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ABSTRACT 

Gene expression data repositories provide large and ever increasing data for 

secondary use by translational informatics methods.  For example, Gene Expression 

Omnibus (GEO) houses over 37,000 experiments with the goal of supporting further 

research.  To use these published results in a larger meta-analysis, consolidation of the 

data are needed; however, the data are largely unstructured, thus hindering data 

integration efforts.  Here, I propose the use of a novel pipeline, Ontology Based Data 

Integration (OBDI), which uses an ontological approach to combine the samples across 

multiple GEO experiments. The ODBI pipeline uses machine learning algorithms that 

permit researchers to consolidate and analyze data across GEO experiments.   

Here, I demonstrate how using an ontological approach to integrate samples 

across experiments can be used to explore the immune response at a molecular level.  

As part of this process, a Web Ontology Language (OWL) was developed for each data 

platform used.  OWL serves as a core component in successfully processing different 

sample types.  Immunological experiments from GEO were consolidated to evaluate 

this methodology.  The experiments included samples analyzed on expression arrays, 

BeadChips, and sequencing technologies.  The integration of a complex biological 

system and the incorporation of different biological data types will validate the potential 

of OBDI.  
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The nature of biological data is highly dimensional.  OBDI incorporates tools 

and techniques that can handle the analysis of various biological data.  The machine 

learning analysis performed within the OBDI pipeline successfully evaluated the newly 

annotated experiments and provides insights that can be further explored.   

 The OBDI pipeline can help researchers annotate experiments using ontologies 

and analyze the annotated experiments.  To successfully build the pipeline, ontologies 

served as the backbone of integrating samples from GEO Series records into machine 

learning experiments using ML-Flex. By using the OBDI pipeline, researchers can 

access the uncurated experiments from GEO (GEO Data Series) and annotate the data 

using the terms in the ontologies.  This mechanism allows for the organization of data 

sets in relationship to new experiments independent of GEO’s GDS curation process.  

The OBDI system allows ontologies to grow organically around a cluster of 

experiments.  These experiments are then further analyzed in ML-Flex using machine 

learning algorithms. The curated experiments are analyzed in silico and the 

computational analyses are supported by the OBDI ontological system. 
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1. INTRODUCTION 

Performing differential gene expression analysis provides insight into the 

biomolecular mechanisms that play a role in cellular process that are explored in both 

laboratory and clinical research. Gene expression data from microarray experiments and 

sequencing experiments are available in public repositories. These repositories allow 

researchers to upload their experiments, making the raw data, the metadata and the 

associated journal publications available to the scientific community. There is 

tremendous potential for novel discoveries that can be found by integrating studies from 

public repositories and performing meta-analysis on the integrated data sets. Current 

efforts are focused on increasing the data stored to public repositories; however, the 

efforts to make data usable across experiments is lacking. With an exponential increase 

of data being generated, there is a need to improve the ability to combine data in order 

to identify novel findings that were not possible with smaller data sets or were not the 

focus of original experiment.  

 When integrating data, it is important to take into account the biological and/or 

the clinical complexity associated to specific samples being combined. Although 

repositories store the biomedical metadata associated to each study, there is a lack of 

standardized vocabulary that is used to describe metadata; hence, parsing the metadata 

are not sufficient for tackling biological complexity during data integration. The 

variability in metadata occurs since repository submissions come from different 
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laboratories and users are not provided with a standardized way to enter biological 

information [1-3]. An ontological approach is one way of handling metadata 

inconsistencies. Ontologies provide a standardized way of storing the metadata, and 

making the information machine readable [4].  

Once the data are integrated, the meta-analysis of the newly integrated set can 

lead to new insights.  Performing differential expression analysis on integrated data sets 

is an effective way of exploring how a set of genes, are regulated differently across a 

given set of variables. Genes can be further clustered based on their biological 

responses they share to treatments, diseases, and different time points. The set of 

variable can be classified using a data driven approach. Machine learning algorithm can 

be used to classify variables or cluster genes into different groups. Machine learning 

focuses on prediction that is based on previous knowledge or on new information 

learned from a subset of the curated data set. Analyzing integrated data sets can lead to 

a more comprehensive model because integration across studies increases the number of 

variables that are being assessed.     

In this study, a novel pipeline is proposed that integrates samples from a public 

repository while maintaining consistent representations to generate novel data sets. The 

analysis of these data sets can lead to generating hypotheses with targeted features that 

can be tested in a laboratory setting. The ontological representations in this pipeline can 

be re-used, as more samples are available in the public repositories. The consistent 

representation that can be achieved through ontologies allows for modeling high 

dimensional data to find new insights that generate experiments using a hypothesis 

driven approach. The analytical protocol is stored in ontological representations, 
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allowing users to modify the protocol within the ontologies. This unique feature in the 

proposed pipeline can help reproduce the results in this study. To validate the pipeline, 

gene expression data from laboratory experiments are integrated and used to generate 

hypotheses that explore a specific biomolecular mechanism. The results generated from 

the newly integrated data sets can be translated to the bench in order to help further 

biomedical research. The pipeline provides an example of how research in translational 

science can transform an in silico model to aid hypothesis generation that may be 

applied at the bench.   

 



 

 
 

2. DISSERTATION AIMS AND OBJECTIVES 

This dissertation proposes and implements an ontology dependent pipeline to 

extend the field of data integration. This pipeline, called Ontology Based Data Integration 

(OBDI), helps solve major hurdles that occur when integrating data across Gene 

Expression Omnibus (GEO) [5-7] experiments. The information in experiments is 

incorporated into ontologies; therefore, aiding the evolving nature of new submission and 

meta-analysis being performed. New integrated data sets created through OBDI can 

provide new information and potential targets. The novel OBDI pipeline will provide a 

means to increase sample size and offers mechanisms to build a more comprehensive 

view of knowledge domains.  OBDI extends biological information using ontologies to 

facilitate the exploration of complex biological spaces by annotating novel experiments.  

Using ontologies, the OBDI pipeline is built such that: [1] data are downloaded 

from GEO, [2] reorganized into biologically relevant machine learning experiments that 

[3] exist outside the GEO framework, and [4] finally, these novel experiments are 

analyzed using machine learning algorithms.  By integrating the ontologies, workflow, 

and the results, a comprehensive model is generated. With the methodologies 

incorporated in OBDI a comprehensive model can be replicated, examined, modified, and 

extended with additional knowledge. 

The primary motivation of this project was to generate a comprehensive model 

representation that is supported by the OBDI pipeline.  The methodologies in OBDI are 

replicable and adding more GEO Series records can increase sample size in the annotated 
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experiments.  Other laboratories can replicate the described methodology in order to 

successfully integrate GEO experiments, and thoroughly evaluate a biological space from 

a data driven approach.  The OBDI pipeline will allow informaticians to curate new 

experiments from preexisting GEO experiments thus adding new knowledge that may 

help move research at the bench. 

 
Aims 

The components of the OBDI pipeline combine high throughput samples that 

have never been integrated in previous experiments, allowing users to generate a 

hypothesis driven immunological model. This integrated model will support the bench 

researcher in exploring how the immune system interacts at a molecular level. Based on 

the motivation and the objectives described in the previous sections, the following 

research aims were evaluated. 

• Aim 1: Develop an Ontology Based Data Integration (OBDI) pipeline using the 

Java programming language for preprocessing, integrating and performing meta- 

analysis on high throughput data from GEO 

• Aim 2: Evaluate four annotated experiments, generated by integrating GEO 

experiments, and perform machine learning analysis as implemented in ML-Flex 

• Aim 3: Extend machine learning results in AIM 2 by generating a well-integrated 

model for bench researchers by incorporating prior knowledge that is gathered 

using literature review and from databases that contain biological pathway 

information  
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• Aim 4: Generalize predictive model from Experiment 1 to other GEO 

experiments that explore the immune system response in order to create a more 

comprehensive model that could be applied in a laboratory setting 

The purpose of Aim 1 is to build a pipeline that allows the integration of GEO 

experiments and various tools to analyze high throughput data. Ontologies are developed 

to unify the vocabulary used to describe GEO experiments.  Each annotated experiment is 

associated with the respective ontology and the various elements of the experiment are 

stored as OWL entities. Multiple data sets are related to generate curated experiments 

constrained by specified prior knowledge encoded within the ontology.  Integrating 

samples using ontologies allows researchers to not only replicate this approach, but also 

extend upon existing ontologies. More biological and clinical information from GEO can 

be added to the ontologies; therefore reducing the barrier to curate newer data sets. 

Reasoning over the ontologies promotes the integration of samples and analysis of 

curated experiments. Using ontologies within the OBDI pipeline allows maintaining 

consistency as more samples are added to GEO and other public repositories. By building 

the ODBI pipeline, I will [1] resolve some complexities around data integration and [2] 

successfully build in silico experiments, outside the GEO framework, that can be 

analyzed using machine learning algorithms. 

In Aim 2 machine learning algorithms are implemented to perform analysis on 

four experiments. For the analysis component, ML-Flex is incorporated within OBDI. To 

perform in silico analysis, ML-Flex is provided with a configuration file that contains 

analytical protocols. Information needed to perform in silico analysis is stored as 

annotation properties within the ontology related to the specific experiments.  Using 
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ontological representations to store the analysis component allows users to reproduce the 

results, change parameters, and maintain consistency when adding more samples to the 

curated experiments.  

Aim 3 includes biological information retrieved from different sources that 

extends the in silico analysis by incorporating biological information. The genes in the 

predictive model are grouped together based on preexisting knowledge of biological 

pathways.  This knowledge is gathered by various sources; however, the pathway 

information primarily comes from the knowledge stored in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG).  A heatmap is used to display the comparative model and 

the expression of a subset of individual genes is depicted with boxplots.  Visualizing the 

results of the machine learning analysis provides insight into how certain immune system 

response genes are differentially expressed. By integrating samples that were previously 

analyzed in silos, I am able to generate results that were overlooked due to the lack of 

combing similar samples into a single experiment. Finding biological relevance in newly 

combined experiments depicts how OBDI can generate novel insights to be validated at 

the bench.  

In Aim 4, I show how OBDI is used to generate a comprehensive hypothesis that 

can be tested using data from other cell types and clinical experiments. Focusing the 

analysis on samples related to a specific research domain validates the OBDI pipeline. 

Multiple in silico experiments are analyzed to explore the biomolecular interactions in the 

field of cancer immunotherapy. To generate a comprehensive model, queries in GEO had 

to be setup in a logical manner. Incorporating more experiment from GEO that are 

relevant to the field of cancer immunotherapy was possible because OBDI supports 
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hypothesis generation through ontological representations and meta-analysis of integrated 

experiments. By incorporating more experiments from GEO, I am also able to design 

OBDI as a flexible framework that incorporates other data types, such as, sequencing 

data from NGS experiments. In AIM 4, OBDI is used to derive models from in silico 

analysis and also extends integration methods by incorporating other data types.   

 The goal of creating the OBDI pipeline is to study a complex environment such 

as immune system response in order to generate new knowledge and help bench 

researchers design targeted experiments. With the use of ontologies, samples across GEO 

experiments are annotated to generate new experiments that support research in 

translational science. Experiments analyzed in this dissertation using OBDI support 

research at the bench and may lead to new findings that can help improve immune system 

response in cancer immunotherapy.  

