
by a triple of types when one ignores blame. Translating λS to λT is straightforward, and
it is easy to establish a lockstep bisimulation between the two. Whereas the mapping from
λB to λC is an injection, the mapping from λS to λT is a bijection, making it easy to extend
the bisimulation to a proof of full abstraction.

In this article we do not study threesomes with blame. The reason is that they are isomor-
phic to λS, so it would be somewhat redundant to do so, and as discussed above, decorated
types and their associated blame tracking semantics is more difficult to understand than
coercions with blame tracking.

Example. Figure 1 gives an overview of our results by presenting a running example in
each of the four calculi. The example involves two mutually recursive functions, odd and
even, which return true if their argument is odd and even, respectively. In each example,
casts or coercions are used so that odd has type num→ bool, meaning it is statically typed
and takes a number to a boolean, while even has type �→ �, meaning it is statically known
to be a function, but its argument and result are both of dynamic type. Each example uses
notations explained in greater detail in Sections 2, 3, and 5, so the reader may wish to return
here after reading the relevant sections. To avoid excessive bracketing, we assume that
type casts and coercion applications bind weaker than any other operator except lambda
abstraction, the scope of which extends as far to the right as possible.

In the blame calculus, λB, function odd accepts a number, which is cast to dynamic
type before being passed to even, and then the result returned is cast from dynamic type to
boolean. If no casts were required, then the definitions of odd and even would be tail recur-
sive and run in constant space. But as shown in the trace of the computation of odd 4, the
result casts accumulate, requiring space proportional to the number of calls. In traces, we
write �3� to embed numeric constants into the dynamic type. (As explained in Section 2,
M : A =⇒p B casts a term M of type A to type B, where p is a label used to allocate blame
if the cast fails. That section contains complete type and reduction rules for λB.)

In the coercion calculus, λC, the casts have been replaced by coercions. As before, coer-
cions on the results of functions lose tail recursion, and the trace shows the computation
of odd 4 requires space proportional to the number of calls. (As explained in Section 3, a
coercion of the form G! casts a value from ground type G to dynamic type �, while a coer-
cion of the form G?p casts a value from dynamic type � to base type G, allocating blame
to label p if the cast fails, where G ranges over ground types, which are either base types
such as numbers num or booleans bool, or the function type �→ �. That section contains
complete type and reduction rules for λC.)

In the space-efficient coercion calculus, λS, the source program is identical to that for
λC, save that each coercion is replaced by its canonical form. Any two adjacent coer-
cions are immediately replaced by their composition in canonical form. The height of the
composition of two canonical coercions is bounded by the heights of the two original
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6 J.G. Siek et al.

Blame calculus (λB)
odd = λx : num. if x == 0 then false else

even (x − 1 : num
p1=⇒ �) : �

p2=⇒ bool
even = λx : �. if (x : �

p5=⇒ num) == 0 then true else
odd ((x : �

p3=⇒ num) − 1) : bool
p4=⇒ �

odd 4
−→ even �3� : �

p2=⇒ bool
−→ odd 2 : bool

p4=⇒ �
p2=⇒ bool

−→ even �1� : �
p2=⇒ bool

p4=⇒ �
p2=⇒ bool

−→ odd 0 : bool
p4=⇒ �

p2=⇒ bool
p4=⇒ �

p2=⇒ bool
−→ false

Coercion calculus (λC)
odd = λx : num. if x == 0 then false else

even (x − 1〈num!〉)〈bool?p2〉
even = λx : �. if x〈num?p5〉 == 0 then true else

odd (x〈num?p3〉 − 1)〈bool!〉

odd 4
−→ even �3�〈bool?p2〉
−→ odd 2〈bool!〉〈bool?p2〉
−→ even �1�〈bool?p2〉〈bool!〉〈bool?p2〉
−→ odd 0〈bool!〉〈bool?p2〉〈bool!〉〈bool?p2〉
−→ false

Space-efficient coercion calculus (λS)
odd 4

−→ even �3�〈bool?p2 ; idbool〉
−→ odd 2〈idbool ; bool!〉〈bool?p2 ; idbool〉 −→ odd 2〈idbool〉
−→ even �1�〈bool?p2 ; idbool〉〈idbool〉 −→ even �1�〈bool?p2 ; idbool〉
−→ odd 0〈idbool ; bool!〉〈bool?p2 ; idbool〉 −→ odd 0〈idbool〉

−→ false

Threesome calculus without blame (λT)
odd 4

−→ even �3� : �
bool=⇒ bool

−→ odd 2 : bool bool=⇒ �
bool=⇒ bool −→ odd 2 : bool bool=⇒ bool

−→ even �1� : �
bool=⇒ bool bool=⇒ bool −→ even �1� : �

bool=⇒ bool

−→ odd 0 : bool bool=⇒ �
bool=⇒ bool −→ odd 0 : bool bool=⇒ bool

−→ false

Fig. 1. Examples.
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Blame and coercion: Together again for the first time 7

compositions, and the size of a canonical coercion is bounded by its height. Hence, the
trace shows the computation of odd 4 now requires only constant space. (As explained in
Section 4, the canonical forms of G! and G?p are idG ; G! and G?p ; idG, respectively,
where idG is the identity coercion on base type G, and c ; d denotes the composition of
coercions c and d. That section contains complete type and reduction rules for λS.)

In the calculus of threesomes without blame, λT, the source program is identical to that
for λB, save that each cast has been replaced by a corresponding threesome cast, where
the blame label has been replaced by a mediating type. Any two adjacent threesome casts
may be immediately replaced by a single threesome cast, where the source is taken from
the first cast, the target from the second cast, and the mediating type by the meet of the
two mediating types. The trace shows the computation of odd 4 requires only constant
space. (As explained in Section 5, the threesome cast corresponding to M : A =⇒p B is
M : A =⇒T B, where the mediating type T is chosen equal to the meet A & B. The blame
label p is dropped because this calculus does not allocate blame. That section contains
complete type and reduction rules for λT.)

Outline. This paper revises Siek et al. (2015a). The example of the preceding section, a
few minor corrections detailed in Section 2, the switch from evaluation contexts to frames
with labeled reductions, the equational theory, and all material on λT is new.

Sections 2, 3, 4, and 5 systematically consider λB, λC, λS, and λT. For each calculus we
introduce its syntax, type rules, and reduction rules; and we establish type safety and blame
safety. The type safety results for λB, λC, and λS have been formalized in Agda (Siek,
2020a).

In Sections 3, 4, and 5, for each calculus, we also consider translations to and from the
previous calculus, show the translations preserve type and blame safety, and demonstrate
a bisimulation and full abstraction.

In Section 6, we observe that full abstraction often makes it easy to establish equiva-
lences in λB or λC, because equivalent terms in those calculi translate into one and the
same term in λS. In particular, we exploit full abstraction between λC and λS to establish
an equational theory of coercions in λC. We also exploit full abstraction between λB and
λS to establish the Fundamental Theorem of Casts, which required a custom bisimulation
and six lemmas in earlier work (Siek & Wadler, 2010).

Section 7 compares with previous work, and includes a survey of how gradual typing is
used in practice. Section 8 concludes.

We provide proofs of the more difficult results in the Appendix. In particular,
Appendix A gives a proof of Lemma 8 (used in blame safety) and Appendix C provides
the proof of Proposition 19 (the bisimulation between λC and λS).

2 Blame calculus

Figure 2 defines the blame calculus, λB. This section reprises results from Wadler &
Findler (2009), Siek & Wadler (2010), and Ahmed et al. (2011). Wadler (2015) provides
additional motivation and examples.

Blame calculus is based on simply typed lambda calculus, standard constructs of which
are shown in gray. Let A, B, C range over types. A type is either a base type ι, a function
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8 J.G. Siek et al.

Syntax
A, B, C ::= ι | A → B | �

G, H ::= ι | �→ �

L, M , N ::= k | op( �M) | x | λx:A. N | L M | M : A
p=⇒ B | blame p

V , W ::= k | λx:A. N | V : A → B
p=⇒ A′ → B′ | V : G

p=⇒ �

E ::= op( �V , �, �M) |� M | V � |� : A
p=⇒ B

Compatible A ∼ B

ι∼ ι
A ∼ A′ B ∼ B′

A → B ∼ A′ → B′ A ∼ � �∼ B

Term typing � �B M : A

� � k : ι
� � �M : �ι

� � op( �M) : ι

� � x : �(x)
�, x : A � N : B

� � λx : A.N : A → B
� � L : A → B � � M : A

� � L M : B
� � M : A A ∼ B

� � (M : A
p=⇒ B) : B � � blame p : A

Reduction M −→B N

op( �V ) −→ [[op]]( �V )

(λx:A. N) V −→ N[x:=V ]

V : ι
p=⇒ ι−→ V

(V : A → B
p=⇒ A′ → B′) W −→ (V (W : A′ p=⇒ A)) : B

p=⇒ B′

V : �
p=⇒ �−→ V

V : A
p=⇒ �−→ V : A

p=⇒ G
p=⇒ � if ug(A, G)

V : �
p=⇒ A −→ V : �

p=⇒ G
p=⇒ A if ug(A, G)

V : G
p=⇒ �

q=⇒ G −→ V

V : G
p=⇒ �

q=⇒ H −→ blame q if G �= H

M −→ M ′
E[M] −→ E[M ′] E[blame p] −→ blame p

Fig. 2. Blame calculus (λB).

type A → B, or the dynamic type �. Let G, H range over ground types. A ground type is
either a base type ι or the function type �→ �. The dynamic type satisfies the domain
equation

�∼= ι+ (�→ �)

so each value of dynamic type belongs to one ground type.
Types A and B are compatible, written A ∼ B, if either is the dynamic type, if they are

both the same base type, or they are both function types with compatible domains and
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Blame and coercion: Together again for the first time 9

ranges. Every type is either the dynamic type or compatible with a unique ground type.
Two ground types are compatible if and only if they are equal.

Lemma 1 (Grounding).

1. If A �= �, there is a unique G such that A ∼ G.
2. G ∼ H iff G = H.

Incompatibility is the source of all blame: casting a type into the dynamic type and
then casting out at an incompatible type allocates blame to the second cast. We rule out
incompatible casts from the beginning because they always fail at runtime. Write ug(A, G)
to indicate that A has unique ground G distinct from A, that is when A �= �, A �= G, and
A ∼ G.

Let p, q range over blame labels. To indicate on which side of a cast blame lays, each
blame label p has a complement p. Complement is involutive, p = p.

Let L, M , N range over terms. Terms are those of simply typed lambda calculus, plus
casts and blame. Each operator op on base types is specified by a total meaning function
[[op]] that preserves types: if op : �ι→ ι and �k : �ι, then [[op]](�k) = k with k : ι.

Typing, reduction, and safety judgments are written with subscripts indicating to which
calculus they belong, except we omit subscripts in figures to avoid clutter. We write � �B
M : A to indicate that in type environment � term M has type A. Type rules for simply
typed lambda calculus are standard and omitted. The type rule for casts is straightforward:

� �B M : A A ∼ B

� �B (M : A
p=⇒ B) : B

If term M has type A and types A and B are compatible then a cast of M from A to B is a
term of type B. The cast is decorated with a blame label p. We abbreviate a pair of casts

(M : A
p=⇒ B) : B

q=⇒ C as M : A
p=⇒ B

q=⇒ C,

and similarly for sequences of more than two casts. A term blame p has any type.
Every well-typed term not containing blame has a unique type: if � � M : A and � � M :

A′ and M does not contain a subterm of the form blame p, then A = A′.
If a cast from A to B decorated with p allocates blame to p we say it has positive blame,

meaning the fault lies with the term contained in the cast; and if it allocates blame to p we
say it has negative blame, meaning the fault lies with the context containing the cast.

Let V , W range over values. A value is a constant, a lambda abstraction, a cast of a value
from function type to function type, or a cast of a value from ground type to dynamic type.
Let E range over single-level evaluation contexts (Myers, 2013), which we call frames.
They include casts in the obvious way. It is more common to use recursive evaluation
contexts (Felleisen, 1987) rather than single-level frames; Section 4 explains why we prefer
frames. We write M −→B N to indicate that term M steps to term N . For any reduction
relation −→, we write its reflexive and transitive closure as −→∗.

The first two reduction rules are standard (and not repeated in subsequent figures). A cast
from a base type to itself leaves the value unchanged. A cast of a function applied to a value
reduces to a term that casts on the domain, applies the function, and casts on the range;
to allocate blame correctly, the blame label on the cast of the domain is complemented,
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10 J.G. Siek et al.

Embedding dynamically typed λ-calculus �M�
�k� = k : ι

p=⇒ � if k : ι

�op( �M )� = op(� �M� : �� �p=⇒�ι) : ι
p=⇒ � if op : �ι→ ι

�x� = x

�λx. N� = (λx: � . �N�) : �→ �
p=⇒ �

�L M� = (�L� : �
p=⇒ �→ �) �M�
Fig. 3. Embedding.

corresponding to the fact that function types are contravariant in the domain and covariant
in the range (Findler & Felleisen, 2002; Wadler & Findler, 2009). A cast from type � to
itself leaves the value unchanged. Assume ug(A, G). Then a cast from A to � factors into
a cast from A to G followed by a cast from G to �, and a cast from � to A factors into a
cast from � to G followed by a cast from G to A. A cast from a ground type G to type �
and back to the same ground type G leaves the value unchanged. A cast from a ground
type G to type � and back to an incompatible ground type H allocates blame to the label of
the outer cast. (Why the outer cast? This choice traces back to Findler & Felleisen (2002),
and reflects the idea that we always hold an injection from ground type to dynamic type
blameless, but may allocate blame to a projection from dynamic type to ground type.)

Two rules have side conditions ug(A, G). The condition implies that G = �→ �, so we
could rewrite the rules replacing G by �→ �. We use the given form because it is more
compact, and it adapts if we permit other ground types, such as product G = �× �.

The following lemma will prove useful later.

Lemma 2 (Failure). If A �= �, A ∼ G, and G �= H, then

V : A
p1=⇒ G

p2=⇒ �
p3=⇒ H

p4=⇒ �
p5=⇒ B −→∗ blame p3

Embedding �M� in Figure 3 takes terms of dynamically typed lambda calculus into the
blame calculus. The embedding introduces a fresh label p for each cast. As the subsequent
calculi C, S, and T are connected to B by fully abstract translations, the embedding for
those calculi is obtained by composing �·� with the respective translation.

