453 research outputs found

    SVM Classifier – a comprehensive java interface for support vector machine classification of microarray data

    Get PDF
    MOTIVATION: Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. RESULTS: The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1–BRCA2 samples with RBF kernel of SVM. CONCLUSION: We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at

    FiGS: a filter-based gene selection workbench for microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The selection of genes that discriminate disease classes from microarray data is widely used for the identification of diagnostic biomarkers. Although various gene selection methods are currently available and some of them have shown excellent performance, no single method can retain the best performance for all types of microarray datasets. It is desirable to use a comparative approach to find the best gene selection result after rigorous test of different methodological strategies for a given microarray dataset.</p> <p>Results</p> <p>FiGS is a web-based workbench that automatically compares various gene selection procedures and provides the optimal gene selection result for an input microarray dataset. FiGS builds up diverse gene selection procedures by aligning different feature selection techniques and classifiers. In addition to the highly reputed techniques, FiGS diversifies the gene selection procedures by incorporating gene clustering options in the feature selection step and different data pre-processing options in classifier training step. All candidate gene selection procedures are evaluated by the .632+ bootstrap errors and listed with their classification accuracies and selected gene sets. FiGS runs on parallelized computing nodes that capacitate heavy computations. FiGS is freely accessible at <url>http://gexp.kaist.ac.kr/figs</url>.</p> <p>Conclusion</p> <p>FiGS is an web-based application that automates an extensive search for the optimized gene selection analysis for a microarray dataset in a parallel computing environment. FiGS will provide both an efficient and comprehensive means of acquiring optimal gene sets that discriminate disease states from microarray datasets.</p

    Lung cancer gene expression database analysis incorporating prior knowledge with support vector machine-based classification method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A reliable and precise classification is essential for successful diagnosis and treatment of cancer. Gene expression microarrays have provided the high-throughput platform to discover genomic biomarkers for cancer diagnosis and prognosis. Rational use of the available bioinformation can not only effectively remove or suppress noise in gene chips, but also avoid one-sided results of separate experiment. However, only some studies have been aware of the importance of prior information in cancer classification.</p> <p>Methods</p> <p>Together with the application of support vector machine as the discriminant approach, we proposed one modified method that incorporated prior knowledge into cancer classification based on gene expression data to improve accuracy. A public well-known dataset, Malignant pleural mesothelioma and lung adenocarcinoma gene expression database, was used in this study. Prior knowledge is viewed here as a means of directing the classifier using known lung adenocarcinoma related genes. The procedures were performed by software R 2.80.</p> <p>Results</p> <p>The modified method performed better after incorporating prior knowledge. Accuracy of the modified method improved from 98.86% to 100% in training set and from 98.51% to 99.06% in test set. The standard deviations of the modified method decreased from 0.26% to 0 in training set and from 3.04% to 2.10% in test set.</p> <p>Conclusion</p> <p>The method that incorporates prior knowledge into discriminant analysis could effectively improve the capacity and reduce the impact of noise. This idea may have good future not only in practice but also in methodology.</p

    Classification of microarray gene expression cancer data by using artificial intelligence methods

    Get PDF
    Günümüzde bilgisayar teknolojilerinin gelişmesi ile birçok alanda yapılan çalışmaları etkilemiştir. Moleküler biyoloji ve bilgisayar teknolojilerinde meydana gelen gelişmeler biyoinformatik adlı bilimi ortaya çıkarmıştır. Biyoinformatik alanında meydana gelen hızlı gelişmeler, bu alanda çözülmeyi bekleyen birçok probleme çözüm olma yolunda büyük katkılar sağlamıştır. DNA mikroarray gen ekspresyonlarının sınıflandırılması da bu problemlerden birisidir. DNA mikroarray çalışmaları, biyoinformatik alanında kullanılan bir teknolojidir. DNA mikroarray veri analizi, kanser gibi genlerle alakalı hastalıkların teşhisinde çok etkin bir rol oynamaktadır. Hastalık türüne bağlı gen ifadeleri belirlenerek, herhangi bir bireyin hastalıklı gene sahip olup olmadığı büyük bir başarı oranı ile tespit edilebilir. Bireyin sağlıklı olup olmadığının tespiti için, mikroarray gen ekspresyonları üzerinde yüksek performanslı sınıflandırma tekniklerinin kullanılması büyük öneme sahiptir. DNA mikroarray’lerini sınıflandırmak için birçok yöntem bulunmaktadır. Destek Vektör Makinaları, Naive Bayes, k-En yakın Komşu, Karar Ağaçları gibi birçok istatistiksel yöntemler yaygın olarak kullanlmaktadır. Fakat bu yöntemler tek başına kullanıldığında, mikroarray verilerini sınıflandırmada her zaman yüksek başarı oranları vermemektedir. Bu yüzden mikroarray verilerini sınıflandırmada yüksek başarı oranları elde etmek için yapay zekâ tabanlı yöntemlerin de kullanılması yapılan çalışmalarda görülmektedir. Bu çalışmada, bu istatistiksel yöntemlere ek olarak yapay zekâ tabanlı ANFIS gibi bir yöntemi kullanarak daha yüksek başarı oranları elde etmek amaçlanmıştır. İstatistiksel sınıflandırma yöntemleri olarak K-En Yakın Komşuluk, Naive Bayes ve Destek Vektör Makineleri kullanılmıştır. Burada Göğüs ve Merkezi Sinir Sistemi kanseri olmak üzere iki farklı kanser veri seti üzerinde çalışmalar yapılmıştır. Sonuçlardan elde edilen bilgilere göre, genel olarak yapay zekâ tabanlı ANFIS tekniğinin, istatistiksel yöntemlere göre daha başarılı olduğu tespit edilmiştir