 

 



 

 
 

3. BACKGROUND 

Biomedical data can be successfully stored in online repositories; however, the 

backlog of integrated data sets impedes the research in translational science. The 

expanding sources of data offer new opportunities for discoveries and validation of 

previous research. Researchers can archive their experimental data samples by submitting 

them to a data repository.  In addition to the raw data, a researcher can include 

publications and metadata associated with the experiment.  Submitted data can be kept 

private until the experimental results are published in a manuscript, after which the data 

are made available for public use [5].  Making experimental data publically available via 

open repositories allows for furthering research by querying submissions and reusing the 

data.   

Some of the commonly used data repositories are: ArrayExpress, Sequence Read 

Archive (SRA), and Gene Expression Omnibus (GEO) [5-7].  ArrayExpress is a database 

housed at the European Bioinformatics Institute (EBI) that stores gene expression 

microarray data and high throughput sequencing data [6].  SRA is managed by the 

National Center for Biotechnology Information (NCBI) and primarily stores raw Next 

Generation Sequencing (NGS) data [5].  GEO is housed at NCBI and contains a vast 

range of data, including, gene expression, SNP arrays, protein arrays and NGS [7]. The 

curators of these three databases collaborate with each other to share data structures and 

protocols for archiving raw expression and sequencing data.  
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This study focuses on retrieving and organizing high-throughput data across 

different experiments, such that, it allows new development in the field of basic science 

and medicine. Samples integrated in this study are constrained to a single repository, 

GEO.  

 
Gene Expression Omnibus (GEO) 

 
GEO is a large database that stores over 1 million samples from high throughput 

experiments. When submitting data to GEO, researchers can use several formats to enter 

information related to their experiment.  The submission format options include, 

spreadsheets, Simple Omnibus Format in Text (SOFT) and Extensible Markup Language 

(XML).  Spreadsheets work best when researchers want to quickly describe their study.  

The spreadsheet contains the metadata and the spreadsheet is bundled with the raw data 

files for submission.  This submission method is recommended for most users.  If the data 

are already in the GEO database, the SOFT or XML format is recommended for 

submission.  SOFT is a line based plain text format that can be readily generated from 

common database applications, such as MySQL [7, 8]. 

 In GEO the submitted data are stored as a GEO Series (GSE) record and are 

assigned a GSE accession number. GEO Series records may contain samples that are 

analyzed on different platforms and vary in their experimental properties. The staff at 

GEO reassembles the original submissions into curated GEO DataSets that are given a 

GEO DataSet (GDS) accession number. Samples identified by a single GDS number are 

analyzed on the same platform, and share similar array elements. This makes 

organization, normalization, and processing equivalent across samples within a DataSet. 

Within a DataSet or a Series record, the platform information and samples are assigned 
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different identifiers (GPLxxx and GSMxxx, respectively). Both GSE and GDS are 

searchable using the GEO interface; only the GDS can be used to perform GEO’s 

advanced data display and analysis tools.  Using these tools for the curated DataSets, a 

researcher can query gene names, visualize charts and perform clustering analysis. Meta-

analysis within GEO includes differential expression analysis performed using GEO2R. 

To identify genes that have a similar response pattern, hierarchical clustering can be used 

within GEO. Due to the large volume of data submissions and the inability to reassemble 

all Series records, there is a backlog of converting original submissions into curated 

DataSets. For instance, in Figure 3.1 only 64,919 samples are curated into GEO DataSets 

[7], leaving 992,559 uncombined samples that cannot be analyzed using GEO based tools 

(GEO2R, Hierarchical Clustering).  

Once the experiments are submitted, the MIAME (Minimum Information About a 

Microarray Experiment) Notation in Markup Language (MINiML) formatted files can be 

downloaded to access metadata.  MINiML is a data exchange format used in GEO that 

captures the minimum information required when describing a high throughput 

experiment, in addition to any other information supplied by the submitter [7]. To 

analyze high throughput data at a genomic level different manufactures, such as 

Affymetrix, and Illumina, have developed competing technologies [8].  In expression 

analysis, individual assays differ in the type of probes being used (cDNA, oligonucleotide 

size, probe I.D, etc.), the hybridization methodology (specific versus nonspecific) and the 

labeling method (direct fluorescence, indirect antibody, etc.).  The data generated from 

current microarray technologies are comparable, especially when mining for genes that 

are differentially expressed.  When comparing gene information between two platforms it 
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is important to be aware of the differences between probe annotations [9].  When 

integrating samples across experiments, it is important to keep a record of the platform 

assay used to analyze the samples [1].  The metadata in GEO has XML tags that contain 

platform information.  

Each sample in GEO has associated metadata that stores specific information 

about the samples, including how the samples were treated in the laboratory setting to 

generate biological outcomes. The associated metadata plays a crucial role in the 

integration of data across studies. GEO DataSets and Data Series contain metadata stored 

in parsable XML format. Specific XML tags that are relevant while integrating data 

across experiments are retrieved and stored in consistent representations.  However, the 

content within the XML tags are user defined and do not require users to follow 

consistent vocabulary. Drop down menus with standardize laboratory terms are not 

provided, causing increased variability in the content encompassed between XML tags.  

For example, the content of the XML tag, Title, requires users to define the treatment 

used on their samples in the laboratory experiment.  For Sample A, the user may define a 

control sample as “B305 immature DCs without IFN alpha treatment.”  For Sample B, 

the user may define a control sample as “iDC_6h.”  Simply parsing the content for the 

XML tag, Title, would not provide information that Sample A and Sample B are controls 

and that they contain a population of untreated cells.  Similar to the above examples, 

content between XML tags are stored using lengthy phrases that are not machine readable, 

making data integration an arduous task. 

Due to the inconsistencies described in this section, integrating across GEO 

experiments is challenging. Although the GEO staff combines Series Data into curated 
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DataSets, only 6% of the samples have been combined, creating a huge backlog. The 

methods in this dissertation show how combing previously overlooked samples can 

generate models that are supported by in silico analysis.  

 
Analysis Pipeline: Gene Pattern 

Gene Pattern is a web service tool that is hosted by the Broad Server. Gene 

Pattern can be used to analyze different types of genomic data including differential 

expression analysis on data generated from microarray experiments and NGS [10]. There 

are modules within Gene Pattern that interact with GEO in order to acquire samples from 

GDS and GSE experiments. The interaction between Gene Pattern and GEO makes data 

acquisition a simpler process. 

Once data are available in Gene Pattern, analysis pipeline can be created using the 

Pipeline Designer. The Gene Pattern Pipeline Designer allows users to create workflows 

that can start and finish analyses without breakpoints between each processing 

component. The different analysis modules in Gene Pattern can be connected to show the 

flow of data through the pipeline. The output from one module can serve as an input to 

the following module. The Pipeline Designer can be used to track analysis of each 

module and retrieve individual results when applicable [10]. The Pipeline Designer is 

useful when performing concurrent processing; however, to successfully integrate GEO 

experiments, samples must be annotated. A consistent way to annotate samples or 

represent metadata does not exist in Gene Pattern. The ontological representations used in 

this dissertation solve the missing annotation component in Gene Pattern. Through the 

use of ontologies, GEO samples can be annotated with the corresponding biological of 

clinical information.    
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Although Gene Pattern does not have a methodology to create standardized 

representations, there are several modules that aid in preprocessing and analyzing high 

throughput data. Samples from high throughput data can be classified or clustered using 

machine learning algorithms. Classification methods can be used to create a model, 

which can be used to predict and classify samples with unknown class variables. Similar 

to clustering methods in GEO, Gene Pattern has modules that perform clustering analysis 

by grouping genes that share similar expression patterns. The use of machine learning 

classification techniques can generate predictive models that may provide additional 

insight into experimentally generated data. Machine learning algorithms can be used to 

analyze various data sets and classify gene expression data based on different 

phenotypes.  

 
Data Analysis: Techniques and Tools 

 
Machine learning analysis to evaluate differential expression can be performed 

using tools such as Weka, R Statistical Package, and ML-Flex. Weka is software with an 

extensive collection of algorithms where analysis can be performed using classification 

and clustering methods. R is primarily a statistical tool that can be used to perform 

machine learning analysis and statistical tests. R can be used to create heatmaps, which is 

the standard way of visualizing results generated from differential expression analysis. 

ML-Flex is a tool that implements machine learning algorithms, independently and 

algorithms from other tools, such as, Weka, and R. 
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ML-Flex 
 

ML-Flex is an open source tool that is a wrapper to a suite of third party machine 

learning software, such as, Weka, Orange, R Statistical Software, and C5.0 Decision 

Trees [11-14]. Analysis in ML-Flex can be used to aid biomedical research by generating 

predictive models for biological and clinical data. Different classification techniques can 

be compared within a single ML-Flex experiment. ML-Flex allows computationally 

intensive algorithms to be performed in parallel. It is a command line tool written in the 

Java programming language that organizes machine learning analyses into an 

experiment-based framework.  In addition to analyzing data, ML-Flex keeps track of the 

various settings used in a particular experiment [15]. 

To run analysis in ML-Flex, an experiment file must be created.  This file must 

contain the following information in order to successfully analyze the data: location of 

input data, classification algorithm being used, and cross validation methods.  Other 

relevant fields can also be entered, such as feature selection variables, algorithms to 

perform feature selection, samples used for training and samples used in the validation set 

[15].  See Appendix A.  

 
Machine Learning Algorithms Used to Analyze High-Throughput Data 

 
A machine learning approach allows for the use of experiment driven analyses 

that may provide new insight on samples that may not be aggregated in GEO or other 

repositories.  Using machine learning methods can help separate genes that are 

differentially expressed.  Machine learning algorithms can help identify genes that have 

an increased level of gene expression, compared to genes that have a decreased level of 

expression [16].  
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Microarray results contain millions of probe IDs; therefore, the classification 

algorithms used need to be capable of handling a large number of features (i.e., probes).  

Classification algorithms help identify whether samples within a newly observed 

population belong to observations that have been previously made.  Three major 

classification algorithms used are discussed below.  

Naïve Bayes is a classification algorithm that relies on the assumption that each 

attribute is independent of the other and it helps estimate the conditional probabilities of 

predicted classes in a given experiment.  The performance goal of a Naïve Bayes 

classifier is to accurately predict the class of test instances in which the training instances 

contain class information.  One limitation of using Naïve Bayes is that it assumes 

independence between each attribute, which is not usually satisfied by the use of gene 

expression data.  Although the independence assumption is typically violated when 

analyzing gene expression data, the Naïve Bayes is robust if the rank order is maintained 

between classes [17]. Naïve Bayes is a simple classifier that has shown to perform well 

when combined with feature selection methods [17-19].      

The Decision Tree algorithm is a graph that uses a branching method to create a 

predictive model.  The goal of this learning method is to create a predictive model based 

on several input variables [12, 20].  Decision Tree chooses a feature that partitions the 

training data and then partitions the remaining data recursively until no further partitions 

can be made.  Finally, the tree is pruned to mitigate overfitting [12, 21]. 

Support Vector Machine (SVM) is a linear classification algorithm that separates 

two subsets of data with the largest margin by constructing a high dimensional boundary, 

commonly referred as a hyperplane. SVM can be used to handle high dimensional data, 
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such as genomic data used to analyze biological samples [19, 22]. SVM works well in 

dealing with large feature sets and is able to successfully identify outliers.  SVM is 

capable of using prior knowledge information in terms of training data to make 

distinctions between two different instances [23, 24].  