The reduction rules are deterministic.

Proposition 3 (Determinism). If M −→B N and M −→B N ′ then N = N ′.

Type safety is established via preservation and progress.

Proposition 4 (Type safety, Wadler & Findler (2009)).

1. If �B M : A and M −→B N then �B N : A.
2. If �B M : A then either

(a) there exists a term N such that M −→B N, or
(b) there exists a value V such that M = V, or
(c) there exists a label p such that M = blame p.
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Blame and coercion: Together again for the first time 11

Subtype A<: B

ι <: ι
A′ <: A B<: B′
A → B<: A′ → B′ � <: �

A<: G
A<: �

Positive subtype A<:+ B

ι <:+ ι
A′ <:− A B<:+ B′

A → B<:+ A′ → B′ A<:+ �

Negative subtype A<:− B

ι <:− ι
A′ <:+ A B<:− B′

A → B<:− A′ → B′ � <:− B
A<:− G
A<:− �

Naive subtype A<:n B

ι <:n ι
A<:n A′ B<:n B′

A → B<:n A′ → B′ A<:n �

Safe cast (A
p=⇒ B) safeB q

A<:+ B

(A
p=⇒ B) safe p

A<:− B

(A
p=⇒ B) safe p

p �= q p �= q

(A
p=⇒ B) safe q

Fig. 4. Subtyping and blame safety.

The same will hold, mutatis mutandis, for λC, λS, and λT.
Type safety does not rule out blame as a result. How to guarantee blame cannot arise in

certain circumstances is the subject of the next section.

2.1 Blame safety

Figure 4 presents four different subtyping relations and defines safety for blame calculus.
These subtyping relations describe the potential of a cast in a well-typed program to allo-
cate blame. They do not restrict or enhance the typing relation as the type system contains
no subsumption rule.

Why do we need four different subtyping relations? Each has a different purpose.
Relation A<: B characterizes when a cast A =⇒ B never yields blame; relations A<:+ B
and A<:− B characterize when a cast A =⇒ B cannot yield positive or negative blame,
respectively; and relation A<:n B characterizes when type A is more precise than type B.

The first three subtyping relations are characterized by contravariance. A cast from
a base type to itself never yields blame. A cast from a function type to a function type
never yields positive blame if the cast of the arguments never yields negative blame and
if the cast of the results never yields positive blame; and ditto with positive and negative
reversed; as with casts, each rule is contravariant in the function domain and covariant in
the function range. A cast from ground type to dynamic type never yields blame. A cast
to dynamic type never yields positive blame, while a cast from dynamic type never yields
negative blame.

Naive subtyping is characterized by covariance. A base type is as precise as itself, pre-
cision of function types is covariant in both the domain and range of functions, and the
dynamic type is the least precise type.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000101
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 26 Oct 2021 at 08:06:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000101
https://www.cambridge.org/core


12 J.G. Siek et al.

All four relations imply compatibility: if A<: B then A ∼ B, and similarly for <:+,
<:−, and <:n. All four relations are reflexive, and both <: and <:n are transitive and
anti-symmetric.

As a counterexample to transitivity for <:−, observe that ι <:− � and � <:− �→ � both
hold, but ι <:− �→ � does not hold (it relates incompatible types). Contravariance then
gives rise to a counterexample for<:+, since (�→ �) → A<:+ �→ A and �→ A<:+ ι→
A both hold for any A, but (�→ �) → A<:+ ι→ A does not hold.

We must report a few errors in our previous work. Siek et al. (2015a) omits the rule � <:
� in its definition of subtype. Wadler & Findler (2009) and Siek et al. (2015a) incorrectly
claim that<:+ and<:− are transitive. Wadler & Findler (2009) incorrectly claims that<:−

does not imply compatibility.
The four relations are closely connected: ordinary subtyping decomposes into positive

and negative subtyping, which can be reassembled to yield naive subtyping, almost like a
tangram.

Lemma 5 (Tangram, Wadler & Findler (2009)).

1. A<: B iff A<:+ B and A<:− B.
2. A<:n B iff A<:+ B and B<:− A.

A cast from A to B decorated with p is safe for blame label q,

(A
p=⇒ B) safeB q,

if evaluation of the cast can never allocates blame to q. The three rules reflect that if
A<:+ B the cast never allocates positive blame, if A<:− B the cast never allocates negative
blame, and a cast with label p never allocates blame other than to p or p. Safety extends
to terms in the obvious way: M safeB q if every cast in M is safe for q. Blame safety is
established via a variant of preservation and progress.

Proposition 6 (Blame safety, Wadler & Findler (2009)).

1. If M safeB q and M −→B N then N safeB q.
2. If M safeB q then M �−→B blame q.

The same will hold, mutatis mutandis, for λC, λS, and λT.

2.2 Contextual equivalence

Contextual equivalence is defined as usual. Evaluating a term may have three outcomes:
converge, allocate blame to p, or diverge. Two terms are contextually equivalent if they
have the same outcome in any context.

Let C range over contexts. A context is an expression with a single hole in any position.
Write M↑B if M diverges; defined coinductively by M↑B if M −→B N and N↑B.
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Definition 7 (Contextual equivalence). Two terms are contextually equivalent, M
ctx=B N,

if for any context C, either

1. both converge, C[M] −→∗
B V and C[N] −→∗

B W, for some values V and W.
2. both blame the same label, C[M] −→∗

B blame p and C[N] −→∗
B blame p, for some

label p, or
3. both diverge, C[M]↑B and C[N]↑B.

The same will apply, mutatis mutandis, for λC, λS, and λT.

3 Coercion calculus

Figure 5 defines the coercion calculus, λC. Our coercions correspond to those of Henglein
(1994), except that a coercion from dynamic type to ground type is decorated with a blame
label, as done by Siek & Wadler (2010), and we add a coercion ⊥GpH , similar to Fail in
Herman et al. (2007, 2010). Our type rules and definition of height are well known; our
reduction rules and all results in this section are updated versions from Siek et al. (2015a).

Blame labels and types are as in λB. Let c, d range over coercions. We write c : A =⇒ B
to indicate that c coerces values of type A to type B. Our type rules follow Henglein (1994).
The identity coercion at type A is written idA. Injection from ground type G to dynamic
type is written G!, and projection from dynamic type to ground type G is written G?p.
The latter is decorated with a label p, to which blame is allocated if the projection fails. A
function coercion c → d coerces a function A → B to a function A′ → B′, where c coerces
A′ to A, and d coerces B to B′. This construct is contravariant in the domain coercion c and
covariant in the range coercion d. The composition c ; d coerces A to C, where c coerces
A to B, and d coerces B to C. The fail coercion ⊥GpH represents the result of a failed
coercion from ground type G to ground type H , and is introduced because it is essential to
the space-efficient representation described in the following section. If the fail coercion is
used at type ⊥GpH : A → B, then G is compatible to A but H need not be related to B! Even
the case A = B is possible. For a completely formal treatment, the fail coercion would have
to be adorned with the source and target types as in the translation of coercions from λC to
λB in Figure 6.

Terms of the calculus are as before, except that we replace casts by application of a
coercion, M〈c〉. The typing rule is straightforward:

� �C M : A c : A =⇒ B
� �C M〈c〉 : B

If term M has type A, and c coerces A to B, then application to M of c is a term of type B.
Every well-typed coercion not containing failure has a unique type: if c : A =⇒ B and

c : A′ =⇒ B′ and c does not contain a coercion of the form ⊥GpH then A = A′ and B = B′.
Conversely, distinct coercions may have the same type: for example, id� and G?p ; G!
both have type �=⇒ �.

Values and evaluation contexts are as in the blame calculus, with casts replaced by
corresponding coercions. We write M −→C N to indicate that term M steps to term N .
The identity coercion leaves a value unchanged. A coercion of a function applied to a value
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14 J.G. Siek et al.

Syntax
c, d ::= idA | G! | G?p | c → d | c ; d | ⊥GpH

L, M , N ::= k | op( �M) | x | λx:A. N | L M | M〈c〉 | blame p

V , W ::= k | λx:A. N | V〈c → d〉 | V〈G!〉
E ::= op( �V , �, �M) |� M | V � |�〈c〉

Coercion typing c : A =⇒ B

idA : A =⇒ A G! : G =⇒ � G?p : �=⇒ G

c : A′ =⇒ A d : B =⇒ B′
(c → d) : A → B =⇒ A′ → B′

A �= � A ∼ G G �= H

⊥GpH : A =⇒ B
c : A =⇒ B d : B =⇒ C

(c ; d) : A =⇒ C

Term typing � �C M : A
� � M : A c : A =⇒ B

� � M〈c〉 : B � � blame p : A

Reduction M −→C N

V〈idA〉 −→ V

(V〈c → d〉) W −→ (V (W〈c〉))〈d〉
V〈G!〉〈G?p〉 −→ V

V〈G!〉〈H?p〉 −→ blame p if G �= H

V〈c ; d〉 −→ V〈c〉〈d〉
V〈⊥GpH〉 −→ blame p

M −→ M ′
E[M] −→ E[M ′] E[blame p] −→ blame p

Safe coercion c safeC q

idA safe q G! safe q

p �= q

G?p safe q
c safe q d safe q

c → d safe q

c safe q d safe q

c ; d safe q

p �= q

⊥GpH safe q

Height ||c||
||idA|| = 1 ||G?p|| = 1 ||c → d|| = max(||c||, ||d||) + 1

||⊥GpH || = 1 ||G!|| = 1 ||c ; d|| = max(||c||, ||d||)
Fig. 5. Coercion calculus (λC).

reduces to a term that coerces on the domain, applies the function, and coerces on the range.
If an injection meets a matching projection, the coercion leaves the value unchanged. If an
injection meets an incompatible projection, the coercion fails and allocates blame to the
label in the projection. (Here it is clear why blame falls on the outer coercion: the inner
coercion is an injection and has no blame label, while the outer is a projection with a blame
label.) Application of a composed coercion applies each of the coercions in turn.
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Blame to coercion (λB to λC) |A p=⇒ B|BC = c

|ι p=⇒ ι|BC = idι

|A → B
p=⇒ A′ → B′|BC = |A′ p=⇒ A|BC → |B p=⇒ B′|BC

|� p=⇒ �|BC = id�

|G p=⇒ �|BC = G!

|� p=⇒ G|BC = G?p

|A p=⇒ �|BC = |A p=⇒ G|BC ; G! if ug(A, G)

|� p=⇒ A|BC = G?p ; |G p=⇒ A|BC if ug(A, G)

Coercion to blame (λC to λB) |c|CB = Z

|idA|CB = A
•=⇒ A

|G!|CB = G
•=⇒ �

|G?p|CB = �
p=⇒ G

|c → d|CB = (|c|CB → B) ++ (A′ → |d|CB) where c → d : A → B =⇒ A′ → B′

|c ; d|CB = |c|CB ++ |d|CB

|⊥GpH
A=⇒B|CB = A

•=⇒ G
•=⇒ �

p=⇒ H
•=⇒ �

•=⇒ B

where if

Z = A1
p1=⇒ A2· · ·Am

pm=⇒ Am+1

Z′ = Am+1
pm+1=⇒ Am+2· · ·Am+n

pm+n=⇒ Am+n+1

then

Z → B = A1→B
p1=⇒ A2→B· · ·Am→B

pm=⇒ Am+1→B

B → Z = B→A1
p1=⇒ B→A2· · ·B→Am

pm=⇒ B→Am+1

Z = Am+1
pm=⇒ Am· · ·A2

p1=⇒ A1

Z ++ Z′ = A1
p1=⇒ A2· · ·Am+n

pm+n=⇒ Am+n+1

Fig. 6. Relating λB to λC.

A coercion c is safe for blame label q, written c safeC q, if application of the coercion
never allocates blame to q. The definition is pleasingly simple: a coercion is safe for q if it
does not mention label q.

The height of a coercion is as defined by Herman et al. (2007, 2010), and will be used
in Section 4.

Determinism, type safety, blame safety, and contextual equivalence for λC are as in λB.
Propositions 3, 4, and 6 and Definition 7 apply mutatis mutandis.

3.1 Relating λB to λC

The relation between λB and λC is shown in Figure 6. In this section, we let M , N range
over terms of λB and M ′, N ′ range over terms of λC.
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We write

|A p=⇒ B|BC = c

to indicate that the cast on the left translates to the coercion on the right. The translation
is designed to ensure there is a lockstep bisimulation between λB and λC. The translation
extends to terms in the obvious way, replacing each cast by the corresponding coercion
as in

|M : A
p=⇒ B|BC = |M |BC〈|A p=⇒ B|BC〉

We write

|c|CB = Z

to indicate that the coercion on the left translates to the sequence of casts on the right.
Here Z ranges over nonempty sequences of casts. As defined in Figure 6, we write Z → B
(respectively, B → Z) to replace in Z each source or target type A by A → B (respectively,
B → A), we write Z to reverse the sequence Z and complement all the blame labels, and we
write Z ++ Z′ to concatenate two sequences Z and Z′, where the last type of one sequence
must match the first of the other. In the clause for c → d, the right-hand side can be taken
as either

(|c|CB→B) ++ (A′→|d|CB) or (A→|d|CB) ++ (|c|CB→B′),

equivalently. We write ⊥GpH
A=⇒B to indicate that ⊥GpH is used as a cast from A to B. This

is an informal notation, with the extra information easily recovered by type inference.
We choose not to use ⊥GpH

A=⇒B as a formal notation throughout, since it would complicate
the definition of � in Section 4. We write • as a blame label in casts where the label is
irrelevant because the cast cannot allocate blame. The translation extends to terms in the
obvious way, replacing each coercion by the corresponding sequence of casts.

We start with some static properties of the translations. The subtle definition of positive
and negative subtyping is justified by the correspondence to the coercion calculus. It is
not too surprising that the definition is sound (safety in B implies safety in C), but it is
surprising that the definition is also complete (safety in C implies safety in B).

Lemma 8 (Positive and negative subtyping).

1. A<:+ B iff |A p=⇒ B|BC safeC p.
2. A<:− B iff |A p=⇒ B|BC safeC p.

The full proof is in Appendix A.
It follows immediately that translation from λB to λC and back preserves type and blame

safety.

Proposition 9 (Preservation, λB to λC).

1. � �B M : A iff � �C |M |BC : A.
2. M safeB q iff |M |BC safeC q.
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Blame and coercion: Together again for the first time 17

Proposition 10 (Preservation, λC to λB).