    Development of computations in bioscience and bioinformatics and its application: review of the Symposium of Computations in Bioinformatics and Bioscience (SCBB06)

    Get PDF
    The first symposium of computations in bioinformatics and bioscience (SCBB06) was held in Hangzhou, China on June 21–22, 2006. Twenty-six peer-reviewed papers were selected for publication in this special issue of BMC Bioinformatics. These papers cover a broad range of topics including bioinformatics theories, algorithms, applications and tool development. The main technical topics contain gene expression analysis, sequence analysis, genome analysis, phylogenetic analysis, gene function prediction, molecular interaction and system biology, genetics and population study, immune strategy, protein structure prediction and proteomics

    HDG-select: A novel GUI based application for gene selection and classification in high dimensional datasets

    Get PDF
    The selection and classification of genes is essential for the identification of related genes to a specific disease. Developing a user-friendly application with combined statistical rigor and machine learning functionality to help the biomedical researchers and end users is of great importance. In this work, a novel stand-alone application, which is based on graphical user interface (GUI), is developed to perform the full functionality of gene selection and classification in high dimensional datasets. The so-called HDG-select application is validated on eleven high dimensional datasets of the format CSV and GEO soft. The proposed tool uses the efficient algorithm of combined filter-GBPSO-SVM and it was made freely available to users. It was found that the proposed HDG-select outperformed other tools reported in literature and presented a competitive performance, accessibility, and functionality

    Doctor of Philosophy

    Get PDF
    dissertationGene expression data repositories provide large and ever increasing data for secondary use by translational informatics methods. For example, Gene Expression Omnibus (GEO) houses over 37,000 experiments with the goal of supporting further research. To use these published results in a larger meta-analysis, consolidation of the data are needed; however, the data are largely unstructured, thus hindering data integration efforts. Here, I propose the use of a novel pipeline, Ontology Based Data Integration (OBDI), which uses an ontological approach to combine the samples across multiple GEO experiments. The ODBI pipeline uses machine learning algorithms that permit researchers to consolidate and analyze data across GEO experiments. Here, I demonstrate how using an ontological approach to integrate samples across experiments can be used to explore the immune response at a molecular level. As part of this process, a Web Ontology Language (OWL) was developed for each data platform used. OWL serves as a core component in successfully processing different sample types. Immunological experiments from GEO were consolidated to evaluate this methodology. The experiments included samples analyzed on expression arrays, BeadChips, and sequencing technologies. The integration of a complex biological system and the incorporation of different biological data types will validate the potential of OBDI. iv The nature of biological data is highly dimensional. OBDI incorporates tools and techniques that can handle the analysis of various biological data. The machine learning analysis performed within the OBDI pipeline successfully evaluated the newly annotated experiments and provides insights that can be further explored. The OBDI pipeline can help researchers annotate experiments using ontologies and analyze the annotated experiments. To successfully build the pipeline, ontologies served as the backbone of integrating samples from GEO Series records into machine learning experiments using ML-Flex. By using the OBDI pipeline, researchers can access the uncurated experiments from GEO (GEO Data Series) and annotate the data using the terms in the ontologies. This mechanism allows for the organization of data sets in relationship to new experiments independent of GEO's GDS curation process. The OBDI system allows ontologies to grow organically around a cluster of experiments. These experiments are then further analyzed in ML-Flex using machine learning algorithms. The curated experiments are analyzed in silico and the computational analyses are supported by the OBDI ontological system

    Fast protein superfamily classification using principal component null space analysis.

    Get PDF
    The protein family classification problem, which consists of determining the family memberships of given unknown protein sequences, is very important for a biologist for many practical reasons, such as drug discovery, prediction of molecular functions and medical diagnosis. Neural networks and Bayesian methods have performed well on the protein classification problem, achieving accuracy ranging from 90% to 98% while running relatively slowly in the learning stage. In this thesis, we present a principal component null space analysis (PCNSA) linear classifier to the problem and report excellent results compared to those of neural networks and support vector machines. The two main parameters of PCNSA are linked to the high dimensionality of the dataset used, and were optimized in an exhaustive manner to maximize accuracy. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .F74. Source: Masters Abstracts International, Volume: 44-03, page: 1400. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Automated Discrimination of Pathological Regions in Tissue Images: Unsupervised Clustering vs Supervised SVM Classification

    Get PDF
    Recognizing and isolating cancerous cells from non pathological tissue areas (e.g. connective stroma) is crucial for fast and objective immunohistochemical analysis of tissue images. This operation allows the further application of fully-automated techniques for quantitative evaluation of protein activity, since it avoids the necessity of a preventive manual selection of the representative pathological areas in the image, as well as of taking pictures only in the pure-cancerous portions of the tissue. In this paper we present a fully-automated method based on unsupervised clustering that performs tissue segmentations highly comparable with those provided by a skilled operator, achieving on average an accuracy of 90%. Experimental results on a heterogeneous dataset of immunohistochemical lung cancer tissue images demonstrate that our proposed unsupervised approach overcomes the accuracy of a theoretically superior supervised method such as Support Vector Machine (SVM) by 8%
    corecore