A significant problem with high throughput data are that the numbers of features 

(genes) greatly exceeds the number of instances (samples).  To manage this problem, 

feature selection can be used to reduce the number of features.  The ReliefF algorithm has 

been successfully used as a feature subset selection method [25, 26]. The algorithm does 

not assume independence between features and selects instances by giving more weight 

to features that can distinguish between classes.  This allows for the estimation of 

attributes according to how their values differentiate between samples that are close to 

each other [25].  The ReliefF algorithm is not limited to two class experiments and is able 

to handle noisy data.  The performing feature selection has successfully been applied to 

microarray data, leading to the selection of informative cancer genes [27].  

In a study performed by Wang et al. [27], feature selection methods were 

compared in three cancer related data sets: ALL/AML leukemia, MLL leukemia, and 

colon cancer.  Along with ReliefF three additional feature selection methods were used to 

compare the data sets: Information gain, Gain ratio, and X2 statistic.  Information gain is 

a type of feature selection that can be used to define a set of attributes that accurately 

build a predictive model.  Gain ratio is a modification of information gain and reduces its 

bias by taking the size of branches into account using a Decision Tree algorithm.  The X2 

statistic method evaluates each feature based on the X2 statistic of each feature compared 

to the classes.  The results from this study show that the ReliefF algorithm performed 
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better than other methods when analyzing the ALL/AML Leukemia data [27].  In another 

study performed by Kononenko et al. [28], ReliefF, along with other versions of Relief, 

were used to analyze artificial and primary tumor samples.  This study clearly showed 

that Relief-F was better at estimating attributes even if the data are noisy or incomplete 

[28].   

 
Ontologies 

GEO has a process of integrating samples into curated DataSets; however, there is 

a backlog of transforming original submissions into DataSets. Developing ontologies can 

aid the process of integrating related samples that have been overlooked by GEO. A 

consistent standard using ontologies can not only help data integration but also help 

perform analysis on the newly curated data sets. The ontologies developed for this 

dissertation were used to organize multiple GSE experiments from GEO into novel 

experiments that can be analyzed in silico. Using ontological components, various 

attributes of an experiment, such as, platform information, sample IDs, clinical or 

biological relevance are represented.  

Ontologies are a standardized way of representing knowledge in a particular 

domain. They are composed of consistent representations that can be used to structurally 

organize various entities extracted from the metadata.  Ontologies can be shared with 

other researchers to improve the consistency of knowledge in a given domain [4, 29].  

Storing metadata from GEO as an ontological entity makes the information associated 

with each GEO experiment computationally tractable.  Repositories, like GEO, provide 

metadata information regarding biological experiments; however, specialized knowledge 

is required to parse the metadata and organize the raw data in a logical manner.  To help 
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resolve the complexity of data integration, ontologies can be developed to store metadata 

information that describe experimental properties of GEO Series records as ontology 

components that are machine readable.  Once the knowledge domain is organized in 

relationship to classes and properties, logical reasoning can be performed upon the 

representations.  

Ontologies are used in the field of biomedical informatics to solve different 

problems such as: unifying vocabulary across knowledge domains, consolidating and 

supporting common data formats, creating inferences on asserted ontologies, and driving 

natural language processing [4, 29, 30].  Ontologies can be created as reference 

ontologies and as application ontologies.  Reference ontologies focus on theoretical 

knowledge that demonstrate a larger knowledge domain, whereas application ontologies 

focus on a smaller knowledge domain and solving a specific problem using the smaller 

knowledge representation.  Reference ontologies such as the Gene Ontology (GO) and 

the Foundational Model of Anatomy (FMA) have unified the language surrounding their 

respective domain [31, 32].  They have defined the terms and relationships between terms 

and provide a hierarchical basis for annotation of data.  Application ontologies can often 

use portions of a reference to represent a knowledge domain [30].  For instance, the 

Experimental Factor Ontology (EFO) supports the analysis and data handling of various 

experimental variables stored in EBI (European Bioinformatics Institute) databases [4]. 

In this dissertation, application ontologies are built to provide a structured way of relating 

complex concepts to create a cluster of experiments that are newly generated by using the 

ontologies.  
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Ontology Development 

Ontologies can be created using a Graphical User Interface (GUI), such as, 

Protégé, OBO (Open Biomedical Ontologies)-edit, etc. [33-35].  A GUI allows users to 

create ontologies using visual descriptors versus a text-based interface.  Protégé has an 

intuitive GUI that allows the users to edit and develop ontologies.  The ontology files can 

be imported and exported in various formats: Web Ontology Language (OWL), 

Extensible Markup Language (XML), and Resource Description Framework (RDF) [33].  

Another GUI tool commonly used to create ontologies is OBO-Edit.  The ontologies 

created using OBO-Edit contain the OBO format that is composed of stanzas describing 

the various entities of an ontology [35, 36].  The ontologies in this dissertation are created 

in OWL, which can easily be parsed using the Java programming language.   

To successfully build ontologies using GEO experiments, the metadata for each 

GEO experiment needs to be parsed, extracting the content from specific XML tags. 

Using the extracted content, a base ontology is created using four ontological 

components: classes, individuals, object properties, and annotation properties. Next, 

relationships between appropriate entities are constructed using is-a relationships and 

user defined object properties.  The use of annotation properties helps store the 

descriptive entry related to how each sample is treated in the laboratory.  Logical 

definitions may be added to the components in order to accurately define the knowledge 

space within the ontology. Building the base ontology helps reduce the amount of 

implicit information. A reasoner is a complex algorithm used in ontologies to generate 

logical consequences from a set of asserted terms in the base ontology [37].  HermiT is 

the most commonly used reasoner to check for inconsistencies within ontologies, to infer 



  

 

21 

relationships between OWL entities, and to classify various OWL classes [38].  The 

detail on how the ontologies are created is described in Chapter 5, (OBDI, A Novel 

Pipeline). 

 
Incorporating Prior Knowledge Information 

 
When analyzing biological data, applying prior knowledge information about a 

biological domain plays a crucial role in assessing a newly developed predictive model.  

To decipher complex biological systems, it is important to incorporate the diverse data 

types along with preexisting knowledge of well-understood biological systems [39].  

Selecting features based on domain specific, prior knowledge can have a positive effect 

on the performance of a model.  When analyzing high dimensional data, such as 

microarray, incorporating prior knowledge can positively affect the performance of the 

machine learning algorithms [40].  

Domain specific prior knowledge information helps evaluate the machine learning 

results in order to determine biological meaning [39].  It has already been established that 

feature selection is an important method to reduce the number of probe IDs to a 

manageable group.  In order to assess domain specific knowledge, further investigation 

must be performed on the features selected using machine learning analysis [40].  

Research performed at the bench often requires preexisting knowledge in order to make 

inferences about the current investigation [41].   

 
Clustering Genes via Known Biological Pathways 

 
Several approaches can be used that cluster genes into biological relevant sets 

such as KEGG and Protein ANalysis THrough Evolutionary Relationships (PANTHER), 



  

 

22 

and Database for Annotation, Visualization and Integrated Discovery (DAVID) [42]. The 

KEGG database contains extensive information about biological pathways [43].  The 

biological pathways in KEGG represent a network of knowledge that contains 

biomolecular interactions.  KEGG can be used to query specific genes, and explore how 

these genes play a role in specific biological pathways.  The KEGG database contains the 

most comprehensive information about biological pathways across different species [43].  

The PANTHER classification system also consists of a large number of pathways that 

can be used to cluster a set of features (genes or probe IDs).  The advantage of using 

PANTHER is that genes can be passed in a batch file and PANTHER associates the 

genes to corresponding pathways.  PANTHER also supports various ID formats, which 

allows the application of a wide range of high throughput analyses [42]. DAVID 

bioinformatics consists of a collection of analytical tools and biological knowledge base 

targeted at extracting information from large lists, including genes, proteins, and probe 

ids. DAVID also had visualization capabilities that help visualize genes on KEGG 

pathway maps [44].  

Biological relevance can be examined using other methodologies that do not 

involve the interaction of biomolecular components.  GoMiner is a tool that uses GO to 

identify meaningful biological information in genomic data.  GoMiner supports 

classification of genes according to biological process, cellular components, and 

molecular functions.  When assessing microarray data with GoMiner, the user can 

determine whether specific genes are upregulated or downregulated.  GoMiner also links 

specific genes to external biomolecular pathways [45].  
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Incorporation Prior Knowledge Using Ontologies 

With the use of ontologies, biological or clinical knowledge can be communicated 

among researchers working in the same domain knowledge.  Ontologies help share newly 

discovered knowledge within a research community[41].  Preexisting ontologies can be 

used to build larger ontologies, thereby extending the domain knowledge of the original 

ontology.  Furthermore, biological data stored in databases require the incorporation of 

additional domain specific knowledge that may be required for analysis and interpretation 

of the data [41].  In the field of biomedical research, the cell ontology is commonly used 

to incorporate a structured vocabulary of various cell types.  The plant, animal, fugal, and 

prokaryotic kingdoms are included in this ontology.  The cell ontology also includes cells 

in their native state and those that are experimentally modified.  Within the ontologies 

created in this study, the cell ontology is extended to support the different in vitro cell 

types that are retrieved from the metadata of specific GEO experiments.  The structured 

vocabulary of cell types, along with newly added information, helps facilitate the 

interoperability among databases that house high throughput data [46, 47]. 

The tools described above can be used to successfully incorporate domain specific 

prior knowledge; thus, checking for biological relevance in the machine learning results. 

By incorporating domain specific knowledge, meaningful models for bench researchers 

can be generated [42, 43, 45].  
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Figure 3.1: The bar graph depicts the number of samples that are being added 
quarterly from 2001 through 2013. The pie chart shows the number of samples 
that are curated into GEO DataSets. 



 

 
 

4. OVERVIEW OF CANCER IMMUNOTHERAPY 

Cancer immunotherapy is a treatment method that harnesses a patient’s immune 

system cells to treat malignancies.  The primary goal of cancer immunotherapy is to 

stimulate the patient’s immune system response in order to fight tumor cells. 

Immunotherapy vaccines can either work by boosting the general immune system 

response or by training the immune system to attack specific cancer cells [48].  The field 

of immunology contains several cell types and pathways that interact to generate an 

effective immune system response. To focus on a single problem in the field, an ontology 

driven approach is used to represent the domain knowledge and expand upon the cell 

ontology.  The ontology driven approach also allows for the communication of 

knowledge amongst researchers [41], allowing for the development of cancer 

immunotherapeutics.  Currently, the success of cancer immunotherapy is as an adjuvant 

to other cancer therapeutics.  Certain chemotherapeutics appear to enhance the effect of 

cancer vaccines, by increasing the T cell mediating response against tumors [49].  

Immunotherapy treatments are designed to empower the patient’s immune system, 

creating a prolonged antitumor response.  Although efficacy of immunotherapy vaccines 

has improved, there remain challenges in developing successful clinical assays to monitor 

immune responses in patients [50].  Cancer immunotherapy is an active field of research; 

hence, investigating unexplored GEO experiments can lead to potential discoveries.  
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Among the various immunotherapy methods, Dendritic Cell (DC) vaccines are a 

newly emerging form of cancer vaccines.  DC vaccines are meant to harness the body’s 

immune system response in order to fight tumor cells by initiating a CD8+ antitumor T 

cell response [51].  Due to the recent advancements in cancer therapeutics, DC based 

vaccines have shown promising results for initiating an antitumor immune response in 

melanoma, prostate cancer, glioblastoma, and non-Hodgkin lymphoma [51-53].  DCs are 

immune system cells that play a role in recognizing, processing and presenting antigens 

to T cells.  To create a DC-based cancer therapy, monocytes are harvested from a patient 

and stimulated in the laboratory to produce DCs that phagocytose the patient’s tumor in 

vitro.  The DCs are injected back into the patient where they generate a strong antitumor 

immune response [51]. 