1. � �C M ′ : A iff � �B |M ′|CB : A.
2. M ′ safeC q iff |M ′|CB safeB q.

(In Siek et al. (2015a), the identity cast is translated as an empty sequence of casts,
whereas here we permit only nonempty sequences, and so translate idA as A =⇒• A. A
consequence of the change is that there Proposition 10 could only use “implies”, whereas
here we use “iff”.)

Thus, the subtle definition of blame safety for B is justified by the simple definition
of blame safety for C. The translations from B to C and back are themselves somewhere
between the subtlety of the former and the simplicity of the latter.

Turning to operational properties, we observe several contextual equivalences for λC.

Lemma 11 (Equivalences). The following hold in λC.

1. M〈idA〉 ctx=C M.
2. M〈c ; d〉 ctx=C M〈c〉〈d〉
3. M〈c → d〉 ctx=C M〈(c → idB) ; (idA′ → d)〉, where c : A′ =⇒ A and d : B =⇒ B′.

Parts 1 and 2 follow from the corresponding reduction rules, M〈idA〉 −→C M and
M〈c; d〉 −→C M〈c〉〈d〉, and part 3 follows from the equational theory established in
Section 6.1 and we explain the proof there.

Translating from λC to λB and back again is the identity, up to contextual equivalence.

Lemma 12 (Coercions to blame). If M is a term of λC then ||M |CB|BC ctx=C M.

Proof By induction on M , using case analysis on the clauses in the definition of | · |CB.
In particular, the clause for id is justified by part 1 of Lemma 11, the clause for c ; d is
justified by part 2 of the same lemma, the clause for c → d is justified by part 3 of the same
lemma. The clause for ⊥GpH is justified by Lemma 2. �

The translation from λB to λC is a bisimulation. The bisimulation is lockstep: a single
step in λB corresponds to a single step in λC, and vice versa.

Proposition 13 (Bisimulation, λB to λC).
Assume �B M : A and �C M ′ : A and |M |BC = M ′.

1. If M −→B N then M ′ −→C N ′ and |N |BC = N ′ for some N ′.
2. If M ′ −→C N ′ then M −→B N and |N |BC = N ′ for some N.
3. If M = V then M ′ = V ′ and |V |BC = V ′ for some V ′.
4. If M ′ = V ′ then M = V and |V |BC = V ′ for some V.
5. If M = blame p then M ′ = blame p.
6. If M ′ = blame p then M = blame p.

A proof of Proposition 13 has been mechanized in Agda by Siek (2020b), in the file
EquivLamBLamC.agda.
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The translation from λB to λC is fully abstract.

Proposition 14 (Fully abstract, λB to λC). If M and N are terms of λB then M
ctx=B N iff

|M |BC ctx=C |N |BC.

Proof For the backward direction, assume that |M |BC ctx=C |N |BC and let C be a context
of λB.

∃V . C[M] −→∗
B V

iff (bisimulation, Proposition 13, and compositionality)

∃V . |C|BC[|M |BC] −→∗
C |V |BC

iff (assumption)

∃W ′. |C|BC[|N |BC] −→∗
C W ′

iff (bisimulation, Proposition 13, and compositionality)

∃W . C[N] −→∗
B W

For the forward direction, assume that M
ctx=B N and let C ′ be a context of λC.

∃V ′. C ′[|M |BC] −→∗
C V ′

iff (Lemma 12 on context C ′)
∃V ′. ||C ′|CB|BC[|M |BC] −→∗

C V ′

iff (compositionality)

∃V ′. ||C ′|CB[M]|BC −→∗
C V ′

iff (bisimulation, Proposition 13)

∃V . |C ′|CB[M] −→∗
B V

iff (assumption)

∃W . |C ′|CB[N] −→∗
B W

iff (bisimulation, Proposition 13)

∃W ′. ||C ′|CB[N]|BC −→∗
C W ′

iff (compositionality)

∃W ′. ||C ′|CB|BC[|N |BC] −→∗
C W ′

iff (Lemma 12 on context C ′)
∃W ′. C ′[|N |BC] −→∗

C W ′

�

4 Space-efficient coercion calculus

Figure 7 defines the space-efficient coercion calculus, λS. Space-efficient coercions corre-
spond to coercions in a canonical form. All the results in this section are updated versions
of the results of Siek et al. (2015a).

Blame labels and types are as in λB and λC. There is one space-efficient coercion for
each equivalence class of coercions with respect to the equational theory of Section 6.1.
Space-efficient coercions follow a specific, three-part grammar, chosen to facilitate the
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Syntax
s, t ::= id� | (G?p ; i) | i

i ::= (g ; G!) | g | ⊥GpH

g, h ::= idι | (s → t)

L, M , N ::= k | op( �M) | x | λx:A. N | L M | M〈t〉 | blame p

U ::= k | λx:A. N

V , W ::= U | U〈s → t〉 | U〈g ; G!〉
E ::=F |�〈s〉
F ::= op( �V , �, �M) |� M | V �

Composition s � t = r

idι � idι = idι
(s → t) � (s′ → t′) = (s′ � s) → (t � t′)

id� � t = t

(g ; G!) � id� = g ; G!

(G?p ; i) � t = G?p ; (i � t)

g � (h ; H!) = (g � h) ; H!

(g ; G!) � (G?p ; i) = g � i

(g ; G!) � (H?p ; i) = ⊥GpH if G �= H

⊥GpH � s = ⊥GpH

g � ⊥GpH = ⊥GpH

Reduction −→S = −→E
S ∪ −→F

S M −→E
S N M −→F

S N

op( �V ) −→E [[op]]( �V )

(λx:A. N) V −→E N[x:=V ]

(U〈s → t〉) V −→E (U (V〈s〉))〈t〉

U〈idι〉 −→F U

M〈s〉〈t〉 −→F M〈s � t〉
U〈⊥GpH〉 −→F blame p

M −→ M ′

F[M] −→E F[M ′]
M −→E M ′

M〈s〉 −→F M ′〈s〉

F[blame p] −→E blame p (blame p)〈s〉 −→F blame p

Fig. 7. Space-efficient coercion calculus (λS).

definition of a recursive composition operator, which takes two canonical coercions and
computes the canonical coercion corresponding to their composition.

Let s, t range over space-efficient coercions, i range over intermediate coercions, and
g, h range over ground coercions. Space-efficient coercions are either the identity coercion
at dynamic type id�, a projection followed by an intermediate coercion (G?p ; i), or just
an intermediate coercion i. An intermediate coercion is either a ground coercion followed
by an injection (g ; G!), just a ground coercion g, or the failure coercion ⊥GpH . A ground
coercion is an identity coercion of base type idι or a function coercion s → t.
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The source of an intermediate coercion is never the dynamic type. Source and target of a
ground coercion are never the dynamic type, and both are compatible with the same unique
ground type.

Lemma 15 (Source and Target).

1. If i : A =⇒ B then A �= �.
2. If g : A =⇒ B then A �= � and B �= � and there exists a unique G such that A ∼ G

and G ∼ B.

Terms of the calculus are as in λC, except that we restrict coercions to space-efficient
coercions. The key idea of the dynamics, as in Herman et al. (2007, 2010) and Siek &
Wadler (2010), is to combine and normalize adjacent coercions, which ensures space effi-
ciency. Ensuring that adjacent coercions are combined requires we adjust the notion of
value and of reduction. Let U range over uncoerced values, that is, values that do not con-
tain a top-level coercion (constants and lambda abstractions). Let V , W range over values,
which we constrain to have at most one top-level coercion. Let E range over evaluation
frames, as before, and let F range over all evaluation frames except for coercions.

If space-efficient coercions s and t are the canonical form of coercions c and d, then s � t
is the canonical form of c ; d. A straightforward induction shows that composition is well
defined. The key is to observe that the composition (i � t) yields an intermediate coercion
for any t and that the composition of two ground coercions (g � h) yields a ground coercion.
We establish the termination of composition by observing that the sum of the sizes of the
arguments gets smaller at each recursive call. The relation between these definitions and
the equational theory of Henglein (1994) is discussed in Section 6.1. That discussion will
make use of the associativity property of composition.

Lemma 16 (Composition is Associative). For any r : A =⇒ B, s : B =⇒ C, and t : C =⇒
D, (r � s) � t = r � (s � t).

The full proof is in Appendix B.
Height is preserved by composition.

Proposition 17 (Height). ||s � t|| ≤ max(||s||, ||t||).

A space-efficient coercion contains at most two compositions at its top-level (check the
grammar), so a space-efficient coercion bounded in height is also bounded in size.

The reduction rules are designed to ensure that reduction is deterministic and that each
reduction has a unique derivation. If a term contains two coercions in succession, then
those coercions are composed into one before other reductions occur underneath them.
For example, in Figure 1 a space leak in λC is avoided in λS by combining two or more
coercions in tail position prior to performing the underlying recursive function application.
In contrast, any single coercion evaluates the term under the coercion before the coercion is
performed; this order of reduction is necessary to maintaining the correspondence between
λS and λC.
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We have three reduction relations,

M −→S N M −→E
S N M −→F

S N .

In the last two of these, superscripts E and F are part of the name of the reduction rela-
tion, not metavariables ranging over frames. The middle relation is so named because its
reductions may occur nested directly inside any frame E , while the last relation is so named
because its reduction may only occur nested directly inside a frame F that does not contain
a coercion. The first reduction is simply the union of the other two. In Figure 7 we omit
the subscript S on the reduction relations.

There are four congruence rules. The first states that any reduction may be nested in
an F frame; the resulting reduction may take place in any frame, hence it is labeled
with E . The second states that an E reduction may be nested underneath a coercion; the
resulting reduction can only take place in an F frame (else it would reduce under two
nested coercions), hence it is labeled with F . The second rule only mentions coercions,
and not arbitrary E frames, in order not to overlap with the preceding rule; this guar-
antees that each reduction has a unique derivation. The final two congruence rules deal
with removing a frame around a blame term, and are justified similarly to the first two
rules.

If the rule with left-hand side M〈s〉〈t〉 were labeled E instead of F , then it would not
enforce that the outermost string of two casts is the one that is reduced. Similarly, if the
rules with left-hand sides U〈idι〉 or U〈⊥GpH〉 were labeled with E in place of F or had M
in place of U , then they would overlap with the rule with left-hand side M〈s〉〈t〉.

As an example consider reducing a well-typed term of the form M〈idι〉〈idι〉〈idι〉 using
relation −→S=−→E

S ∪ −→F
S .

M〈idι〉〈idι〉〈idι〉 −→F
S M〈idι〉〈idι � idι〉 = M〈idι〉〈idι〉

−→F
S M〈idι � idι〉 = M〈idι〉

−→∗
S U〈idι〉

−→F
S U

Two initial reduction steps using −→F
S simplify the nested coercion applications to a sin-

gle one. Next, reduction with −→E
S applies repeatedly to evaluate the term M under the

coercion. Finally, reduction −→F
S reduces the identity coercion.

Whereas we use single-level frames, prior work uses recursive evaluation contexts.
Herman et al. (2010) use outside-in contexts that provide convenient access to the out-
ermost frame that eases the proof of progress by streamlining the decomposition lemma.
Siek et al. (2015a) use inside-out contexts that provide convenient access to the innermost
frame, making it easier to constrain the reductions to occur in the correct frame. Here,
we obtain the best of both worlds by using frames and by labeling our reduction rules to
constrain their immediately enclosing frame. Concurrently, Siek (2020a) mechanizes λS
in Agda and shows that using frames streamlines the proofs of progress and preservation
by enabling induction on the term and typing derivation, respectively, as is standard for
structural operational semantics (Pierce, 2002; Wadler et al., 2020).

Siek et al. (2015a) also had a slightly different definition of evaluation contexts, which
only permitted reduction under coercions in a particular syntactic form (denoted by the
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Coercions to space-efficient (λC to λS) |c|CS = s

|id�|CS = id�
|idι|CS = idι

|idA→B|CS = |idA|CS → |idB|CS

|G?p|CS = G?p ; |idG|CS

|G!|CS = |idG|CS ; G!

|c → d|CS = |c|CS → |d|CS

|c ; d|CS = |c|CS � |d|CS

|⊥GpH |CS = ⊥GpH

Bisimulation between λC and λS M ≈CS M ′

k ≈ k

�M ≈ �M ′

op( �M) ≈ op( �M ′) x ≈ x

M ≈ M ′
λx:A. M ≈ λx:A. M ′

L ≈ L′ M ≈ M ′
L M ≈ L′ M ′

blame p ≈ blame p

M ≈ M ′ � M : A |idA|CS = s

M ≈ M ′〈s〉 (i)

M ≈ M ′〈s〉 |c|CS = t

M〈c〉 ≈ M ′〈s � t〉 (ii)

M ≈ L′〈r〉 M ′〈s〉 |d|CS = t

M〈d〉 ≈ (L′〈r � (s → t)〉) M ′ (iii)

Fig. 8. Relating λC to λS.

metavariable f ) that did not permit identity coercions. That definition was in error. For
example, the following program is stuck.

(1 + 2)〈idnum〉 �−→S

Here we fix the problem by permitting reductions underneath arbitrary coercions.
Determinism, type safety, blame safety, and contextual equivalence for λS are as in λB.

Propositions 3, 4, and 6 and Definition 7 apply mutatis mutandis.

4.1 Relating λC to λS

The translation from λC to λS is shown in Figure 8. In this section, we let M , N range over
terms of λC and let M ′, N ′ range over terms of λS.

We write

|c|CS = s
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to indicate that the coercion on the left translates to the space-efficient coercion on the
right. The translation extends to terms in the obvious way, replacing each coercion by the
corresponding space-efficient coercion.

The inverse translation

|s|SC = c

is trivial, since each space-efficient coercion is a coercion.
Translating λC to λS preserves type and blame safety.

Proposition 18 (Preservation, λC to λS).

1. � �C M : A if and only if � �S |M |CS : A.
2. M safeC q if and only if |M |CS safeS q.

The same holds trivially for the reverse translation which is the identity.
The dynamics of λC and λS differ in that the former breaks up compositions, while the

latter combines them. In Figure 8, we define a bisimulation ≈ that relates λC to λS. Rules
in gray make the relation a congruence; the rules (i) and (ii) relate a sequence of zero or
more coercion applications to a single space-efficient coercion application. The rule (iii)
handles the case of applying a function that is wrapped in multiple coercion applications in
λC but only wrapped in a single coercion application in λS. The rule relates the two sides
during the intermediate reduction steps of λC by mimicking the forward steps on the λS
side. For example, consider the sequence of reductions in λC.

(V〈c1 → d1〉〈c2 → d2〉) W (a)

−→C (V〈c1 → d1〉 W〈c2〉)〈d2〉 (b)

−→C (V (W〈c2〉〈c1〉))〈d1〉〈d2〉 (c)

If V ≈ V ′ (where V and V ′ both have type A → B), W ≈ W ′, |ci|CS = si, and |di|CS = ti,
these two reductions relate to a single reduction in λS.

(V ′〈(s1→t1) � (s2→t2)〉) W ′ (d)

−→S (V ′ (W ′〈s2 � s1〉)〈t1 � t2〉 (e)

Here (a) ≈ (d) via (i) once and (ii) twice. Rule (iii) comes into play to establish (b) ≈ (d)
(derivation shown below). Here (i) and (ii) are used in both the domain and range, and (iii)
is used once to mimic a partial forward step on the λS side. Note that s2 = |idA|CS � s2,
which enables the use of (ii) in the range (similar reasoning enables (ii) in the domain).

V ≈ V ′

V ≈ V ′〈|idA→B|CS〉
(i)

V〈c1 → d1〉 ≈ V ′〈s1 → t1〉
(ii)

W ≈ W ′

W ≈ W ′〈|idA|CS〉
(i)

W〈c2〉 ≈ W ′〈s2〉
(ii)

V〈c1 → d1〉 W〈c2〉 ≈ V ′〈s1 → t1〉 W ′〈s2〉 |d2|CS = t2

(b) ≈ (d)
(iii)

We have (c) ≈ (e) by two uses of rule (ii) for the d’s and t’s, two uses of rule (ii) for the
c’s and s’s, and finally one use of rule (i) to relate W and W ′〈|idA|CS〉.

The relation ≈ is a bisimulation. It is not lockstep: a single step in λC corresponds to
zero or more steps in λS, and vice versa.
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Proposition 19 (Bisimulation, λC to λS).
Assume �C M : A and �S M ′ : A and M ≈ M ′.

1. If M−→CN then M ′−→∗
SN ′ and N≈N ′ for some N ′.

2. If M ′−→SN ′ then M−→∗
CN and N≈N ′ for some N.

3. If M = V then M ′ −→∗
S V ′ and V ≈ V ′ for some V ′.

4. If M ′ = V ′ then M −→∗
C V and V ≈ V ′ for some V.

5. If M = blame p then M ′ −→∗
S blame p.

6. If M ′ = blame p then M = blame p.

The full proof is in Appendix C. A variant of this bisimulation has also been mechanized
in Agda by Lu (2020).

Terms relate to their translations by ≈.

Proposition 20. M ≈ |M |CS.

The translation from λC to λS is fully abstract.

Proposition 21 (Fully abstract, λC to λS). If M and N are terms of λC then M
ctx=C N iff

|M |CS ctx=S |N |CS.

5 Threesomes without blame

Siek & Wadler (2009, 2010) use a different development than the one given here. They
first introduce threesomes as a pair of casts,

A
T=⇒ B = A =⇒ T =⇒ B

from a source type A through a mediating type T to a target type B, where the three types
explain the name. This form does not account for blame, which they restore by decorating
the mediating cast with blame labels. In contrast, here λC and λS are directly inspired
by coercions. We now tie the knot, showing how canonical coercions in λS relate to
threesomes when blame is ignored.

We ignore blame here to simplify the presentation. A variant of T with blame would be
isomorphic to S. An analogous statement is proved by Siek & Wadler (2010) in Theorem 5.

To account for the case where the source and target type are incompatible, threesomes
require introducing the empty type ⊥, which is the least type in the naive ordering. Siek &
Wadler (2010) permits every type to include ⊥, which requires extending consistency in
an ad hoc way. To avoid this issue we follow Siek & Wadler (2009) and only permit ⊥ in
the mediating type.

We let R, S, T range over pointed types, which consist of the usual type constructors
together with ⊥. Every ordinary type (not using ⊥) is a pointed type, but not conversely.
A threesome coercion is written as

M : A
T=⇒ B

where M is a term, A and B are ordinary types, and T is a pointed type that is naively
bounded above by A and B.
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Pointed types S and T are shallowly incompatible, written S # T , if they are different
base types, if one is a base type and the other is a function, or if one is the empty type.

The meet of two types S and T is written S & T and defined in Figure 9. It is the greatest
lower bound with regard to naive subtyping.

Lemma 22 (Meet is greatest lower bound).

1. S & T <:n S and S & T <:n T and
2. R<:n S and R<:n T iff R<:n S & T.

The reduction rules for threesomes without blame (λT) are in close correspondence to
those for space-efficient coercions, save that composition of coercions (s � t) is replaced by
meet of pointed types (S & T). The β, δ, and congruence rules for λT are the same as those
for λS, so we omit them from Figure 9.

Determinism, type safety, and contextual equivalence for λT are as in λB. Propositions 3
and 4 and Definition 7 apply mutatis mutandis. Blame safety is not relevant for λT, because
there are no blame labels.

5.1 Translation from space-efficient coercions to threesomes

Ignoring blame labels, a space-efficient coercion is determined by its source, target, and
mediating types. The mediating type of a space-efficient coercion t is a pointed type ||t||
as defined in Figure 10.

Lemma 23 (Mediating type). If t : A =⇒ B then ||t||<:n A and ||t||<:n B.

The correspondence between composition of space-efficient coercions and meet of
threesome types is straightforward.

Lemma 24 (Composition and meet). If s and t are space-efficient coercions, then

||s � t|| = ||s|| & ||t||

The above results suggest a simple translation. If t is a space-efficient coercion, t : A =⇒
B, define

|t|ST = A
||t||=⇒ B.

The translation extends to terms in the obvious way, replacing each threesome coercion by
the corresponding threesome cast, and replacing blame p by blame.

Preservation of type safety for the translation of λS to λT is straightforward, and
omitted. As blame safety is not relevant for λT, neither is preservation of blame safety.

The translation from λS to λT is a bisimulation.

Proposition 25 (Bisimulation, threesomes without blame).
Assume �S M : A and �T M ′ : A and |M |ST = M ′.

1. If M−→SN then M ′−→TN ′ and |N |ST = N ′ for some N ′.
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Syntax
R, S, T ::= ι | S → T | � | ⊥

L, M , N ::= x | k | op( �M) | λx:A. N | L M | M : A
T=⇒ B | blame

U ::= k | λx:A. N

V , W ::= U | U : A → B
S→T=⇒ A′ → B′ | U : A

T=⇒ �

E ::=F |� : A
T=⇒ B

F ::= op( �V , �, �M) |� M | V �

Naive subtype S <:n T

ι <:n ι T <:n �
S <:n S′ T <:n T ′

S→S′ <:n T→T ′ ⊥<:n T

Term typing � �T M : A
� � M : A T <:n A T <:n B

� � M : A
T=⇒ B � � blame : A

Shallow incompatibility S # T
ι �= ι′

ι # ι′ ι # S→T S→T # ι ⊥ # T T # ⊥
Meet S & T = R

ι& ι= ι

�& T = T

T & �= T

(S → T) & (S′ → T ′) = (S & S′) → (T & T ′)
S & T = ⊥ if S # T

Reduction −→T = −→E
T ∪ −→F

T M −→E
T N M −→F

T N

(U : A → B
S→T=⇒ A′ → B′) V −→E (U (V : A′ S=⇒ A)) : B

T=⇒ B′

U : ι
ι=⇒ ι−→F U

M : A
S=⇒ B

T=⇒ C −→F M : A
S&T=⇒ C

U : A
⊥=⇒ B −→F blame

Fig. 9. Threesomes without blame (λT).

2. If M ′−→TN ′ then M−→SN and |N |ST = N ′ for some N.
3. If M = V then M ′ = V ′ and |V |ST = V ′ for some V ′.
4. If M ′ = V ′ then M = V and |V |ST = V ′ for some V.
5. If M = blame p then M ′ = blame.
6. If M ′ = blame then M = blame p for some p.

The bisimulation is lockstep, in that a single step in λS corresponds to a single step in λT,
and vice versa.
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Space-efficient coercion to mediating type ||t|| = T

||idι|| = ι

||s → t|| = ||s|| → ||t||
||id�|| = �

||g ; G!|| = ||g||
||G?p ; i|| = ||i||
||⊥GpH || = ⊥

Space-efficient coercion to threesome (λS to λT) |M |ST = M ′

|blame p|ST = blame

|M〈t〉|ST = |M |ST : A
T=⇒ B if t : A =⇒ B and ||t|| = T

Fig. 10. Relating λS to λT.

Whereas the translation from λB to λC is an injection, which from λS to λT is a bijec-
tion. Say that a coercion is label-free if the only label appearing in it is •, and similarly for
terms.

Lemma 26 (Bijection, threesomes without blame). For each label-free space-efficient

coercion t there is exactly one threesome A
T=⇒ B such that t : A =⇒ B and ||t|| = T, and

conversely.

The translation from λS to λT is fully abstract.

Proposition 27 (Fully abstract, threesomes without blame). If M and N are label-free
terms of λS then M

ctx=S N iff |M |ST ctx=T |N |ST.

The development in this section is straightforward. Lemmas 23 and 24 are established
by easy inductions, and Propositions 25 and 27 are straightforward. In contrast, the weaker
correctness result of Siek & Wadler (2010) depends on the Fundamental Property of Casts.
Establishing the Fundamental Property required a new bisimulation relation and three lem-
mas, and then establishing the weak correctness result requires a corollary and three further
lemmas. The proof techniques we use here are simpler and yield stronger results.

Although we do not require it here, the Fundamental Property of Casts has independent
interest, and we show in the next section that it follows easily from the results we have
already established.

6 Applications

Full abstraction considerably eases some proofs. In this section, we use it to demonstrate
an equational theory of coercions similar to that of Henglein (1994) and the Fundamental
Law of Casts from Siek & Wadler (2010).
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(c; d); e � c; (d; e) (E1)

idA; c � c (E2)

c; idB � c (E3)

(c → d); (c′ → d′) � (c′; c) → (d; d′) (E4)

idA→B � idA → idB (E5)

G!; G?p � idG (E6)

G!; H?p � ⊥GpH if G �= H (E7)

(c → d); ⊥GpH � ⊥GpH if G = �→ � (E8)

⊥GpH ; c � ⊥GpH (E9)

Fig. 11. Equational theory of coercions.

6.1 Equational theory of coercions

Figure 11 presents an equational theory of coercions. We write c � d to indicate that coer-
cions c and d are equal in the theory, and take � to be the reflexive, symmetric, transitive,
and congruence closure of the equations in the figure. All of the equations assume that the
coercions are well typed. For instance, in (E2) the phrase idA; c implies c : A =⇒ B for
some B. In (E7) and (E8), the conditions are for clarification only as they are implied by
the equations being well typed.

It is straightforward to establish that this theory is sound.

Proposition 28 (Equational theory). If c � d by the equational theory of Figure 11, then
M〈c〉 ctx=C M〈d〉.

The proposition follows easily by full abstraction of the translation from λC to λS and
properties of �. For instance, (E1) follows because � is associative (Lemma 31), (E4) corre-
sponds to the second line in the definition of � (Figure 7), and (E5) corresponds to the third
line in the translation | · |CS (Figure 8).

The equational theory is similar to that given by Henglein (1994). Indeed, (E1)–(E5) of
our equational theory are the same as Henglein’s core theory (his Figure 1), while (E6)
corresponds to his φ equation (his Figure 2). All our coercions have immediate analogues
in his theory except for ⊥GpH , but we will see how to translate this last one shortly.

Henglein also has an equation ψ (his Figure 2), which does not hold in our theory; it
would correspond in our notation to G?p; G!� id�. Henglein defines for any two types a
canonical coercion c : A =⇒ B between those types (his Figure 3). Henglein shows that the
canonical coercions are exactly those in φψ-normal form, and that any two coercions with
the same source and target types must be φψ convertible: if c : A =⇒ B and d : A =⇒ B
then φψ � c � d. In contrast, for our purposes it is vital that the coercions idG : G =⇒ G
and ⊥GpH : G =⇒ G are distinct.

Recall that ⊥GpH : A =⇒ B requires that A ∼ G and G �= H but puts no requirement on B.
It corresponds in Henglein’s notation to c; G!; H?p; d where c : A =⇒ G and d : H =⇒ B
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are the canonical coercions of the appropriate types. That definition yields our (E7) as a
special case, but our (E8) and (E9) do not follow from Henglein’s equations without ψ .

Part 3 of Lemma 11 from Section 3.1 is instrumental in establishing full abstraction
between λB and λC. Typically, one might be tempted to prove a result such as Part 3
by introducing a custom bisimulation relation—indeed, that is how we first attempted to
demonstrate it. Here it follows directly from the equational theory, which in turn follows
by full abstraction of the mapping from λC to λS.

(c → d)

� (E2),(E3)

(id ; c) → (id ; d)

� (E4)

(c → id) ; (id→ d)

Instead of introducing a custom bisimulation relation, all of the “heavy lifting” is done by
bisimulation ≈ from Figure 8 and by Proposition 19. Full abstraction from λC to λS does
not depend of full abstraction from λB to λC, so there is no circularity.

6.2 Fundamental property of casts

As a second application, we show how to establish the Fundamental Property of Casts,
Lemma 2 of Siek & Wadler (2010), which asserts that a single cast is contextually equiva-
lent to a pair of casts. We will do so by mapping two terms of λB to contextually equivalent
terms of λS.

Take | − |BS to be the composition of | − |BC and | − |CS. We first establish a simple
lemma, which follows immediately by case analysis on A, B, and C. The lemma relies
on the meet operation A & B = T for naive subtyping, which is always defined and may
produce a pointed type if A and B are ordinary types.

Lemma 29. If A & B<:n C then

|A p=⇒ B|BS = |A p=⇒ C|BS � |C p=⇒ B|BS

The fundamental property follows immediately by full abstraction from λB to λC and
λC to λS.

Lemma 30 (Fundamental Property of Casts). Let M be a term of λB. If A & B<:n C then

M : A
p=⇒ B

ctx=B M : A
p=⇒ C

p=⇒ B

Siek & Wadler (2010) establish the same result with more difficulty: they require a
custom bisimulation and six lemmas.