Although DC vaccines have shown promising results when used with other cancer 

treatments, there are certain roadblocks that may cause DC vaccines to become 

ineffective.  DCs are the most potent Antigen Presenting Cells (APCs); however, to 

successfully initiate an antitumor T cell response DCs must be in their mature state. 

APCs efficiently process antigens using phagocytosis or endocytosis.  Once the antigen is 

processed, Major Histocompatibility Complex (MHC) class proteins and the processed 

antigen are displayed on the APC surface.  Additional cell surface molecules, called 

Cluster of Differentiation (CD), CD80, CD83, or CD86, are also present on the APC 

surface. The surface markers CD80 and CD86 are part of the B7 family of membrane 

surface markers.  The presentation of these surface markers allows APCs to effectively 

interact with T cells [54, 55]. Figure 4.1 is a simple adaptation of the interaction of DCs 

and T cells in a tumor microenvironment.  The figure shows how the surface markers on 
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a mature DC interact with T cell surface marker to initiate a T Cell response [55].  

In immunotherapy vaccines, mature DCs have been shown to prime and boost the 

antigen-specific T cell response in cancer patients.  There are several treatments that can 

be added to successfully mature DCs; however, research in this field has shown that 

maturation of DCs also induces regulatory T cells (Tregs).  When induced, Tregs have 

been shown to suppress the activities of effector T cells and DCs.  The ability to produce 

an effective antitumor response is the goal of cancer immunotherapy; unfortunately the 

induction of Tregs renders the treatment ineffective [53, 56, 57]. 

DC vaccines offer an effective and potentially nontoxic treatment option for 

cancer patients.  DC vaccines have proven to be effective in clinical trials and they have 

been successfully used with other cancer therapies [51, 53].  To explore the data in this 

growing field of research, an ontology driven approach can be used.  This approach will 

allow researchers to annotate data, expand on the existing domain knowledge, and share 

newly discovered knowledge with the community [29, 41]. 
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Figure 4.1: The immunotherapy vaccine is generated ex vivo, in the presence of 
tumor antigen loaded DCs and maturation stimuli (IFNα). The DCs uptake 
tumor antigens and present it to CD8+ T cells coupled with MHC I. This leads 
to the proliferation of CD8+ T cells and the initiation of a T cell mediated 
immune response. *Note: B7 represents CD80/CD86 complex 



 

 
 

 

5. OBDI, A NOVEL PIPELINE 

  The OBDI pipeline incorporates various processes that are required to prepare 

integrated experiments that can be analyzed in silico. OBDI pipeline integrates 

informatics tools that are used independently in the field (see Figure 5.1).  The ability to 

use these tools in a single pipeline allows users to integrate samples that were 

overlooked by previous curation efforts.  OBDI was developed to support the reuse of 

data by annotating both GSD and GSE experiments from GEO experiments such that 

novel combinations of experiments can be analyzed using the pipeline. In Figure 5.1 the 

five components of OBDI are depicted. A general overview of each component is 

provided.   

The OBDI pipeline is written in the Java programming language and it contains 

five components: 1) Build Ontology, 2) Acquire Data, 3) Organize Data, 4) Process 

Data, and 5) Analyze Data.  

To execute each experiment in OBDI a configuration file is required.  Since data 

integration and analysis is a multistep process, a configuration file allows users to track 

the input of different parameters that are required to successfully execute OBDI.  The 

configuration file can be created in any text editor.  The various parameters of the 

configuration file are provided in Appendix B. 

The first component, Build Ontology, requires users to build the base ontology.  

The basic framework is provided; however, using OBDI, users must add the specific 
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GEO samples that will be integrated to create novel experiments.  Once the base 

ontology is built, the next four components (i.e., Acquire Data, Organize Data, Process 

Data, and Analyze Data) are executed consecutively within OBDI.  In the second 

component, Acquire Data, data are directly acquired from GEO by providing the http or 

ftp link for the data associated to each GEO DataSet sample.  There is no limit on the 

number of GEO data that can be acquired.  The third component, Organize Data, 

requires the organization of a single experiment from annotated data downloaded during 

the Acquire Data step.  Currently, OBDI, supports Affymetrix Microarray Chips, 

Illumina Bead Chip, and RNA-Sequencing (RNA-Seq) experiments.  More platforms 

can reasonably be integrated according to the user’s requirements.  The obtained 

samples are organized by reasoning over the base ontology that was created by the 

Build Ontology step.  The reasoned ontology creates a directory structure and a 

mapping file for the annotated machine learning experiments.  The directory contains 

subfolders that are associated to the specific machine learning conditions.  The mapping 

file associates each sample to the specific machine learning condition, allowing the 

samples to be stored in their appropriate directory.  The Process Data step requires 

preprocessing of the annotated experiments. The appropriate modules, from Gene 

Pattern, required for each gene expression platform is implemented in the Process Data 

component of OBDI.  During the last step, Analyze Data, the normalized data are 

analyzed using ML-Flex.  The output from this analysis allows users to interpret the 

results for biomedical purposes. 

OBDI is a command line pipeline that must contain the following input 

parameters: Gene Pattern Username, Gene Pattern Password, OBDI High-Throughput 
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Module (Affymetrix, Illumina, RNA-Seq), and the Configuration File.  The Build 

Ontology component can be executed separately. This is recommended because 

individual GEO Series record samples and metadata information is automatically 

inserted into the base ontology.  In following sections, the OBDI pipeline components 

are described in more detail.  

 
Build Ontology 

 

In the Build Ontology step of the OBDI pipeline, the following steps are 

required: building base ontology components, creating an indexing file using the 

HermiT reasoner, and automatically creating a local directory structure that stores the 

annotated machine learning experiments.  

 
Building Base Components of the OWL File 

 

Ontologies in this dissertation are developed using the OWL syntax.  Different 

fields of each GEO experiment are described using the following owl components: 

classes, individuals, and properties.  Classes represent the main building blocks in an 

OWL ontology, and classes can include OWL individuals as instances [33].  There are 

three classes created to represent the components from a GEO experiment: condition, 

sample, and treatment.  A fourth class, cell, is imported from the cell ontology [46, 47].  

Treatment contains information about the different stimuli that were used to treat 

biological samples in a GEO experiment.  A treatment may have two of more 

subclasses that refer to control and experimental stimuli.  The imported cell class 

contains a subclass, cell in vitro, to store cells or other specimens that are manipulated 

in the laboratory for research purposes [46]. To link the relationships between OWL 
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components, object properties are used.  The object properties along with the domain 

and the range are defined in Table 5.1. 

 
Creating A Directory Structure in the User’s Local Drive 

 
Ontologies developed using the OWL syntax can be parsed by implementing 

libraries available in the Java programming language [58].  I used the OWL Application 

Programming Interface (API) to reason over the base ontology.  By using the HermiT, 

reasoner within the OBDI pipeline, classes that did not satisfy the user-defined 

condition in the base ontology are printed to the console.  This allows the user to check 

for any inconsistencies that may occur between the OWL entities.  Once the ontology is 

reasoned without inconsistencies, the user can access the inferred OWL entities [59].  

Using the reasoned OWL file, a directory structure mimicking the ML-

Experiment OWL class can be created.  Each directory structure contains the name of 

the machine learning experiment with subfolders that contain the conditions associated 

with that experiment.  To build the directory structure, a single OWL class is parsed.  

The OWL class ML-Experiment and all it subclasses are parsed out to create the 

directory structure.  The subclasses for each ML-Experiment are represented by the 

machine learning condition associated to the specific ML-Experiment.  An example of 

how each ontology is used to create the file structure in the user’s local system, 

depicting the integrated samples is discussed in each experiment chapter. 

 
Creating an Indexing File Using the Reasoned Ontology 

 
GEO provides metadata files that store experiment information in a structured 

XML format.  However, the standardized vocabulary to describe each field of an 
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experiment does not exist.  This makes it difficult to organize samples in a logical and 

meaningful manner.  Ontologies were developed to simplify the complexity of data 

integration across GEO experiments.  

The development of ontologies provides a means of integrating samples across 

GEO experiments. The key to organizing the samples is based on the ontology 

developed to annotate across related GEO experiments. Creating the directory structure 

and generating the master-indexing file occur in the same Java module.  An indexing 

file is created using the reasoned OWL file.  An indexing file allows users to place raw 

samples from GEO experiments into an appropriate ML-Experiment subfolder, which is 

represented by the appropriate machine learning condition (See Appendix C for details).   

 
Acquire Data 

The methods needed to acquire data from the GEO repository are similar.  Each 

GEO experiment entry contains a link to download the samples from that experiment.  

The user must specify this link in the OBDI configuration file.  The downloaded data 

are stored temporarily in the output directory.  As the samples are acquired from GEO, 

the metadata files are also downloaded and processed with the pipeline. 

 
Extracting Metadata 

The process to extract metadata information from GEO data is similar across 

experiments.  Each samples in GEO has an XML file [7] that contains the associated 

metadata. The metadata file for each experiment contains several fields that guide the 

development of various OWL entities.  The XML tag retrieval was written in native 

Java using XPath expressions [60].  XPath is a query language that allows for easy 
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navigation through the tree structure of XML documents.  By using path expressions, 

XPath can be used to select specific nodes from XML files.   

The following XML fields are retrieved for developing the ontology: Sample iid, 

the Title field for the sample, Platform iid, and the Title field for the particular platform. 

To maintain clarity in the document, the Title fields will be referred to as Sample Title 

and Platform Title.  The Sample iid is an alphanumeric identification assigned to each 

sample in an experiment.  A single sample in GEO is comprised expression values or 

sequencing data for a given set of genes.  Each Sample iid is associated to a Platform iid 

and a Sample Title.  The Platform iid is also an alphanumeric identification that is 

associated to the Platform Title, which provides information about the specific high 

throughput technique used to analyze the sample. The Sample Title provides 

information about how a particular sample was treated in the laboratory before 

performing the high throughput analysis.  The retrieval of these XML tags serves as a 

key component in building the base ontology. 

 
Organize Data 

The OBDI pipeline requires that data modules are developed for each type of 

data platform.  High throughput analysis techniques measure different biological 

samples at varied coverage [61].  Due to the variability in biological data formats, the 

preprocessing for each platform is handled independently in OBDI.  The samples used 

in this have been analyzed on three different platforms: microarray experiments 

performed using Affymetrix, differential expression analysis or RNA-Seq samples, and 

experiments performed using the Illumina Beadchip.  
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For the GEO experiments analyzed on Affymetrix the raw data are downloaded 

in tar format.  The first step to reveal the raw data is to extract the tar file.  Individual 

samples in the experiment are compressed; hence, each sample file is unzipped to reveal 

the raw data.  The intensity files in Affymetrix experiments are stored as cel files.  

Although the downstream processing of RNA-Seq data are different from expression 

array data, similar preprocessing method is used to extract raw data files. The RNA-Seq 

samples processed in OBDI were sequenced using the Illumina Genome Analyzer.  

Data for each sample are stored as Sequence Alignment Map (SAM) or a Binary 

Alignment Map (BAM) file.  A SAM file is tab-delimited data that contain aligned 

sequences. Each SAM file has 11 mandatory fields that appear in the same order. The 

BAM format is the machine readable version that stores the data in binary form [62].  

The Illumina Expression Beadchip data are acquired using Gene Pattern.  Once the data 

are available locally, each sample is separated as a column and stored as an individual 

file.  In all three modules, the samples are organized using the ontology and the 

metadata XML file.  

When generating the ontology, the platform information from each metadata file 

is extracted.  Within the XML metadata file, the platform information is associated to 

each sample in the GEO Series record.  In most cases, this information is specified in 

the Platform Title of the XML file.  This is information is added to the ontology as an 

annotation property to the respective sample.  This provides users the ability to 

distinguish between platforms within the base ontology.  Once a single platform is 

chosen, it is added to the name of the curated experiment.  Samples that are not part of 

the experiment may be deleted or left in the ontology for future use.  The organization 
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method is generalized due to the ontology; however, it is a key component because the 

preprocessing methods vary among platforms and data types.  

When combing data across GEO experiments there are several samples; 

therefore, the reasoner is used to add samples to the appropriate condition.  Using the 

asserted ontology and the inferred links that are established by the reasoner, researchers 

can create similar machine learning experiments using other GEO experiments.  When 

the reasoner is applied, the sample individuals denoted with a GSM ID are inferred as 

members of the appropriate condition.  Based on the equivalency classes defined in 

each ML-Experiment subclass, the GSM IDs are inferred into the specific machine 

learning experiment.  This allows users to build in silico experiments outside of GEO. 

 
Process Data 

Once the samples are organized into a structured directory system, the samples 

can be used to perform machine learning analysis.  However, before performing meta-

analysis, the integrated data sets must be normalized and processed into the appropriate 

file format.  The goal of this project is to not only integrate GEO experiments, but also 

integrate bioinformatics tools into a single pipeline. To perform some of the 

preprocessing analysis, Gene Pattern is used [10].  

For Affymetrix expression data, the Robust Multi-array Average (RMA) 

normalization technique is considered the standard [63].  When analyzing Illumina 

Expression Beadchip data from GEO, samples are already normalized using quantile 

normalization [63].  Gene Pattern generates a tab-delimited file for all three modules.  

This generalized file format can be converted to the Attribute-Relation File Format 

(ARFF) format.  
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In order to use the OBDI pipeline in conjunction with Gene Pattern, users need 

to create an account with a Gene Pattern username and password.  This is a simple two-

minute process that provides each user with an account that allows them to access Gene 

Pattern modules and all the analysis performed on the Gene Pattern server.  The 

username and password are passed into the OBDI configuration file so that users are not 

interrupted by prompts for this information (See Appendix D).  Gene Pattern modules 

are implemented into the pipeline and no external use of Gene Pattern is required during 

analysis.  

 
Analyze Data 

The final step involves analyzing the data from the annotated experiment using 

ML-Flex.  The commonly used fields in the ML-Flex experiment file are defined in all 

the ontologies as annotation properties.  Reasoning over the base ontology generates the 

experiment files required to execute the analysis in ML-Flex.  Until this point, the 

ontologies were accessed using the OWL API [59]; however, for this step XPath is used 

to write a generalized method that creates ML-Flex experiment files for each machine 

learning experiment.  The annotation properties are organized under a different XML 

namespace, which allows for easy parsing using XPath.  A user can define XML 

namespaces user to avoid conflict between elements, while mixing different documents.  

Although the annotation properties are defined in the same ontology, it is important to 

keep the ML-Flex experiment file fields in a different namespace because they address 

a different step in the pipeline.  The namespace assigned to the annotation properties is: 

http://bmi.utah.edu/ML-Flex. This allows for easy and error free extraction of the 

annotation properties and the values [15, 33].  
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When more than one algorithm is used, ML-Flex performs ensemble-learning 

[15, 64].  When only one algorithm is specified, the ensemble-learning method will not 

be performed [64].  This unique feature of ML-flex is used to compare across different 

algorithms.  There are seven ensemble-learning methods implemented in ML-Flex:   

1. Majority Vote tallies the number of times a data instance was predicted 

for a class and favors the class that receives the most counts.  If multiple 

classes receive the same vote, majority vote will choose a class at 

random.  

2. Weighted Vote emphasizes single predictions that are considered the 

most informative and places higher emphasis on those individual 

predictions that perform the best. 

3. Select Best makes a prediction based on the individual prediction that 

received the best Area Under the Curve (AUC) in nested cross validation.  

4. Max Probability examines the probability for each class across 

individual predictions, and the class with the highest individual 

probability is selected.  

5. Mean Probability examines the probabilities for each class across 

individual predictions and the class with the highest average probability 

is selected.  

6. Weighted Mean Probability is a combination of the Weighted Vote 

method and the Mean Probability method. Predictions are calculated 

similar to the Mean Probability method but weight is assigned to each 

individual probability.  
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7. Finally the Stacked method uses the probabilities from individual 

predictions and trains a second-level classification algorithm to make 

cumulative predictions based on those values. The Decision Trees 

algorithm is set as default for the second-level predictions.  

After the analysis is complete, an output folder for each experiment is created.   

This folder contains a summary of results, which can be viewed on a browser.  

These results can also be parsed in the output directory.  When comparing different 

classifiers in ML-Flex, results are aggregated into a single table, which makes it easy to 

compare the analysis among different algorithms.  Statistical measures, such as AUC, 

accuracy, error rate, and recall is also summarized in a table.  The advantage of using 

ML-Flex is that the postanalysis results are summarized allowing the user to evaluate 

the performance of the classification algorithms.  Users can further process the machine 

learning results for biological relevance outside the OBDI pipeline.  
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Table 5.1: There are six object properties that are used to relate OWL entities. It is 
optional to specify domain and range restrictions to an object property. Domain and 
range allow users to specific what entities should and should not be related. Defining a 
domain and a range can increase the reasoning power of ontologies. 

 

 

 

 

 

 

 

 

 

 

 

Object Property Domain Range 
containsCellType   

hasCondition sample condition 
hasSample ML-Experiment sample 

hasTreatment sample treatment 
inExperiment condition ML-Experiment 
isTreatmentOf   

Figure 5.1: This figure shows the generalized diagram of the OBDI pipeline. It 
contains five components that allow for successful execution of each experiment. 



 

 
 

 

6. PIPELINE USE-CASES: CANCER IMMUNOTHERAPY         

EXPERIMENTS 

 
Cell ontologies contain extensive information about cell types in their native state.  In 

the OBDI pipeline, the biological knowledge in the cell ontology is extended by adding 

information about cell lines cultured in a laboratory setting.  To successfully integrate 

data across GEO Series records, it was important to incorporate prior knowledge 

information in relation to various cell types.  Incorporating the cell ontology supports 

expanding the OBDI framework to other biomedical domains.  The information within 

the cell ontology can be extended to include in vitro cell types that are cultured in the lab 

for gene expression and RNA-Seq analysis.  

The OBDI pipeline helps generate hypotheses and also informs existing 

hypotheses by adding new information that is generated from analyzing newly curated 

experiments. To analyze cancer immunotherapy as a use-case with the OBDI pipeline, 

four use-case experiments are evaluated by performing meta-analysis. Each experiment is 

curated using ontological representations. Experiment 1 consists of information about 

DCs and treatments related to maturing DCs. This experiment served as a staring point to 

explore the cancer immunotherapy space.  Since the downstream activation of T cells and 

the induction of Tregs depend on the maturation of DCs, it was important to characterize 

these cells, in silico, successfully. Based on the results from Experiment 1, the 

subsequent experiments were curated to explore the tumor microenvironment in silico.  
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Experiment 2 explores how various T cell subtypes are classified. The ontological 

representation for Experiment 2 deals with treatments that lead to T cells differentiating 

into different subtypes. Biomolecular components relevant to T cells are explored to see 

if new information from analyzing Experiment 2 can help enhance the results in 

Experiment 1. To complete the model exploring a tumor microenvironment, it is 

important to analyze differentially expression in a specific cancer cell lines. In 

Experiment 3, samples were consolidated so that IFNα, a specific treatment used to 

mature DCs, is also used to evaluate gene expression in cancer cell lines. Finally, in 

Experiment 4 OBDI is extended to include other sequencing data making OBDI inclusive 

of other data types. By relating a specific treatment to DCs and to a clinical therapy 

setting makes OBDI an effective tool that promotes translational research.  



 

 
 

 

7. EXPERIMENT 1: CHARACTERIZATION OF DENDRITIC                         

CELL MATURATION 

 
To validate the OBDI pipeline, the field of cancer immunotherapy is explored 

because of the complexity of the data set and the potential benefits from combining data 

across experiments. Since there are several methodologies used to generate cancer 

immunotherapy treatments, I focus on acquiring data that allow the exploration of the 

immune system response in DC based vaccines. For an overview of topics related to 

cancer immunotherapy see the chapter titled, Overview of Cancer Immunotherapy. 

Mature DCs are the most effective Antigen Presenting Cells (APCs) for initiating 

a T cell mediated immune response.  Normally DC cells are in an immature state in the 

mucosal membranes or the epithelial layer of the skin, but when DCs capture pathogenic 

or inflammatory stimuli, they mature, migrate to the lymph nodes and present antigens to 

T cells [65].   There are surface markers that have upregulated expression on mature DCs.  

The GEO samples in Experiment 1 assessed maturity based on three Cluster of 

Differentiation (CD) markers: CD 80, CD 83, and CD 86, all of which are standard 

markers used in the field of immunology to assess mature DCs [65]. Figure 7.1 displays 

how a DC can be matured and how a mature DC interacts with CD8+ T cells to initiate a 

immune system response.  

The weakness of DC vaccines is an ineffective antitumor immune response 

resulting from the induction of Tregs (T regulatory cells) that result in a tolerance to the 
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tumor antigen being presented by the mature DCs.  This tolerance to tumor antigen is an 

unwanted effect that causes immunotherapy vaccines to become ineffective [51, 57]. 

Induced Tregs act as a barrier to prevent the effector functions required to kill 

tumor cells [56, 57].  There are several known mechanisms by which DCs induce Tregs.  

In recent studies, researchers have shown indoleamine 2,3-dioxygenase (INDO) is one 

mechanism responsible for induction of forkhead box P3 (FoxP3)+ Tregs. FoxP3+ 

induced Tregs are generated by DCs and this induction is caused by multiple factors 

including INDO, retinoic acid, Vitamin D, and Transforming Growth Factor-beta (TGF-

β).  

Experiment 1 uses the OBDI pipeline to combine data from four GEO 

experiments that are publically available.  The objective of Experiment 1 is to 

successfully characterize the maturation of DCs across the 11 treatments that occur across 

the four GEO studies.  Since the four GEO Series records used in Experiment 1 have not 

been curated by GEO, a secondary analysis of these GEO samples may provide important 

information of how mature DCs play a role in immune system response during cancer 

immunotherapy.  

 
Methods 

Build Ontology 

The ontology is built around experiments measuring the maturation of DCs.  

Peripheral Blood Mononuclear Cell PBMC is added as a subclass to cell in vitro.  Using 

the OWL classes, treatment and cell in vitro, machine learning conditions are established.  