(Our statement of the fundamental property uses ordinary types, while Siek & Wadler
(2010) uses pointed types throughout. Hence, the property proved here is not identical to
the one proved there. This is a minor technical difference, not one of substance.)
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7 Related work

This section provides an in-depth comparison to the work of Siek & Wadler (2010),
Greenberg (2013), and Garcia (2013), then summarizes systems that use gradual typing
and other relevant work.

7.1 Relation to Siek & Wadler (2010)

Siek & Wadler (2010) use threesomes of the form

〈T P⇐= S〉 s

where s is a term, S, T are types, and P is a labeled type that indicates how blame is
allocated if the cast fails. Here is the grammar for labeled types:

p, q ::= l | ε
P, Q ::= Bp | P →p Q | � | ⊥lGp

Their l, m range over blame labels (our p, q), their p, q range over optional blame labels,
their P, Q range over labeled types, their B ranges over base types (our ι), and their G, H
range over ground types (our G, H). The meaning of a labeled type is subtle as it depends
on whether each label is present or not. For example, their ⊥lGε corresponds to our ⊥GpH ,
while their ⊥lGm correspond to our G?q ; ⊥GpH (taking their l, m to correspond to our p, q,
respectively). Their paper includes a translation �−� from threesomes to coercions.

If our space-efficient coercions s, t correspond to their labeled types P, Q, then our s � t
corresponds to their Q ◦ P (note the reversal!), defined as follows.

Bq ◦ Bp = Bp

P ◦ �= P

� ◦ P = P

QHm ◦ PGp = ⊥mGp if G �= H

Q ◦ ⊥mGp = ⊥mGp

⊥mGq ◦ PGp = ⊥mGp

⊥mHl ◦ PGp = ⊥lGp if G �= H

(P′ →q Q′) ◦ (P →p Q) = (P ◦ P′) → (Q′ ◦ Q)

Here, PGp means that labeled type P is compatible with ground type G and that p is the
topmost optional blame label in P. The correctness of these equations is not immediate. For
instance, in the penultimate line why do PGp and ⊥mHl compose to yield ⊥lGp? Perhaps the
easiest way to validate the equations is to translate to coercions using �−�, then check
that the left-hand side normalizes to the right-hand side. In contrast, our definition of �

(Figure 7) is easily justified by the equational theory of Henglein (1994).

7.2 Relation to Greenberg (2013)

Greenberg (2013) considers a sequence of calculi CAST, NAIVE, and EFFICIENT, roughly
corresponding to our λB, λC, and λS. Unlike us, he includes refinement types, but
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omits blame; and he formulates correctness in terms of logical relations rather than full
abstraction.

His EFFICIENT resembles our λS, in that it defines a composition operator that serves
the same purpose as our �. He writes c1 ∗ c2 ⇒ c3 to indicate that the composition of c1

and c2 is equivalent to c3. The rules to compute c1 ∗ c2 compose the rightmost primitive
coercion of c1 with the leftmost primitive coercion of c2, then recursively compose the
result with what is left of c1 and c2. For example, here is the rule for composing function
coercions.

c21 ∗ c11 ⇒ c31

c12 ∗ c22 ⇒ c32

c1 ∗ (c31→c32) ; c2 ⇒ c

c1 ; (c11→c12) ∗ (c21→c22) ; c2 ⇒ c

His definition is recursive but proving it total is challenging, requiring four pages. In
contrast, for our definition totality is straightforward.

7.3 Relation to Garcia (2013)

Garcia (2013) observes that coercions are easier to understand while threesomes are easier
to implement, and shows how to derive threesomes from coercions through a series of
correctness-preserving transformations. To accomplish this, he defines supercoercions and
gives their meaning in terms of a translation N (−) to coercions.

N (ιP) = ιP

N (Faill) = Faill

N (Faill1Gl2 ) = Faill1 ◦ G?l2

N (G!) = G!

N (G?l) = G?l

N (G?l!) = G! ◦ G?l

N (c̈1 → c̈2) =N (c̈1) →N (c̈2)

N (c̈1 !→ c̈2) = (�→ �)! ◦ (N (c̈1) →N (c̈2))

N (c̈1 →?l c̈2) = (N (c̈1) →N (c̈2)) ◦ (�→ �)?l

N (c̈1!→?lc̈2) = (�→ �)! ◦ (N (c̈1) →N (c̈2)) ◦ (�→ �)?l

His l ranges over blame labels (our p, q), his ι is the identity coercion (our id), his P ranges
over atomic types (either a base type or the dynamic type), his Faill is a failure coercions
(our ⊥GpH ), and his c̈ ranges over supercoercions. Garcia (2013) derives a recursive com-
position function for supercoercions but the definition was too large to publish as there are
sixty pairs of compatible supercoercions. In contrast, our definition fits in ten lines.

7.4 Systems that use gradual typing

Racket (formerly Scheme) supports dynamic and static typing and higher order contracts
with blame (Flatt & PLT, 2014). Racket permits contracts to be written directly. Typed
Racket inserts contracts that allocate blame when dynamically typed code fails to conform
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to the static types declared for it Tobin-Hochstadt & Felleisen (2008). Racket is the origin,
via Findler & Felleisen (2002), of the rule for casting functions in λB (the fourth reduction
rule in Figure 2). A few years after the conference version of this article (Siek et al., 2015a),
collapsible contracts were added to Racket using a merge operator (Feltey et al., 2018) that
plays a similar role to the composition operator of Figure 7.

Pyret has limited support for gradual typing (Patterson et al., 2014). Pyret checks that a
first-order value (such as integer) conforms to its declaration, but only checks that a higher
order value is a function, not that it conforms to its declared parameter and result types.
Pyret does not implement any equivalent of the rule for casting functions in λB.

Dart provides support for gradual typing with implicit casts to and from type dynamic
(Bracha & Bak, 2011; ECMA, 2014). Dart does not provide full static type checking; its
type checker aims to warn of likely errors rather than to ensure lack of failures. In checked
mode, Dart performs a test at every place that a value can be assigned to a variable and
raises an exception if the value’s type is not a subtype of the variable’s declared type. Dart
does not implement any equivalent of the rule for casting functions in λB.

C# type dynamic and VB type Object play a role similar to our type �, with the com-
piler introducing first-order casts as needed (Bierman et al., 2010; Feigenbaum, 2008).
These languages do not have higher order structural types, only nominal types, so the pro-
grammer must manually construct explicit wrappers to accomplish what would amount to
a higher order cast. C# and VB do not implement any equivalent of the rule for casting
functions in λB.

TypeScript provides interface declarations that allow users to specify types for an
imported JavaScript module or library (Hejlsberg, 2012). The DefinitelyTyped reposi-
tory contains over 150 such declarations for a variety of popular JavaScript libraries
(Yankov, 2013). TypeScript is not concerned with type soundness, which it does not pro-
vide (Bierman et al., 2014), but instead exploits types to provide better prompting in Visual
Studio, for instance to to populate a pulldown menu with well-typed methods that might be
invoked at a given point. The information supplied by interface declarations is taken on
faith; failures to conform to the declaration are not reported. Typescript does not implement
any equivalent of the rule for casting functions in λB.

Several systems explore how to modify TypeScript to restore various forms of type
safety.

Safe TypeScript is a refinement of TypeScript that guarantees type safety by adding
run-time type information (RTTI) to values of dynamic type any (Rastogi et al., 2015). It
introduces the notion of erased types that cannot be coerced to any. Erased types are used
to communicate with external libraries that are unaware of RTTI. Furthermore, subtyping
of function types is restricted to never manipulate RTTI, avoiding the need for wrappers
that may change the object identity. Safe Typescript does not implement any equivalent of
the rule for casting functions in λB.

StrongScript (Richards et al., 2015) extends TypeScript’s optional types with concrete
types. A concrete type is a (nominal) class type, which is statically checked and which is
protected by compiler-generated casts against its less strictly typed context. The main goals
of this work are compatibility with TypeScript and enabling the generation of efficient code
for concretely typed parts of a program. Blame tracking is an optional feature that may be
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disabled to avoid runtime overhead. StrongScript relies upon an equivalent of the rule for
casting functions in λB.

Microsoft has funded Wadler and a PhD student, Jack Williams, to build a tool,
TypeScript TNG that uses blame calculus to generate wrappers from TypeScript
interface declarations. The wrappers monitor interactions between a library and a client,
and if a failure occurs then blame indicates whether it is the library or the client that has
failed to conform to the declared types. TypeScript TNG relies upon an equivalent of the
rule for casting functions in λB, but goes beyond our work in supporting union types
(Williams et al., 2017, 2018).

7.5 Other relevant work

Abadi et al. (1991) study an early notion of type Dynamic. Floyd (1967) and Hoare (1969)
introduce reasoning about programs with pre- and post-conditions and Meyer (1988) pop-
ularizes checking them at runtime under the name contracts. Findler & Felleisen (2002)
introduce higher order contracts for functional languages.

Tobin-Hochstadt & Felleisen (2006) formalize the interaction between static and
dynamic typing at the granularity of modules and prove a precursor to blame safety.
Matthews & Findler (2007) define an operational semantics for multi-language programs
with static (ML) and dynamic (Scheme) components. Gronski et al. (2006) present Sage,
a gradually typed language with refinement types. Dimoulas et al. (2011, 2012) develop
criteria for judging blame tracking strategies. Disney et al. (2011) extend contracts with
temporal properties. Strickland et al. (2012) study contracts for mutable objects. Thiemann
(2014) takes first steps towards gradual typing for session types.

Hinze et al. (2006) design an embedded DSL for contracts with blame assignment in
Haskell. Chitil (2012) develops a lazy version of contracts for Haskell. Greenberg et al.
(2010) study dependent contracts and the translation between latent and manifest systems.
Blume & McAllester (2006) develop a sound and complete semantics of contracts based on
a quotient model and raise a question concerning the meaning of the any contract. Findler
& Blume (2006) provide an answer by interpreting contracts as pairs of projections. Benton
(2008) introduces ‘undoable’ cast operators, to enable a failed cast to report an error at a
more convenient location. Swamy et al. (2014) present a secure embedding of the gradually
typed language TS� into JavaScript.

Siek et al. (2009) explore design choices for cast checking and blame tracking in the
setting of the coercion calculus. Ahmed et al. (2011) extend the blame calculus to include
parametric polymorphism and Ahmed et al. (2017) prove that it satisfies a notion of para-
metricity. Siek & Garcia (2012) define a space-efficient abstract machine for the gradually
typed lambda calculus based on coercions. Wadler (2015) surveys work on the blame
calculus. Siek et al. (2015b) propose the gradual guarantee as a new criteria for grad-
ual typing, characterizing how changes in the precision of type annotations may change
a program’s static and dynamic semantics. Toro et al. (2019) show that parametricity is
in tension with the gradual guarantee. They construct a language that satisfies the former
but not the later. New et al. (2019) resolve the tension by departing from System F as the
statically typed reference language and instead use a new language with explicit primitives
for runtime sealing.
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Vitousek et al. (2014, 2017) propose an alternative transient semantics for casts that
sidesteps the efficiency problems regarding higher order casts with pervasive first-order
runtime checks. Greenman & Felleisen (2018) report promising performance results for
the transient semantics in the context of Typed Racket and Vitousek et al. (2019) do
the same for Reticulated Python. There are interesting tradeoffs between the transient
semantics and the traditional semantics studied in this article. The traditional semantics
provides stronger type soundness guarantees and achieves low overhead in statically typed
code (Kuhlenschmidt et al., 2019), whereas the transient semantics is easier to implement
and achieves good performance on programs with a mixture of static and dynamic typing
(Greenman & Felleisen, 2018; Vitousek et al., 2019).

While the runtime compression of coercions is necessary to provide ironclad space
efficiency guarantees, it is beneficial to also optimize coercions at compile time. In the lit-
erature, this problem was studied in the context of compiling dynamically typed languages
such as Scheme (Henglein, 1992; Henglein & Rehof, 1995) and led to the soft typing line
of research on type inference (Wright & Cartwright, 1997; Aiken et al., 1994; Flanagan
et al., 2002). More recently, Rastogi et al. (2012) adapted constraint-based inference to
gradually typed languages. Vitousek et al. (2019) investigate the impact of static opti-
mization on languages that use the transient semantics. Moy et al. (2021) apply symbolic
execution to optimize contracts and demonstrate significant performance improvements in
Typed Racket.

8 Conclusion

Findler & Felleisen (2002) introduced higher order contracts, setting up a foundation for
gradual typing; but they observed a problem with space efficiency. Herman et al. (2007,
2010) restored space efficiency; but required an evaluator to reassociate parentheses. Siek
& Wadler (2010) gave a recursive definition of composition that is easy to compute; but
the correctness of their definition is not transparent. Here we provide composition that is
easy to compute and transparent. At last, we are in a position to implement space-efficient
contracts and test them in practice.

When Siek & Wadler (2010) was published, we thought we had discovered a solution
that was easy to implement and easy to understand. Only later did we realize that it was
not quite so easy as we thought! We believe that the presentation here provides a highly
accessible foundation for future work on advanced topics. For us, the lesson is clear: no
matter how simple your theory, strive to make it simpler still!
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A Positive and negative subtyping

Lemma 8 (Positive and negative subtyping).

1. A<:+ B iff |A p=⇒ B|BC safeC p.
2. A<:− B iff |A p=⇒ B|BC safeC p.

Proof A<:+ B implies |A p=⇒ B|BC safeC p and A<:− B implies |A p=⇒ B|BC safeC p is
proved by mutual induction on the definition of |A p=⇒ B|BC.

Cases for positive subtyping:
Case |ι p=⇒ ι|BC = idι satisfies ι <:+ ι and idι safeC p.

Case |A → B
p=⇒ A′ → B′|BC = |A′ p=⇒ A|BC → |B p=⇒ B′|BC. From the assumption

A → B<:+ A′ → B′, we obtain A′ <:− A and B<:+ B′. By induction, we get that |A′ p=⇒
A|BC safeC p and |B p=⇒ B′|BC safeC p, which proves the claim.

Case |� p=⇒ �|BC = id� satisfies � <:+ � and id� safeC p.
Case |G p=⇒ �|BC = G!. Immediate because G<:+ �.
Case |A p=⇒ �|BC = |A p=⇒ G|BC ; G!where A �= �, A �= G, and A ∼ G. Hence, it must be

that G = �→ � and A = A′ → B′ so that |A p=⇒ G|BC = |A′ → B′ p=⇒ �→ �|BC = |� p=⇒
A′|BC → |B′ p=⇒ �|BC. Since � <:− A′ and B′ <:+ �, the result holds by induction.