These conditions play a role in classifying individual instances (samples) during the 

machine learning analysis.  Unless otherwise mentioned, OWL entities are associated 
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with is-a relationships.  The next several steps describe the detailed framework of how 

the base ontology for Experiment 1 is created: 

1. The cell ontology is imported into the OWL file created for Experiment 1.   

2. Within the cell ontology there are two OWL classes, cell and cellular_component. 

Under cell, two subclasses differentiate between native cell and cells generated in 

vitro [46, 66].  

3. The OWL class PBMC is added as a subclass to cell in vitro.  PMBCs are 

obtained from blood banks for experimental purposes.  They are inclusive of 

different types of immune system cells.  Since this experiment deals with DCs, 

MDDC (Monocyte Derived Dendritic Cells) is added as a subclass to PMBC.  

Various DC subtypes are added based on surface marker expression to 

differentiate between mature and immature subtypes [66].  The subtypes are 

disjointed from each other. 

4. The next three OWL classes are unique to the ontologies generated in OBDI: 

treatment, condition, and sample.  

5. The treatment contains a subtype DCTreatment.  The two types of DC treatments 

used in this experiment are control treatments and maturation treatments.  These 

subclasses have individuals associated to them as OWL members.  The members 

of the ControlTreatment subclass are: untreated and isotype.  The members of the 

MaturationTreatment subclass are: Poly (I: C), anti-FcgRIIb, CD40L, galectin, 

INF-alpha, inflammatory_cytokines, Lipopolysaccharide (LPS), LPS-gamma, and 

schuler. 
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6. The subclasses defined under the condition OWL class for Experiment 1 are 

mature and immature.  The two conditions are disjointed from each other.  The 

equivalency for each condition is established by adding the appropriate cell type 

and treatment subclasses that would come together to establish the machine 

learning condition OWL class.  Object properties, containsCellType and 

hasTreatment are used to associate the cell type and the treatment, respectively.     

7.  Sample is the final class that completes the base ontology.  The machine learning 

experiment, ML-Experiment, is a subclass of sample.  Experiment 1 annotated 

from this ontology is a subclass of ML-Experiment.  DCMaturationU133Plus 

contains equivalency classes associated by the mature or immature OWL entities.  

8. The final step is automated by implementing the OWL API [59] into the pipeline.  

In this step all samples from the GEO Series records are added as OWL 

individuals and associated to sample as members.  The Sample iids that are parsed 

out of the metadata XML file are added as an instance to the sample OWL class.  

There are different annotation fields that can be added to individuals.  The Sample 

Title parsed out of the metadata file is added as a RDF comment under 

Annotation Properties to each corresponding Sample iid individual.  The 

information from the Title Text field is summarized into a treatment term and 

stored as an individual.  Each sample member is associated to a particular cell 

type by the containsCellType object properties.  Finally, hasTreatment object 

properties are used to link the sample members to the treatment members. 

The above-defined logic forms the framework of the base ontologies used in the 

OBDI pipeline.  The asserted ontology for the DC maturation experiment is depicted in 
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Figure 7.2. 

 
Acquire Data 

I consolidate 50 samples from the following four GEO experiments: Fulcher et 

al., Dohnal et al., Ebstein et al., and Dhodapkar et al (see Figure 7.3).  Across the four 

experiments, the researchers generated Monocyte Derived Dendritic Cells (MDDCs) by 

using a cocktail of GM-CSF and IL4.  Fulcher et al. identify expression differences 

between Galectin-treated DCs and LPS-treated DCs compared with untreated DCs.  

Dohnal et al. examine differential gene expression of a specific set of genes when LPS in 

the presence of IFNγ triggers DC maturation.  Ebstein et al. focused their study on a set 

of 1200 ubiquitin-proteasome system (UPS)-related genes, and found differences in UPS 

gene regulation between DCs matured with infectious stimuli (LPS and Poly(I:C)) versus 

DCs matured under T cell stimulatory or inflammatory conditions. The analyses 

performed by Dhodapkar et al. compared anti-FcγRIIB, inflammatory cytokines, or IFNα 

versus untreated and Isotype control [52, 67-69]. 

 
Organize Data 

The four GEO Series records were analyzed on the Affymetrix U133 2.0 Plus 

microarray platform.  The data organization method using the ontology is already 

described in the “Organize Data” section of the general methods used in the OBDI 

pipeline.  Once the four GEO experiments were downloaded into a temporary location, 

the first step involved extracting the tar file.  The samples were compressed in gzip file 

format.  Unzipping these filed extracted the raw Affymetrix intensity files in cel format. 
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Figure 7.4 shows an example of how the DCMaturationU133Plus experiment looks when 

the directory structure is automatically created in the user’s local drive. 

The ontology serves severs as the core component to integrate samples across 

GEO experiments and to organize novel machine learning experiments on a user’s home 

directory.  This is a powerful and efficient way to integrating GEO Series records and to 

store the samples in an organized directory structure. 

Figure 7.5 shows the four GEO experiments from where the samples are acquired.  

The curated experiment using the OBDI pipeline contains 50 samples. The 50-sample 

data set was divided into a training (n=12) and a hold-out testing set (n=38). The training 

included all LPS [3] (n=6) samples and one to two randomly selected untreated [1] 

samples from each GEO experiment (n=6). Thus, the 12 sample training data contained a 

set of 6 control samples and 6 samples of DCs matured with LPS. The remaining 38 

samples are used as hold-out samples.  

 
Process Data 

For microarray data analyzed in Affymetrix, RMA method is used to normalize 

the data across the combined samples in each machine learning experiment [63]. RMA 

normalization contains the following steps: background adjustment, quintile adjustment, 

and finally a summarization step [63].  The raw Affymetrix cel files are zipped and 

normalized using the ExpressionFileCreator module on the Gene Pattern server [10].  

When normalizing Affymetrix data, a Gene Pattern clm annotation file is required.  This 

annotated file allows for accurate replacement of GSM IDs with the appropriate machine 

learning condition associated to that sample in the ontology.  The Gene pattern clm file 

can be created using the reasoned ontology.  It is similar to the master-indexing file; 
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however, the spacing is tab-delimited.  Each Gene Pattern clm file contains three 

columns: GSM ID, user defined machine learning condition, and the Title Text 

annotation for each GSM ID.  Using the clm file, the integrated GEO samples can be 

normalized [10, 63].  

The normalized data produced by the Gene Pattern module, 

ExpressionFileCreator, is stored as a tab-delimited file called a Gene Pattern gct file.  

This is the standard file format used by Gene Pattern where samples are represented in 

columns and the probe IDs are represented as rows.  The final file formatting happens 

outside the Gene Pattern server, where the tab-delimited file is converted to Attribute-

Relation File Format (ARFF) format for machine learning analysis.  

A generalized Java method is written within the pipeline to convert the 

normalized file generated by Gene Pattern into ARFF, which is used when running 

machine learning analysis in Weka [11].  Although Weka is not directly used in the 

pipeline, ML-Flex implements various algorithms that are used in Weka.  In an ARFF 

file, all the attributes (probe IDs or gene names) are listed in the beginning.  Next, the 

corresponding data value is listed for each attribute in a single line. At the end of each 

line, the machine learning class variable is listed [11]. 

 
Analyze Data 

Microarray data contain an extensive number of features; however, each feature is 

not relevant to the study of immunology.  The ReliefF ranking method is used on the 

training set (n=12) to select and rank features that successfully differentiate among 

classes [18, 27, 70]. The features are selected by adding top ranked features and stopping 

when the accuracy fell below 100%.   
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The Naïve Bayes classifier, a machine learning algorithm in ML-Flex, is used to 

characterize the maturation of DCs. The classifier is trained using the training set. The 

Naïve Bayes classifier uses all selected attributes and treats them as independent of one 

another. Leave One Out Cross Validation (LOOCV) is used on the training set to get an 

estimate of the generalized error.  

 
Results 

Generating Inferred Ontology 

Once the base entities are added to the OWL file, the HermiT 1.3.6 reasoner in 

Protégé is used.  The framework of the ontology provides a structured way of storing 

GEO related elements and the user-interpreted machine learning conditions.  Using the 

base ontology, I have successfully created a way to store metadata across GEO 

experiments in machine readable format. The next step is to add GEO samples to suitable 

conditions and, hereby, adding those samples to the ML-Experiment that contains the 

specific conditions as an equivalent class.  

To build new ML-Experiments users can manipulate equivalency classes 

associated by condition.  The OBDI methodology extends the experiment driven 

architecture of ML-Flex by enhancing it with ontologies that specifies the experiments 

with necessary and sufficient conditions.  Generating the inferred models from the base 

ontology plays a crucial role in annotating samples into novel experiments.  By relying 

upon the logical definitions and the reasoner, the user is able to integrate various GEO 

samples in order to create annotated experiments that can be analyzed in silico.  These 

newly annotated experiments are represented under the OWL class labeled ML-
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Experiment. Figure 7.4 shows how GEO samples, represented as OWL individuals, are 

correctly positioned as members to respective OWL condition classes.  

 

Characterizing DC Maturation Using Naïve Bayes in ML-Flex 

Based on the stopping criteria, the ReliefF ranking method applied to the training 

set resulted in 65 probes out of a total 54,675 probes IDs that were differentially 

expressed between immature and mature DCs. Based on the results from the training 

data, I checked if the 65-feature classifier generalized to the 38-sample hold out test set 

consisting of both mature and immature DCs.  The classifier generalized across the 38 

hold samples that included 11 treatments with a hold out test accuracy of 100%.  All hold 

out untreated and Isotype samples were classified as immature; all hold out IFNα, 

CD40L, anti-FcγRIIB, Schuler, Cytokines, Galectin, Poly(I:C), and LPS/IFNγ samples 

were classified as mature. Figure 7.7 depicts a screenshot of the ML-Flex analysis where 

the performance metrics of the analysis are summarized.  The performance metrics show 

that the number of correctly classified test instances was 38 out of a total of 38.  

 
Probe Level Analysis of DC Maturation Across the Four                                              

GEO Experiments 

The heatmap in Figure 7.8 displays the expression patterns of the 65 probe IDs.  

The probe IDs are clustered according to biological function and pathway information 

obtained from the KEGG database [43].  The probe IDs that did not associate with 

interferon regulatory and inducible genes, Nuclear Factor-Kappa Beta (NF-κB) pathway, 

chemokine signaling pathway, kynurenine pathway, or cell adhesion molecules and ECM 

Interaction were clustered as miscellaneous. 
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Table 7.1 shows the total mean for all probe IDs of specific clusters in each 

sample.  Using two-tailed independent-samples t-tests, I compared the mean expression 

patterns for probe IDs in the biological function and pathway clusters for the untreated 

condition against the means of probes in clusters for all other conditions. 

The table shows the treatments in order of increasing expression intensity from 

left to right.  Isotype serves as a negative control that does not mature DCs.  No 

significant difference was observed between the untreated samples and samples treated 

with Isotype.  It is important to note that IFNα successfully matures DCs as measured by 

CD86 mRNA expression; however, the treatment produces significant changes only in 

the interferon regulatory and miscellaneous clusters.  The biomarker genes INDO, 

CD274, and CD44 are of particular interest because of their influence on FOXP3+ Treg 

cells.  In Fig , I use a box plot to compare INDO expression across treatments. 

 
Discussion 

The 65-probe panel clearly demonstrates differences between untreated immature 

DC expression and LPS mature DC expression.  The Isotype, negative control, follows 

the untreated expression pattern, while the LPS/IFNγ treatment has gene expression 

patterns similar to LPS treatment.  The distinguishing features between classical LPS-

matured DCs and immature DCs were expected.  The ReliefF feature selection technique 

ranks the probes based on distinctive differences between untreated and LPS-treated DCs 

[25, 27] and the Naïve Bayesian classifier determines the threshold for the number of 

probes needed to correctly classify the 12 training samples.  

Surprisingly, while the remaining eight maturation treatments display patterns 

ranging between untreated and classical LPS-treated DCs, the Naïve Bayesian classifier, 
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using the 65 probes, correctly classified all mature hold-out samples as mature.  The 

classifier did not overfit the data as demonstrated by its ability to correctly predict the 

maturity or immaturity of nineteen hold-out samples in Dhodapkar while being trained on 

only one untreated sample from Dohdapkar (see Figure 7.5). 

When DCs are treated with IFNα as a maturation treatment, NFκB pathway genes 

are downregulated and interferon-related genes have high expression. NFκB2 and 

NFκBIA are downregulated in DCs treated with IFNα; therefore, these genes are 

differentially expressed across DC maturation treatments. The Naïve Bayesian classifier 

identifies IFNα as mature partially due to the high expression values of interferon 

regulatory and inducible genes (Table 7.2).  Interferon regulatory factor 7 and factor 9 

(IRF7, IRF9) mediate IFNα signaling, and the interferon-induced proteins IFI44L, IFI6, 

IFIT5, IFIT3, GBP1, and MX1 make up the maximum total mean expression value for 

the cluster (i.e., 5045) across all the treatments.  

Three biomarkers in my panel, INDO, CD274, and CD44, have been shown to 

increase the induction of Treg cells [71-77].  Recent studies have shown that INDO 

mediates the induction of Tregs through the alteration of TGF-β secretion via tryptophan 

metabolism and the kynurenine pathway [57].  INDO is an enzyme in the tryptophan 

pathway, as is KYNU, and both catalyze tryptophan metabolites.  These metabolites 

increase secretion of TGF-β from DCs, which induces FoxP3+ in CD4+ T cells and 

drives native T cells to become induced Tregs [57, 73].  The overexpression of INDO has 

been shown to induce Tregs rendering immunotherapy vaccines to become ineffective 

[71, 73]. INDO and KYNU are downregulated in DCs that are matured with IFNα, 

making the treatment a potential intervention to prevent the induction of Tregs while 
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maturing DCs.   

The gene CD274 is the ligand to the cell surface membrane protein PD-1, which 

is expressed on the surface of active T cells.  It has been shown to suppress host 

immunity in T-cell lymphoproliferative disorders [75] by promoting the induction of 

Tregs.  CD274 is downregulated in the IFNα treatment of DCs but upregulated in other 

treatments.  This is consistent with my hypothesis that IFNα-treated DCs should have a 

reduced level of molecules that play a role in DC based induction of Tregs.  Bollyky et al. 

show how hyaluronan cross-linked CD44 (downregulated in IFNα treatment) enhances 

production of TGF-β, which promotes FoxP3+ expression and induces Treg function.  

Hence, CD44 is similar to INDO in that it can influence Treg induction through TGF-β 

[57, 76]. 

My work provides a gene probe panel to further explore IFNα maturation of DCs in 

relationship to other maturation treatments. The low expression of INDO, CD274, and 

CD44 in IFNα-treated DCs suggests that IFNα may activate cytotoxic T cells and reduce 

the levels of Tregs.  I have identified potential biomarker targets and mechanisms to 

investigate why IFNα treatments show a measurable immune response in cancer patients. 

Using the 65-probe panel, I identified two mechanisms that suggest ways to increase the 

immune response for better outcomes: maturation of DCs and suppression of Treg 

induction.  The results from Experiment 1 generate a hypothesis of how IFNα can result 

in the downregulation of INDO, affecting the production of TGFβ downstream; therefore, 

inhibiting the induction of Tregs to the tumor microenvironment. This hypothesis can be 

translated and tested at the bench, with the hope of generating more effective DC-based 

vaccines.  
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Figure 7.1: In the presence of stimuli (example: IFNα) immature DCs are 
matured. Mature DCs represent certain surface markers that interact with T cell 
markers to generate a T cell based immune system response. In this example, 
the B7 surface marker represents the CD80/CD86 complex. Along with these 
costimulatory molecules, the MHC I is expressed on the DC surface.   
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Figure 7.2: In this image, the major components of the asserted ontology are depicted. 
Using equivalency rules associated to cell in vitro and treatment classes generates the 
condition classes. For this experiment, there are two conditions asserted on the 50 
integrated GEO samples. Each sample is asserted as a member under the sample class 
(Shown in Figure 7.4). The specific treatments are asserted under ControlTreatment and 
MaturationTreatment, respectively. Members are identified by purple triangles. The 
images can also be visualized using Onto Graph with the Protégé interface. The PG ETI 
Sova plug-in can be used to visualize the inferred ontology and the inferred individuals   
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Figure 7.3: This image displays the four GEO experiment that are integrated to generate a 
novel OBDI data set to explore DC maturation across 11 treatments. Treatments in green 
are control treatments and treatments in red are maturation treatments. The numbers in 
parenthesis represent the number of samples in each treatment for the specific study. 
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HOLD-­‐OUT	
  SAMPLES 

Figure 7.5: The samples highlighted in red are treatments used to mature DCs. The 
samples highlighted in green contain samples of immature DCs. The numbers of 
samples are listed in brackets. The highlighted blue box represents the combination 
of hold out samples used in the training set. 
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Figure 7.6: This figure is an illustration of the inferred model that is established after 
executing the reasoner. Samples denoted by an alphanumeric GSM ID are asserted as 
members to the Sample class but they are not associated to specific conditions or the 
experiment (DCMaturationU133Plus) until the reasoner is executed. The entities 
highlighted in yellow are reasoned as members to associated conditions. 
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Figure 7.7: Snapshot of summary results in ML-Flex for aggregated machine learning 
experiments that classify the maturation of DCs. 
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8. EXPERIMENT 2: CLASSIFICATION OF T CELL SUBTYPES 

In Experiment 2, GEO was queried for data that explored the differential 

expression of genes across T cell subtypes. Generating a single panel where T cell 

subtypes are compared may help understand how Tregs are differentially expressed from 

other T cell subtypes. Naturally occurring Tregs have immunosuppressive properties. 

Under normal conditions, they play a key role in maintaining tolerance to self-antigens.  

Tregs have very similar expression patterns to that of other T cell subtypes, i.e. CD4+ 

[56].  What differentiates them from other T cell markers is the expression of the 

transcription factor, FoxP3 [56, 78].  Treg activity is crucial in maintaining self-tolerance; 

however, this suppressive activity becomes counterproductive during an immune 

response against tumor cells [79].  

In cancer immunotherapy clinical trials, the use of DC based vaccines has shown 

promising results.  The effectiveness of immunotherapy lies in the fact that treatments are 

based on inducing, enhancing or suppressing an immune response.  The maturation of 

DCs is an important factor for generating immunotherapy vaccines; however, the 

suppressive activity of Tregs impedes the effector function of immune system cells.  It is 

imperative to maintain low levels of Tregs when using an immunotherapy vaccine in 

order to achieve an enhanced immune response.  A better understanding of how 

maturation treatments affects Tregs may help identifying potential biomarkers that can be 

targeted to suppress the induction of Tregs [56].  Therefore, it has become clear that to 
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generate an effective immunotherapy vaccine, induction of Tregs to the tumor site must 

be suppressed [51, 56].  

The various mechanisms by which mature DCs induce Tregs have been assessed 

in detail.  Since Tregs share similar expression patterns to that of other T cell subtypes, in 

Experiment 2, I decided to explore how Tregs were differential expressed in comparison 

to other T cell subtypes.  For Experiment 2, I focused on the classification of T cell 

subtypes.  To do this, more than one GEO experiment must be integrated, creating 

another example of how an ontological representation can be used to curate a DataSet 

outside GEO. Ninety-six samples from three GEO Series records were consolidated.  The 

experiments contain conventional T cells (Tconvs: Th0, Th1, and Th2), naïve T cells, 

natural Tregs (nTregs), iTregs, and effector T cells.  In the first study by Prots et al. [78], 

researchers assessed the development of Tregs and compared the gene expression of 

induced Tregs (iTregs) to that of naturally occurring Tregs (nTregs).  The second study 

by Geffers et al. [80] also assessed the gene expression of iTregs when treated with 

different activation agents. The third study by Lund et al. [81], evaluated the differential 

expression of Th1 and Th2 cells in the presence of TGFβ [78, 80, 81].  The purpose of 

combing these three GEO studies was to see if comparing T cell subtypes would provide 

a better understanding on how Tregs are differentially expressed in comparison to other T 

cells. 

 
Methods 

The data integration component to combine T Cell samples is similar to the 

methods in Experiment 1. The components that are unique to Experiment 2 are explained 

in the following sections.  
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Build Ontology 

An ontology is created for each experiment to reflect the different parameters 

used to annotate each experiment; however, the framework for the ontologies is 

generalized.  Each ontology uses the same set of OWL classes and OWL object 

properties.  The cell ontology is imported and each ontology is provided a framework 

that includes prior knowledge.  However, the prior knowledge information used to build 

the subclasses varies according to cell types, treatments, and machine learning conditions.  

1. Steps 1 thru 4, and 8 are same as Experiment 1.  Since the framework is 

generalized, specific methods to disjoin classes and adding samples as instances 

are not repeated.  

2. The OWL class PBMC is added as a subclass to cell in vitro.  Since this 

experiment deals with T cells, purifiedTCell is added as a subclass to PMBC.  The 

T cell subtypes are defined under the purifiedTCell class using surface markers.  

Under the CD4-positive_CD25-negative subclass, undifferentiated T cells, Th0, 

Th1, Th2 are defined.  Under the CD4-positive_CD25-postive, effector T cells, 

nTregs and iTregs are defined.  

3. The treatment contains a subtype TCellTreatment.  The T cell treatments used in 

Experiment 2 are control treatments and treatments used to generate specific T 

cell subtypes.  These subclasses have individuals associated to them as OWL 

members.  The Control subclass has one member, untreated.  The 

inducedTregTreatment also has one member, IL4.  The naturalTregTreatment has 

two members: antiCD3+antiCD28 and antiCD3+TR66+IL2.  The members of 

the TconvsTreatment subclass are the following treatments: antiCD3+antiCD28, 
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antiCD3+antiCD28+IL12, antiCD3+antiCD28+IL4, antiCD3+TR66+IL2 and 

TGFβ. 

4. The subclasses defined under the condition OWL class for Experiment 2 are 

conventionalTcells, naïveTcells, Teffs, and Tregs. 

5.  Sample is the final class that completes the base ontology.  Experiment 2 

annotated from this ontology is a subclass of ML-Experiment. 

TCellClassificationAffyU133A contains equivalency classes associated by all four 

conditions separated with or limitation.  

Similar to Experiment 1, the asserted ontology for the TCellClassificationAffyU133A 

experiment is displayed in Figure 8.1. 

 
Acquire Data 

The GEO Series records in Experiment 2 are analyzed in a different Affymetrix 

Platform; however, they are stored in the same format as Experiment 1.  The GEO Series 

records for Experiment 2 are: GSE24634, GSE13017, and GSE2770 (see Figure 8.2). 