Case |� p=⇒ G|BC. Not applicable because � �<:+ G.
Case |� p=⇒ A|BC where A �= �, A �= G, and A ∼ G. Not applicable because � �<:+ A.
Cases for negative subtyping:
Case |ι p=⇒ ι|BC = idι satisfies ι <:− ι and idι safeC p.

Case |A → B
p=⇒ A′ → B′|BC = |A′ p=⇒ A|BC → |B p=⇒ B′|BC. From the assumption

A → B<:− A′ → B′, we obtain A′ <:+ A and B<:− B′. By induction, we get that |A′ p=⇒
A|BC safeC p and |B p=⇒ B′|BC safeC p, which proves the claim.

Case |� p=⇒ �|BC = id� satisfies � <:− � and id� safeC p.
Case |G p=⇒ �|BC = G!. Immediate because G<:− �.
Case |A p=⇒ �|BC = |A p=⇒ G|BC ; G!. If A<:− �, then it must be that A<:− G. Hence,

the claim holds by induction.
Case |� p=⇒ G|BC = G?p is safe for p and � <:− G holds.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000101
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 26 Oct 2021 at 08:06:14, subject to the Cambridge Core terms of use, available at

http://drops.dagstuhl.de/opus/volltexte/2017/7264
http://drops.dagstuhl.de/opus/volltexte/2017/7264
http://portal.acm.org/citation.cfm?id=239912.239917
http://portal.acm.org/citation.cfm?id=239912.239917
https://github.com/borisyankov/DefinitelyTyped
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000101
https://www.cambridge.org/core


Blame and coercion: Together again for the first time 39

Case |� p=⇒ B|BC = G?p ; |G p=⇒ B|BC (where B �= �, B �= G, and G ∼ B). � <:− B is sat-
isfied regardless of B. Hence, it must be that G = �→ � so that B = A′ → B′ and we need to

examine |�→ �
p=⇒ A′ → B′|BC = |A′ p=⇒ �|BC → |� p=⇒ B′|BC. As A′ <:+ � and � <:− B′

we can argue by induction that |A′ p=⇒ �|BC safeC p and |� p=⇒ B′|BC safeC p.
The reverse implication is proved by similar mutual induction on the definition of the

translation. �

B Associativity of composition

Lemma 31 (Composition is Associative). For any r : A =⇒ B, s : B =⇒ C, and t : C =⇒
D, (r � s) � t = r � (s � t).

Proof We prove the following five variants of associativity simultaneously by induction
on the sum of the sizes of the coercions.

1. For any s1 : A =⇒ B, s2 : B =⇒ C, and s3 : C =⇒ D,
(s1 � s2) � s3 = s1 � (s2 � s3).

2. For any i1 : A =⇒ B, s2 : B =⇒ C, and s3 : C =⇒ D,
(i1 � s2) � s3 = i1 � (s2 � s3)

3. For any g1 : A =⇒ B, i2 : B =⇒ C, and s3 : C =⇒ D,
(g1 � i2) � s3 = g1 � (i2 � s3)

4. For any g1 : A =⇒ B, g2 : B =⇒ C, and i3 : C =⇒ D,
(g1 � g2) � i3 = g1 � (g2 � i3)

5. For any g1 : A =⇒ B, g2 : B =⇒ C, and g3 : C =⇒ D,
(g1 � g2) � g3 = g1 � (g2 � g3)

We prove each of the five parts as follows.

1. Proceed by cases on s1. The case s1 = id� is trivial and the cases for s1 = (G?p ; i1)
and s1 = i1 are by part 2.

2. Proceed by cases on i1 and s2, using part 3 and inversion on the typing derivations.
3. Proceed by cases on i2 and s3, using part 4 and inversion on the typing derivations.
4. Proceed by cases on g1, g2, and g3, using part 1 of the induction hypothesis and

inversion on the typing derivations. �

C Bisimulation between λC and λS

Here we give the full proof of Proposition 19.

Lemma 32 (Compose Identity). s � |idA|CS = s and |idA|CS � s = s

Proof The proof is a straightforward induction on s and A. �

Lemma 33. Suppose M −→∗
S V1.

1. If V1〈s〉 −→∗
S V2, then M〈s〉 −→∗

S V2.
2. If V1〈s〉 −→∗

S blame p, then M〈s〉 −→∗
S blame p.
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Lemma 34. Suppose M〈s〉 −→∗ V1.

1. If V1〈t〉 −→∗
S V2, then M〈s � t〉 −→∗

S V2.
2. If V1〈t〉 −→∗

S blame p, then M〈s � t〉 −→∗
S blame p.

Proof Direct by Lemma 33, instantiating the M of Lemma 33 with M〈s〉 and the s
with t. �

Lemma 35 (Substitution Preserves Bisimulation). If M ≈ M ′ and N ≈ N ′, then M[x :=
N] ≈ M ′[x := N ′].

Proof The proof is a straightforward induction on M ≈ M ′.

Case
k ≈ k

We conclude that k ≈ k.

Case
�M ≈ �M ′

op( �M) ≈ op( �M ′)
By the induction hypothesis, we have �M[x := N] ≈ �M ′[x := N ′]. We conclude that
op( �M[x := N]) ≈ op( �M ′[x := N ′]).
Case y ≈ y
Suppose y = x. Then we conclude that N ≈ N ′.
Suppose y �= x. Then we conclude y ≈ y.

Case M ≈ M ′
λy:A. M ≈ λy:A. M ′

By the induction hypothesis, we have M[x := N] ≈ M ′[x := N ′]. We conclude that
λy:A. M[x := N] ≈ λy:A. M ′[x := N ′].
Case L ≈ L′ M ≈ M ′

L M ≈ L′ M ′
By the induction hypothesis, we have L[x := N] ≈ L′[x := N ′] and M[x := N] ≈ M ′[x :=
N ′]. We conclude that L[x := N] M[x := N] ≈ L′[x := N] M ′[x := N].
Case

blame p ≈ blame p
We conclude that blame p ≈ blame p.

Case
M ≈ M ′ |idA|CS = s

M ≈ M ′〈s〉
By the induction hypothesis, we have M[x := N] ≈ M ′[x := N ′]. We conclude that M[x :=
N] ≈ M ′[x := N]〈s〉.

Case
M ≈ M ′〈s〉 |c|CS = t

M〈c〉 ≈ M ′〈s � t〉
By the induction hypothesis, we have M[x := N] ≈ M ′[x := N ′]〈s〉. We conclude that
M[x := N] ≈ M ′[x := N]〈s � t〉.

Case
M ≈ L′〈r〉 M ′〈s〉 |d|CS = t

M〈d〉 ≈ (L′〈r � (s → t)〉) M ′
By the induction hypothesis, we have

M[x := N] ≈ L′[x := N ′]〈r〉 M ′[x := N ′]〈s〉.
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We conclude that

M[x := N]〈d〉 ≈ L′[x := N]〈r � (s → t)〉 M ′[x := N ′].

�

Lemma 36 (Values don’t bisimulate application). If V ≈ M ′, then M ′ is either a value or
a cast, but not an application.

Proof The proof is by induction on the derivation of V ≈ M ′. Consider the two rules
where applications appear on the right.

• In the congruence rule for application, the left-hand side is an application, but V is
a value.

• In rule (iii), the induction hypothesis tells us that L′〈r〉 M ′〈s〉 cannot be an
application, but it is. �

Lemma 37. If M ≈ M ′〈s〉〈t〉, then M ≈ M ′〈s � t〉.

Proof The proof is by induction on M ≈ M ′〈s〉〈t〉. There are just two cases in which the
right-hand side is a cast.

Case
M ≈ M ′〈s〉 |idA|CS = t

M ≈ M ′〈s〉〈t〉
We need to show that M ≈ M ′〈s � t〉, but by Lemma 32, noting that |idA|CS = t, we
have s � t = s. So we conclude using M ≈ M ′〈s〉.

Case
M ≈ M ′〈s〉〈t1〉 |c|CS = t2

M〈c〉 ≈ M ′〈s〉〈t1 � t2〉
By the induction hypothesis, we have M ≈ M ′〈s � t1〉. Then by rule (ii), we conclude
that M〈c〉 ≈ M ′〈s � t1 � t2〉. �

Proposition 19 (Bisimulation, λC to λS).
Assume �C M : A and �S M ′ : A and M ≈ M ′.

1. If M−→CN then M ′−→∗
SN ′ and N≈N ′ for some N ′.

2. If M ′−→SN ′ then M−→∗
CN and N≈N ′ for some N.

3. If M = V then M ′ −→∗
S V ′ and V ≈ V ′ for some V ′.

4. If M ′ = V ′ then M −→∗
C V and V ≈ V ′ for some V.

5. If M = blame p then M ′ −→∗
S blame p.

6. If M ′ = blame p then M = blame p.

Proof We first prove parts 3 and 4 of this proposition, then prove parts 1 and 2 (which
depend on parts 3 and 4), and conclude with the proofs of parts 5 and 6.

Part 3. We show that the term M ′ on the right can become a value V ′ that corresponds to
V . We proceed by induction on V .
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Case V = k. We proceed by cases on k ≈ M ′, but we only have one case to consider.
Subcase

k ≈ k
Take V ′ = k.

Case V = λx:A. N . We proceed by induction on (λx:A. N) ≈ M ′. There are two rules
that apply when there is a lambda abstraction on the left-hand side.

Subcase N ≈ N ′
λx:A. N ≈ λx:A. N ′

We take V ′ = λx:A. N ′.

Subcase
λx:A. N ≈ M ′

1 |idA→B|CS = |idA|CS → |idB|CS

λx:A. N ≈ M ′
1〈|idA|CS → |idB|CS〉 (i)

By the inner induction hypothesis we have the following.

λx:A. N ������ M ′
1

��
V ′

1

��
��
��
��
��
��

Now suppose V ′
1 = λx:A. N ′. Then V ′

1〈|idA|CS→|idB|CS〉 is a value. We conclude by
Lemma 33.

λx:A. N ���������� M ′
1〈|idA|CS→|idB|CS〉

��
(λx:A. N ′)〈|idA|CS→|idB|CS〉

�� �� �� �� �� �� �� �� �� ��

On the other hand, suppose V ′
1 = U ′〈s′→t′〉. Then we have the following reduction

(using Lemma 32).

U ′〈s′→t′〉〈|idA|CS→|idB|CS〉 −→S U ′〈s′→t′〉
Again we conclude by Lemma 33.

λx:A. N ������ M ′
1〈|idA|CS→|idB|CS〉

��
U ′〈s′→t′〉

�	 �	 �	 �	 �	 �	 �	 �	 �	

Case V = V1〈G!〉. We proceed by induction on V1〈G!〉 ≈ M ′.

Subcase
V1〈G!〉 ≈ M ′

1

V1〈G!〉 ≈ M ′
1〈|id�|CS〉 (i)

The inner induction hypothesis gives us

V1〈G!〉 ������ M ′
1

��
V ′

1

��
��
��
��
��

Note that

V ′
1〈|id�|CS〉 −→S V ′

1
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Blame and coercion: Together again for the first time 43

So by Lemma 33 we conclude.

V1〈G!〉 ������ M ′
1〈|id�|CS〉

��
V ′

1


� 
� 
� 
� 
� 
� 
�

Subcase
V1 ≈ M ′

1〈s〉
V1〈G!〉 ≈ M ′

1〈s � |G!|CS〉 (ii)

The inner induction hypothesis gives us

V1
���� M ′

1〈s〉
��

V ′
1

�
�
�

Suppose V ′
1 = k. Then k〈|G!|CS〉 is a value. By Lemma 34 we have

k〈G!〉 ������ M ′
1〈s � |G!|CS〉

��
k〈|G!|CS〉


� 
� 
� 
� 
� 
�

Suppose V ′
1 = λx:A. N ′. Then (λx:A. N ′)〈|G!|CS〉 is a value. By Lemma 34 we have

V1〈G!〉 �������� M ′
1〈s � |G!|CS〉

��
(λx:A. N ′)〈|G!|CS〉

�� �� �� �� �� �� ��

Suppose V ′
1 = U ′〈g; H!〉. Then V ′

1 has type �, but that contradicts it having type G.
Suppose V ′

1 = U ′〈s′ → t′〉. We have

V1〈G!〉 ������ U ′〈s′ → t′〉〈|G!|CS〉

��
U ′〈(s′ → t′); G!〉

�	 �	 �	 �	 �	 �	 �	 �	

By Lemma 34 we conclude

V1〈G!〉 ������ M ′
1〈s � |G!|CS〉

��
U ′〈(s′ → t′); G!〉

�� �� �� �� �� �� ��

Subcase rule (iii)
For this rule to apply, M ′ must be an application. But V1〈G!〉 is a value, so Lemma 36
tells us that M ′ cannot be an application, yielding a contradiction.
Case V = V1〈c → d〉. We proceed by induction on V1〈c → d〉 ≈ M ′. There are three
cases to consider.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000101
Downloaded from https://www.cambridge.org/core. University of Edinburgh, on 26 Oct 2021 at 08:06:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000101
https://www.cambridge.org/core


44 J.G. Siek et al.

Subcase
V1〈c → d〉 ≈ M ′

1 � V1〈c→d〉 : A→B |idA→B|CS = t

V1〈c → d〉 ≈ M ′
1〈t〉 (i)

We have M ′
1 −→∗ V ′

1 and V1〈c → d〉 ≈ V ′
1 by the inner induction hypothesis. We

proceed by cases on V ′
1 with the knowledge that it is of function type.

Suppose V ′
1 = λx:A. M ′

2. Then V ′
1〈|idA|CS → |idB|CS〉 is a value and we apply

Lemma 33 to obtain the following reduction, relating the left to the bottom right by
rule (i).

V1〈c → d〉 ���� M ′
1|idA|CS→|idA|CS

��
V ′

1〈|idA|CS → |idB|CS〉

�� �� �� �� �� ��

Suppose V ′
1 = U〈s′→t′〉.

V1〈c → d〉 ���� U〈s′→t′〉〈|idA|CS→|idA|CS〉
��

U〈(s′→t′) � (|idA|CS→|idA|CS)〉
Lemma 32

V1〈c → d〉 ���������������� U〈s′→t′〉
Then we conclude this subcase by Lemma 33.

Subcase
V1 ≈ M ′

1〈s〉 |c → d|CS = t

V1〈c → d〉 ≈ M ′
1〈s � t〉 (ii)

We have M ′
1〈s〉 −→∗ V ′

1 and V1 ≈ V ′
1 by the inner induction hypothesis. We proceed by

case analysis on V ′
1 with the knowledge that it is of function type.

Suppose V ′
1 = λx:A. M ′

2. Then V ′
1〈|c|CS → |d|CS〉 is a value. So we have M ′

1〈s � t〉 −→∗
S

V ′
1〈|c|CS → |d|CS〉 by Lemma 34 and we relate the left to the right by rules (i) and (ii).

Suppose V ′
1 = U〈s′ → t′〉. Then

U〈s′ → t′〉〈|c|CS → |d|CS〉 −→S U〈(s′ → t′) � (|c|CS → |d|CS)〉
and by rule (ii) (recalling V1 ≈ V ′

1) we have

V1〈c → d〉 ≈ U〈(s′ → t′) � (|c|CS → |d|CS)〉
We conclude by Lemma 34.
Subcase rule (iii)
(Rule (iii) does not apply because the premise would relate a value to a function
application.)

Part 4. We need to prove that

if M ′ = V ′ then M −→∗
C V and V ≈ V ′ for some V.

We proceed by induction on V ′.

Case V ′ = k. By inversion on M ≈ k we have M = k, which is already a value, so we
take V = M .
Case V ′ = λx:A. N . By inversion on M ≈ λx:A. N we have M = λx:A. N ′ and take
V = M .
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Case V ′ = U ′〈s → t〉. Inversion of M ≈ U ′〈s → t〉 gives us two cases.

Subcase
M ≈ U ′ � M : A |idA|CS = s → t

M ≈ U ′〈s → t〉 (i)

By the induction hypothesis, M −→∗
C V where V ≈ U ′. Then the left and right sides are

related by rule (i).

Subcase.
M1 ≈ U ′〈s′〉 |c|CS = t′

M1〈c〉 ≈ U ′〈s′ � t′〉 (ii)

We have M = M1〈c〉 and (s′ � t′) = s → t. By the induction hypothesis, M1 −→∗
C V1

where V1 ≈ U ′〈s′〉. We proceed with a nested induction on c.
Suppose c = idA.

V1〈idA〉
��

���� U ′〈s′ � |idA|CS〉
Lemma 32

V1
������������ U ′〈s′〉

Suppose c = G!. Then t′ = |G!|CS = |idG|CS; G!, but that contradicts (s′ � t′) = s → t.
Suppose c = G?p. Then t′ = G?p; |idG|CS. With (s′ � t′) = s → t, we have s′ = (s →
t); G!. Then from V1 ≈ U ′〈(s → t); G!〉 we have V1 = V2〈G!〉 with V2 ≈ U ′〈s → t〉 for
some V2. So we obtain:

V1〈G?p〉 ������

��

U ′〈(s → t); G! � G?p; |idG|CS〉

Lemma 32V2〈G!〉〈G?p〉
��

V2
�������������������� U ′〈s → t〉

Next suppose c = c1 → c2, then V1〈c1 → c2〉 is already a value. From V1 ≈ U ′〈s′〉 and
|c|CS = t′ we have V1〈c〉 ≈ U ′〈s′ � t′〉 by rule (ii).
Suppose c = (c1; c2). We have t′ = |c1|CS � |c2|CS. We obtain the following with two
uses of the the inner induction hypothesis.

V1〈c1; c2〉 ����������

��

U ′〈s′ � t′〉

V1〈c1〉〈c2〉
IH
��

���� U ′〈s′ � |c1|CS � |c2|CS〉

V2〈c2〉
IH ��

IH ��������������

V3

IH

��
��

��
��

��
��

��
��

��
��

��

Suppose c = ⊥p
A⇒B. Then t′ = ⊥p

A⇒B and (s′ � t′) = ⊥p
−⇒B, but (s′ � t′) = s → t so we

have a contradiction.
Case V ′ = U〈g; G!〉. Considering M ≈ U〈g; G!〉, only rule (ii) applies.

Subcase
M1 ≈ U〈s〉 |c|CS = t

M1〈c〉 ≈ U〈s � t〉 (ii)

By the induction hypothesis, we have M1 −→∗
C V1 and V1 ≈ U〈s〉. We proceed by

nested induction on c.
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46 J.G. Siek et al.

Suppose c = id�.

V1〈id�〉 ����

��

U〈s � |id�|CS〉
Lemma 32

V1
������������ U〈s〉

Suppose c = H!. Then we have V1〈H!〉 ≈ U〈s � |H!|CS〉.
Suppose c = H?p. Then t = |H?p|CS = H?p; |idH |CS. But that contradicts (s � t) =
(g; G!).
Suppose c = c1 → c2. Then t = |c1 → c2|CS = |c1|CS → |c2|CS. But that contradicts (s �

t) = (g; G!).
Suppose c = (c1; c2). We use the same reasoning as for the corresponding case in V ′ =
U〈s → t〉, that is, we obtain the following with two uses of the the inner induction
hypothesis.

V1〈c1; c2〉 ����������

��

U ′〈s′ � t′〉

V1〈c1〉〈c2〉
IH
��

���� U ′〈s′ � |c1|CS � |c2|CS〉

V2〈c2〉
IH ��

IH ��������������

V3

IH

��
��

��
��

��
��

��
��

��
��

��

Suppose c = ⊥p
A⇒B. Then t′ = ⊥p

A⇒B and (s′ � t′) = ⊥p
−⇒B, but (s′ � t′) = (g; G!) so we

have a contradiction.

Part 1. We proceed by induction on M ≈ M ′, proving the statement:

If M −→C N then M ′ −→∗
S N ′ and N ≈ N ′ for some N ′.

Case
k ≈ k

The statement is vacuously true because k cannot reduce.

Case
�M ≈ �M ′

op( �M) ≈ op( �M ′)
op(�k)

��

����

����
����

op( �M ′)

��
op(�k)

��

(by Part 3)

δ(op, �k) ���� δ(op, �k)
Case x ≈ x
The statement is vacuously true because x cannot reduce.

Case M ≈ M ′
λx:A. M ≈ λx:A. M ′

The statement is vacouously true because lambda terms cannot reduce.
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Case
M1 ≈ M ′

1 M2 ≈ M ′
2

M1 M2 ≈ M ′
1 M ′

2
We proceed by case analysis on M = M1 M2 −→C N . So either M1 reduces, M2 reduces,
or they are both values.
Suppose M1 reduces, i.e., M1 −→C M3. From M1 M2 ≈ M ′, we have M ′ = M ′

1 M ′
2 and

M1 ≈ M ′
1 and M2 ≈ M ′

2. By the induction hypothesis, M ′
1 −→∗

S M ′
3 and M3 ≈ M ′

3. So
M ′

1 M ′
2 −→∗

S M ′
3 M ′

2 and M3 M2 ≈ M ′
3 M ′

2.
The case for M2 reducing is essentialy the same as for M1 reducing.
Suppose M1 and M2 are values. Let V2 = M2. We consider the cases on M1 with the
knowledge that M1 is of function type, so either

1. M1 = λx:A. M11: part of beta redex, or
2. M1 = V〈c → d〉: part of coercion redex.

We proceed with these two cases.

1. (λx:A. M11) V2 −→C M11[x := V ] We have

(λx:A. M11) V2
���� M ′

1 M ′
2

��
V ′

1 V ′
2

�� �� �� �� ��

(by Part 3)

then proceed by case analysis on (λx:A. M11) ≈ V ′
1.

Subcase
M11 ≈ M ′

11

λx:A. M11 ≈ λx:A. M ′
11

(λx:A. M11) V2

��

���� (λx:A. M ′
11) V ′

2

��
M11[x := V2] ���� M ′

11[x := V ′
2] (by Lemma 35)

Subcase
λx:A. M11 ≈ U ′

λx:A. M11 ≈ U ′〈|idA→B|CS〉 (i)

We have U ′ = λx:A. M ′
11 because λx:A. M11 ≈ U ′.

(λx:A. M11) V2
����

�� �� �� �� �� �� � �� �� �� �� �� �
 �� �� 	� 	� �� ��

��

(λx:A. M ′
11)〈|idA|CS → |idB|CS〉 V ′

2

��
((λx:A. M ′

11) V ′
2〈|idA|CS〉)〈|idB|CS〉

��
((λx:A. M ′

11) V ′′
2 )〈|idB|CS〉
��

(Part 3)

M11[x := V2] ���������� M ′
11[x := V ′′

2 ]〈|idB|CS〉 (Lemma 35)

2. (V〈c → d〉) W −→C (V W〈c〉)〈d〉
We proceed by induction on V〈c → d〉 ≈ M ′

1. There are three cases to consider.

Subcase
V〈c→d〉 ≈ M ′

11

V〈c → d〉 ≈ M ′
11〈|idA→B|CS〉 (i)
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48 J.G. Siek et al.

By induction we have M ′
11 −→∗ V ′

11 and V〈c → d〉 ≈ V ′
11. We proceed by inver-

sion on the later, noting that rule (iii) cannot apply because it would require V ′
11

to be an application.
Suppose V〈c → d〉 ≈ V ′

11 was by rule (i). So V ′
11 = U ′〈|idA→B|CS〉 and V〈c →

d〉 ≈ U ′. But that’s impossible because there are no rules that relate a cast on the
left with a lambda abstraction on the right.
Suppose V〈c → d〉 ≈ V ′

11 was by rule (ii). So we have V ′
11 = U ′〈(s1 → s2) � |c →

d|CS〉 and V ≈ U ′〈s1 → s2〉.

(V〈c → d〉) W

��

�������������� (M ′
11〈|idA→B|CS〉) M ′

2

∗
��

U ′〈(s1 → s2) � |c → d|CS〉〈|idA→B|CS〉 V ′
2

��
U ′〈(s1 → s2) � |c → d|CS � |idA→B|CS〉 V ′

2

Lemma 32

(V W〈c〉)〈d〉 ���������� (U ′〈(s1 → s2) � |c → d|CS〉) V ′
2

The bottom left is related to the bottom right by rule (iii).
Subcase rule (ii).

V ≈ M ′
11〈s〉

V〈c → d〉 ≈ M ′
11〈s � |c|CS → |d|CS〉

(V〈c → d〉) W

��

���� (M ′
11〈s � |c|CS → |d|CS〉) M ′

2

(V W〈c〉)〈d〉
 ! ! ! ! ! ! !

because

V ≈ M ′
11〈s〉

W ≈ M ′
2

W ≈ M ′
2〈id〉 (i)

W〈c〉 ≈ M ′
2〈|c|CS〉 (ii)

V W〈c〉 ≈ (M ′
11〈s〉) (M ′

2〈|c|CS〉)

(V W〈c〉)〈d〉 ≈ (M ′
11〈s � |c|CS → |d|CS〉) M ′

2

(iii)

Subcase rule (iii).
For this rule to apply, M ′

1 must be an application. But V〈c → d〉 is a value and
V〈c → d〉 ≈ M ′

1, so Lemma 36 tells us that M ′
1 cannot be an application, yielding

a contradiction.

Case
M1 ≈ M ′

1 � M1 : A |idA|CS = s

M1 ≈ M ′
1〈s〉 (i)

Assume M1 −→C N . By induction, we have M ′
1 −→∗

S N ′ and N ≈ N ′. Thus, we also
have M ′

1〈s〉 −→∗
S N ′〈s〉 and N ≈ N ′〈i〉 by rule (i).

M1

��

M ′
1〈s〉

∗
��

�� ��

N N ′〈s〉�� ��
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Case
M1 ≈ M ′

1〈s〉 |c|CS = t

M1〈c〉 ≈ M ′
1〈s � t〉 (ii)

We proceed by case analysis on M1〈c〉 −→C N .

1. Case V1〈idA〉 −→C V1

V1〈idA〉
��

���� M ′
1〈s � |idA|CS〉

V1

"#"#"#"#"#"#

2. Case V1〈G!〉〈G?p〉 −→C V1

V1〈G!〉〈G?p〉
��

���� M ′
1〈s′ � G! � G?p〉

V1
���������������� M ′

1〈s′〉
3. Case V1〈G!〉〈H?p〉 −→C blame p

V1〈G!〉〈H?p〉

��

���� M1〈s′ � G! � H?p; |idH |CS〉

M1〈⊥GpH〉
∗��

V1〈⊥GpH〉
��

(by Part 3)

blame p ���������������� blame p

4. Case V1〈c; d〉 −→C V1〈c〉〈d〉.

V1〈c; d〉
��

���� M ′
1〈s � t〉

V1〈c〉〈d〉
$%$%$%$%

We have V1 ≈ M ′
1〈s〉 and |c; d|CS = (|c|CS � |d|CS) = t. We conclude that

V1〈c〉〈d〉 ≈ M ′
1〈s � |c|CS � |d|CS〉 by the associativity of composition and two

uses of rule (ii).
5. Case V1〈⊥GpH〉 −→C blame p

We have V1 ≈ M ′
1〈s〉. By Part 3 we have M ′

1〈s〉 −→∗
S V ′

1. Also, V ′
1〈⊥GpH〉 −→S

blame p. Thus, M ′
1〈s � ⊥GpH〉 −→∗

S blame p by Lemma 34.

V1〈⊥GpH〉
��

���� M ′
1〈s � ⊥GpH〉

∗
��

blame p �������� blame p

Case
M1 ≈ M ′

1〈r〉 M2 ≈ M ′
2〈sn � · · · � s1〉 |di|CS = ti ∀i∈1...n

(M1 M2)〈d1〉 · · · 〈dn〉 ≈ M ′
1〈r � (s1→t1) � · · · � (sn → tn)〉 M ′

2
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By inversion on (M1 M2)〈d1〉 · · · 〈dn〉 −→C N , we have

M1 M2 −→C N1
...

(M1 M2)〈d1〉 · · · 〈dn〉 −→C N1〈d1〉 · · · 〈dn〉
The proof of this case then proceeds like the case of the congruence rule for application.

Part 2. We proceed by induction on M ≈ M ′, proving the statement:

If M ′ −→S N ′ then M −→∗
C N and N ≈ N ′ for some N.

Case
k ≈ k

The statement is vacuously true because k cannot reduce.

Case
�M ≈ �M ′

op( �M) ≈ op( �M ′)
op( �M)

��

������ op(�k)

��

(by Part 4) op(�k)

��

&'&'&'&'

δ(op, �k) ���� δ(op, �k)
Case x ≈ x
The statement is vacuously true because x cannot reduce.

Case M ≈ M ′
λx:A. M ≈ λx:A. M ′

The statement is vacouously true because lambda terms cannot reduce.

Case
M1 ≈ M ′

1 M2 ≈ M ′
2

M1 M2 ≈ M ′
1 M ′

2

We proceed by case analysis on M ′
1 M ′

2 −→S N ′.

1. Case (λx:A. M ′
11) V ′

2 −→S M ′
11[x := V ′

2]

M1 M2
��������

∗
��

(λx:A. M ′
11) V ′

2

��

(by Part 4) (λx:A. M11) V2

��

����������

M11[x := V2] ���� M ′
11[x := V ′

2] (by Lemma 35)

2. Case (U ′〈s → t〉) W ′ −→S (U ′ W ′〈s〉)〈t〉
M1 M2

������������������

∗
��

(U ′〈s → t〉) W ′

��

(by Part 4) (V1〈c1→d1〉 · · · 〈cn→dn〉) V2

()()()()()()()()

∗
��

(V1 (V2〈cn〉 · · · 〈c1〉))〈d1〉 · · · 〈dn〉 ���� (U ′ W ′〈s〉)〈t〉
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Case
M1 ≈ M ′

1 � M1 : A |idA|CS = s

M1 ≈ M ′
1〈s〉 (i)

We proceed by cases on M ′
1〈|idA|CS〉 −→S N ′.

1. U〈idι〉 −→S U

M1 U〈idι〉
��

�� ��

U

��
��
��
��

2. M ′
11〈s〉〈|idA|CS〉 −→S M ′

11〈s � |idA|CS〉.
We have M1 ≈ M ′

11〈s〉.

M1 M ′
11〈s〉〈|idA|CS〉

��

�� �� �� ��

M ′
11〈s � |idA|CS〉

M ′
11〈s〉

����
��

��
��
�
�
�
�
��
��
��

Lemma 32

3.
M ′

1 −→S N ′
1

M ′
1〈|idA|CS〉 −→S N ′

1〈|idA|CS〉
By induction, we have M1 −→∗

C N1 and N1 ≈ N ′
1. Thus, N1 ≈ N ′

1〈|idA|CS〉 by
rule (i).

M1

∗
��

M ′
1〈|idA|CS〉

��

�� ��

N1 N ′
1〈|idA|CS〉�� ��

4. (blame p)〈|idA|CS〉 −→S blame p
We have M1 ≈ blame p. So M1 is blame p surrounded by zero or more coercion
applications: M1 = blame p〈c1〉 · · · 〈cn〉.

blame p〈c1〉 · · · 〈cn〉
∗
��

blame p〈|idA|CS〉
��

�� ��

blame p blame p�� �� �� �� �� �� �� ��

Case
M1 ≈ M ′

1〈s〉 |c|CS = t

M1〈c〉 ≈ M ′
1〈s � t〉 (ii)

We proceed by case analysis on M ′
1〈s � t〉 −→S N ′.

1. Case U ′〈idι〉 −→S U ′.
There are two cases for s � t = idι:

a. s = t = idι

M1〈idι〉 ����

��

U ′〈idι〉

��

V1〈idι〉
��

$%$%$%$%

V1
���������� U ′
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52 J.G. Siek et al.

b. s = idι; ι! and t = ι?p; idι. In that case, the assumption is M1 ≈ U ′〈idι; ι!〉.
By inversion, M1 = M11〈ι!〉 and M11 ≈ U ′〈idι〉. By further inversion,
M11 ≈ U ′. Hence:

M11〈ι!〉〈ι?p〉 ����

∗
��

U ′〈idι〉

��

V1〈ι!〉〈ι?p〉
��

"#"#"#"#"#

V1
������������ U ′

2. Case U ′〈id�〉 −→S U ′

M1〈id�〉 ����

∗
��

U ′〈id�〉

��

V1〈id�〉
��

$%$%$%$%

V1
���������� U ′

3. Case M ′
2〈s′〉〈s � t〉 −→S M ′

2〈s′ � s � t〉
M1〈c〉 ���� M ′

2〈s′〉〈s � t〉
��

M1〈c〉 ���� M ′
2〈s′ � s � t〉

We have M1 ≈ M ′
2〈s′〉〈s〉 and therefore M1 ≈ M ′

2〈s′ � s〉. With |t|CS = c we
conclude M1〈c〉 ≈ M ′

2〈s′ � s � t〉 by rule (ii).
4. Case U ′〈⊥GpG〉 −→S blame p

There are three ways that we could have s � t = ⊥GpH .

a. s = (g; G!), t = (H?p; i), and G �= H

M1〈c〉
��

�������� U ′〈⊥GpH〉

��

V1〈G!〉〈H?p〉 · · ·
��

blame p �������� blame p

b. s = ⊥GpH

We have M1 ≈ U ′〈⊥GpH〉, so M1 = M11〈c1〉 · · · 〈cn〉 with cn = c, |c1|CS �

· · · � |cn|CS = ⊥GpH , and M11 ≈ U ′. By Part 4, M11 −→∗
C V11 and V11 ≈ U ′.

Then because |c1|CS � · · · � |cn|CS = ⊥GpH , we have V11〈c1〉 · · · 〈cn〉 −→∗
C

blame p.

M11〈c1〉 · · · 〈cn〉 ����

∗
��

U ′〈⊥GpH〉

��

V11〈c1〉 · · · 〈cn〉
∗
��

blame p �������� blame p
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c. t = ⊥GpH

M1〈⊥GpH〉 ����

∗��

U ′〈⊥GpH〉

��

V1〈⊥GpH〉

*+*+*+*+

��
blame p blame p�� �� ��

Case
M ≈ M ′

1〈r〉 M ′
2〈s〉 |d|CS = t

M〈d〉 ≈ M ′
1〈r � (s→t)〉 M ′

2
We proceed by induction on M ′

1〈r � (s→t)〉 M ′
2 −→S N ′.

1. U ′〈s′ → t′〉 W ′ −→E
S (U ′ W ′〈s′〉)〈t′〉

So M ′
1 = U ′, M ′

2 = W ′, r = r1 → r2, s′ = s � r1, t′ = r2 � t.
By the induction hypothesis

M ����

∗
��

U ′〈r1 → r2〉 W ′〈s〉

��
N ���� (U ′ W ′〈s〉〈r1〉)〈r2〉

so we also have

M〈d〉 −→∗
C N〈d〉

we need to show that

N〈d〉 ≈ (U ′ W ′〈s � r1〉)〈r2 � t〉
Using rule (ii), it suffices to show that

N ≈ (U ′ W ′〈s � r1〉)〈r2〉
Because N ≈ (U ′ W ′〈s〉〈r1〉)〈r2〉, there must be some subterm of N , call it L,
such that L ≈ W ′〈s〉〈r1〉, and therefore L ≈ W ′〈s � r1〉 by Lemma 37, from which
we conclude.

2.
M ′

1〈r � (s→t)〉 −→S N ′
1

M ′
1〈r � (s→t)〉 M ′

2 −→E
S N ′

1 M ′
2

(F =� M ′
2)

From M ′
1〈r � (s→t)〉 −→S N ′

1 we have N ′
1 = N ′

11〈r � (s→t)〉 and M ′
1 −→S N ′

11.
So N ′〈r〉 M ′

2〈s〉 −→S N ′
11〈r〉 M ′

2〈s〉. Then by the induction hypothesis, we have
M −→∗

C N and N ≈ N ′
11〈r〉 M ′

2〈s〉. We conclude by rule (iii). To summarize, we
have the following diagram.

M〈d〉 ������

∗
��

M ′
1〈r � (s→t)〉 M ′

2

��
N〈d〉 ���� N ′

11〈r � (s → t)〉 M ′
2

3.
M ′

2 −→S N ′
2

M ′
1〈r � (s→t)〉 M ′

2 −→E
S N ′

2 M ′
2

(F = M ′
1〈r � (s→t)〉�)
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54 J.G. Siek et al.

We have M ′
1〈r〉 M ′

2〈s〉 −→S M ′
1〈r〉 N ′

2〈s〉 and then by the induction hypothesis,
M −→∗

C N and N ≈ M ′
1〈r〉 N ′

2〈s〉 for some N . We conclude by rule (iii). To
summarize, we have the following diagram.

M〈d〉 ����

∗
��

M ′
1〈r � (s→t)〉 M ′

2

��
N〈d〉 ���� M ′

1〈r � (s → t)〉 N ′
2

4.
M ′

1〈r � (s→t)〉 (blame p) −→E
S blame p

(F = M ′
1〈r � (s→t)〉�)

We have M ′
1〈r〉 (blame p)〈s〉 −→S M ′

1〈r〉 (blame p). So by the induction
hypothesis, M −→∗

C N and N ≈ M ′
1〈r〉 (blame p). So N must be of the form

(L blame p)〈d1〉 · · · 〈dn〉. Therefore N −→∗
C blame p. To summarize, we have

the following diagram.

M〈d〉 ������������������

∗
��

M ′
1〈r � (s→t)〉 M ′

2

��

(L (blame p))〈d1〉 · · · 〈dn〉〈d〉
∗
��

blame p ���������������������� blame p

Part 5.
M = blame p. We need to show that M ′ −→∗

S blame p. We proceed by cases on
blame p ≈ M ′.

Case
blame p ≈ blame p

We immediately conclude that blame p −→∗
C blame p.

Case
blame p ≈ M ′

1 |idA|CS = s

blame p ≈ M ′
1〈s〉

By the induction hypothesis, we have M ′
1 −→∗

S blame p. So we conclude via the
following diagram.

blame p �������� M ′
1〈s〉

∗
��

(blame p)〈s〉

��
blame p �������� blame p

Part 6.
M ′ = blame p. We need to show that M = blame p. We proceed by cases on M ′ ≈

blame p, but there is just one case.
Case

blame p ≈ blame p
�
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D Translation is bisimilar

Here we sketch the proof of Proposition 20.

Proposition 20. M ≈ |M |CS.

Proof (Sketch). By induction on M . The only non-trivial case is for M〈c〉 where we
need to apply rules (i) and (ii) to establish ≈. In all other cases, the congruence rules
are sufficient. �

E Proof of Proposition 10

Lemma 38. For all c : A =⇒ B the sequence Z = |c|CB is admissible as it has the form
Z = [A1

p1=⇒ A2, · · ·, Am
pm=⇒ Am+1] where Ai ∼ Ai+1 and A = A1 and B = Am+1.

Proof This result follows by straightforward induction on c.
Case idA : A =⇒ A. Immediate because |idA|CB = [ ].
Case G! : G =⇒ �. We have |G!|CB = [G

•=⇒ �], which is admissible.
Case G?p : �

p=⇒ G. We have |G?p|CB = [�
p=⇒ G], which is admissible.

Case c → d : A → B =⇒ A′ → B′ where c : A′ =⇒ A and d : B =⇒ B′. We have |c →
d|CB = (|c|CB → B) ++ (A′ → |d|CB). As |c|CB is admissible from A′ to A by induction, we
find that (|c|CB → B) is admissible from A → B to A′ → B. As |d|CB is admissible from B
to B′ by induction, we find that (A′ → |d|CB) is admissible from A′ → B to A′ → B′. Hence,
their concatenation is admissible from A → B to A′ → B′ as required.

Case c ; d : A =⇒ C where c : A =⇒ B and d : B =⇒ C. Immediate by the induction
hypotheses.

Case ⊥GpH : A =⇒ B. Immediate because the sequence is admissible from A to B by
construction. �

Proof of Proposition 10 We prove a slightly more general statement where Item 2 is an
equivalence.

1. � �C M ′ : A implies � �B |M ′|CB : A.
2. M ′ safeC q if and only if |M ′|CB safeB q.

To start off, we define a syntactic operation M ÷ Z to apply a admissible list of casts Z to
a λB expression M .

M ÷ [ ] = M M ÷ ([A
p=⇒ B] ++ Z) = (M : A

p=⇒ B) ÷ Z

It is easy to see that M ÷ (Z1 ++ Z2) = (M ÷ Z1) ÷ Z2.
Left to right, item 1. The interesting case is proving � �C M ′〈c〉 : B implies � �B

|M ′〈c〉|CB : B.
Inversion of coercion application yields � �C M ′ : A and c : A =⇒ B. Induction yields

� �B |M ′|CB : A and it remains to show that |c|CB = Z such that applying the casts in Z to
|M ′|CB has type B.

By Lemma 38 we know that |c|CB = Z is admissible from A to B.
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56 J.G. Siek et al.

By easy induction on Z = |c|CB we obtain that for all � �B M : A and c : A =⇒ B we
have � �B (M ÷ |c|CB) : B.

Iff, item 2. Again the interesting case is proving M ′〈c〉 safeC q if and only if
|M ′〈c〉|CB safeB q, which boils down to proving 〈c〉 safeC q if and only if |〈c〉|CB safeB q
by induction on c. For a sequence of casts Z, we say that Z safeB q if A

p=⇒ B safeB q, for
all A

p=⇒ B ∈ Z.
Case idA : A =⇒ A. Immediate.
Case G! : G =⇒ �, which is safe for q. We have |G!|CB = [G

•=⇒ �] and G
•=⇒ �

safeB q.
Case G?p : �

p=⇒ G. We have |G?p|CB = [�
p=⇒ G]. It holds that G?p safeC q iff p �= q.

As � <:− G, we have that �
p=⇒ G safeB q iff p �= q.

Case c → d : A → B =⇒ A′ → B′. We have |c → d|CB = (|c|CB → B) ++ (A′ → |d|CB).
It holds that c → d safeC q iff c safeC q and d safeC q. By induction, we have |c|CB safeB

q and |d|CB safeB q. This is equivalent to (|c|CB → B) safeB q and (A′ → |d|CB) safeB q,
where the first conjunct is equivalent to (|c|CB → B) safeB q = q.

Case c ; d : A =⇒ C. Immediate by the induction hypotheses.
Case ⊥GpH : A =⇒ B. We have ⊥GpH safeC q iff p �= q. For |⊥GpH

A=⇒B|CB = [A
•=⇒

G, G
•=⇒ �, �

p=⇒ H , H
•=⇒ �, �

•=⇒ B], we find that � <:− H hence �
p=⇒ H safeB q iff

p �= q and the other casts are trivially safe for q.
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