 
Organize Data 

The steps to organize the data do not change for Experiment 2.  The only 

observed change was that GSE13017 and GSE2770 contained samples analyzed in 

different Affymetrix platforms.  Since this was handled when parsing the XML file and 

building the ontology, multiple platforms did not alter the methods. Figure 8.3 is an 

example of how the samples are organized in the user’s local directory.  
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Process Data 

  Same as Experiment 1. 

 
Analyze Data 

Three machine learning classification algorithms, SVM, Naïve Bayes and 

Decision Tree, were compared to see which is able to successfully differentiate between 

the four T cell subtypes. For each classification method I also perform LOOCV to 

estimate the generalization error.  

Using the Decision Tree algorithm, features are selected using forward selection.  

The ReliefF Ranking method is used to rank features that best aid in informing the 

classification accuracy.  Based on the classification algorithm that performs the best, the 

data that contain the reduced feature set are analyzed.  Once the optimum accuracy is 

reached, a cut off threshold is set. 

 
Results 

Inferred Ontology 

 Similar to Experiment 1, the inferred ontology is generated using the HermiT 

reasoner.  Due to scaling purposes, only a few samples for each condition are shown in 

Figure 8.4. 

 
Analyzing Complete Data Sets In Experiment 2  

Using ML-Flex 

In Experiment 2, three machine learning algorithms were compared in order to 

accurately classify the T cell subtypes.  The 96 samples contain four different types of T 

cells: naïve T cells, conventional T cells, Tregs and effector T cells.  There are 22,283 
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variables that denoted by a probe ID.  The conventional T cell subset includes Th0, Th1, 

and Th2 cells; there are 58 samples in that category.  There are 11 naïve T cell samples, 

16 samples of Tregs, and 11 samples of effector T cells.  The confusion matrix is used to 

check whether each machine learning class was correctly predicted.  When classes were 

not accurately predicted, the confusion matrix allows for the identification of which 

samples were misclassified.  In this ML-Experiment, predictions can be made using the 

different machine learning algorithms, and this is accomplished by using the ensemble-

learning methods implemented in ML-Flex [64].  

Next, the seven ensemble-learning methods were compared to see which 

ensemble method was able to accurately classify the T cell subtypes (described in the 

OBDI, A Novel Pipeline chapter).  In this experiment, three machine learning algorithms 

are specified in the settings; hence, ensemble learners will aggregate across the three 

learners.  The ensemble-learning method in ML-Flex combines individual predictions to 

generate a single prediction. For this analysis I first evaluate the results based on the 

individual algorithms.  A detailed summary of each analysis is stored in the result folder 

and can be accessed using a web browser.   

When all the features (22,283) are included in the analysis, SVM and Select Best 

Ensemble Learners perform better than the other machine learning algorithms 

implemented in the analysis. Figure 8.5 shows the classification accuracy of the machine 

learning algorithms used to successfully classify T cell subtypes across three GEO 

experiments. 
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Probe Level Analysis of T Cell Subtype Classification Across                                       

Three GEO Experiments 

The SVM algorithm was used to select a subset of features that are differentially 

expressed in five T cell subtypes: naïve T Cells, undifferentiated T Cells, Tconvs, Tregs 

and Teffs.  Feature selection is performed using SVM, Naïve Bayes and Decision Tree.  

The optimum classification accuracy is achieved by using fewer attributes when SVM is 

used to perform forward selection.  

The differential expression of the 123 features does not change vastly between 

naïve T cells and undifferentiated T cells. When comparing the differential expression of 

genes across two Treg cell subtypes, nTregs and iTregs, the expression of all genes are 

upregulated in iTregs; although the expression patterns between the two subtypes are 

very similar.  The Treg subtypes in this analysis included nTregs and iTregs, both of 

which express the CD25 cell surface marker.  However, iTregs are induced peripherally, 

outside the thymus, and unlike nTregs, do not necessarily require the costimulation of 

CD28 for their development and function [82].  Furthermore, the expression patterns 

between Teffs and iTregs largely overlap, thus it is difficult to determine differential 

expression between the two subtypes. Both Teffs and iTregs express CD25 markers on 

the surface; however, iTregs are treated with IL4 express the FOXP3 transcription factor. 

[78].   

There are several mechanisms that play a role in the induction of Tregs by DCs. 

These mechanisms have been previously discussed in Experiment 1. Vitamin D is one of 

the four mechanisms by which DCs induce Tregs. The active form of Vitamin D, 1a, 25-

dihydroxyvitamin D3 (VD3), inhibits the maturation and the differentiation of DCs by 
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downregulating key costimulatory molecules, such as CD80, CD 40, and CD86. The 

receptor of VD3, 1α, 25-dihydroxyvitamin D3 Receptor (VDR), is expressed on many 

immune system cells including T cells. After activation, VDR is present in CD8+ and 

CD4+ T cells [83, 84]. Given that the binding of VD3 and VDR may play a role in the 

induction of Tregs, I compared the expression of VDR across T cell subtypes in Figure 

8.6. Through the meta-analysis performed in Experiment 2, it is evident that the mean 

expression of VDR is higher in iTregs treated with IL4 and Teffs. The binding of VD3 to 

VDR promotes the expression of FoxP3 which is characteristic of iTregs [85].  

Figure 8.6 shows the expression of VDR across T cell subtypes. A two-tailed t-

test is performed to check for the significance of VDR expression between naïve T cells 

and CD 25+ T cells.  When compared to naïve T Cells, the expression of VDR in Teffs 

(p-value = 2.8e-6), and iTregs treated with IL4 (p-value = 9.0e-7) are significantly higher.  

However, when naïve T cells are compared to nTregs treated with IL2, the expression 

VDR does not change significantly (p-values = 0.41). 

 
Interaction of Kynurenine and AHR 

 The elevated expression of INDO in Experiment 1 led to exploring the kynurenine 

pathway and how it may affect other cells in the tumor microenvironment. In the 

kynurenine pathway, Tryptophan metabolized by INDO and kynurenine is the first 

metabolite of this pathway. A further literature review was done to check if kynurenine 

plays a role during antitumor immune system response. The metabolism of tryptophan 

and the generation of kynurenine in the environment is related to the proliferation of 

iTregs. This is mediated by the interaction of kynurenine and the Aryl Hydrocarbon 

Receptor (AHR). The binding of kynurenine to AHR in T cells leads to the differentiation 



  

 

73 

of CD25+ FoxP3+ Tregs [86, 87]. However, the lack of AHR in T cells prevents the 

interaction of AHR and kynurenine; therefore, preventing the generation of Tregs. In the 

presence of TGF-β, FoxP3+ Tregs are induced to suppress function of CD4+ and CD8+ 

effector T cells [86]. Although AHR is not part of the feature list, in Figure 8.7 I explore 

the expression of AHR across the T cell subtypes in the integrated OBDI data set.   

 
Discussion 

To continue exploring the hypothesis that surrounds elements in a tumor 

microenvironment, I combined samples that allowed the exploration of how T cell 

subtypes may be differential expressed. The results from Experiment 1 directed a 

hypothesis where DCs have an increased expression of INDO, thus metabolizing 

tryptophan and inducing Tregs by promoting the production of TGF-β. The results in 

Experiment 1 also lead to other markers that play a role in DC based induction of Tregs, 

such as, CD274.  

The samples that were combined in Experiment 2 were based on a targeted 

hypothesis generated from the results in Experiment 1. When the combined samples from 

Experiments 2 were analyzed in silico, VDR was present as part of the 123 feature 

selected list.  The results show that there are high levels of VDR expressed in Tregs 

treated with IL4 as compared to naïve T cells and Tconvs.  

I also explore the expression of AHR across T cell subtypes. AHR plays a role in 

inducing Tregs by interacting with a specific ligand, kynurenine, the first metabolites 

generated by the breakdown of tryptophan by INDO. It is observed that CD4+ Th cells 

treated with TGF-β have a higher mean expression of AHR compared to iTregs treated 

with and IL4 or nTregs treated with IL2. Further investigations can be tested in a 
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laboratory environment where IL2 or IL4 is added as a secondary treatment to reduce the 

expression of AHR in T cells; therefore, inhibiting the interaction of kynurenine and 

AHR.  

It is evident that the metabolism of tryptophan mediated by INDO through the 

kynurenine pathway plays a role in negatively regulating the immune system response in 

a tumor microenvironment [86-88]. Using OBDI to integrate data across GEO 

experiments allowed us to generate and investigate this hypothesis using in silico analysis. 

The expression of AHR in T cells treated with TGF-β shows that these cells may have a 

higher affinity to bind to kynurenine and induce FoxP3+ iTregs. 
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Figure 8.2: The samples highlighted in green are native T cells that do not 
contain any stimulants. The samples highlighted in brown are Tconvs treated 
with specific stimulants that allow for differentiation of T cells. The samples 
highlighted in red represent natural and induced Tregs. Finally, effector T cells 
(Teffs) represent a population of cells that are CD25+ but are not of regulatory 
function. LOOCV is used to analyze the samples; therefore, a hold-out test set  
(similar to Experiment 1) is not provided. 
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Figure 8.4: Inferred ontology generated for Experiment 2. On the left, 15 samples are 
shown before they were reasoned into specific conditions. This is done across 96 samples 
that are not shown in this image. 



  

 

79 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: ML-Flex makes it easy to compare the performance of different algorithms. 
Each machine learning algorithm is separately assessed to evaluate how the algorithms 
perform in predicting T cell subtypes. The performances of the ensemble methods are 
plotted in the same graph. The accuracies are plotted in the graph above. 
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Figure 8.6: This image explores the expression of VD3 across T cell subtypes. The 
expression of VD3 is higher in samples that express CD25+ on the cell surface. These 
include samples of nTregs, iTregs treated with IL4, and Teffs. A two-tailed t-test is 
performed to check for significance. 

Figure 8.7: The average expression of AHR is plotted across T cell subtypes. It is noted 
that T cells treated with TGF-β have a higher expression of AHR versus T cells treated 
with IL2 and IL4. 



 

 
 

9. EXPERIMENT 3: CHARACTERIZATION OF                                              

CANCER CELL LINES 

 
To further evaluate the components of a tumor microenvironment using OBDI, I 

included samples from comparing the gene expression across cancer cell lines. These 

samples were analyzed on a different gene expression platform; therefore, generalizing 

OBDI to other microarray platforms. Based on the meta-analysis in Experiment 1 it was 

evident that INDO was differentially expressed in DC treated with different maturation 

stimuli. The metabolism of tryptophan through the kynurenine pathway plays a role in 

inducing the Tregs; thus, inhibiting the maturation of DCs and CD 8+ T cells. This causes 

the DC-based vaccine to be ineffective. However, when comparing the maturation 

treatments in Experiment 1, it was noted that IFNα successfully matured DCs but the 

expression of INDO was downregulated in DCs treated with IFNα. This led to setting up 

the hypothesis for Experiment 3.  

Relating a specific DC maturation treatment, IFNα, to clinical research where 

cancer cell lines are treated with IFNα at different time points, makes OBDI an effective 

tool to analyze data in translational research. It has been documented that the use of IFNα 

in conjunction with chemotherapy and cancer vaccines overcomes tumor-induced 

immunosuppression by improving the outcome of immunotherapy [89].  Using IFNα as 

an adjuvant therapy has been show to improve disease free survival in patients with high-

risk cutaneous melanoma [90].  IFNα is a type I interferon that is mainly produced by 
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macrophages.  In patients with high-risk melanoma, IFNα is the only adjuvant therapy 

that is currently approved.  IFNα had antitumor effects in preclinical and in clinical 

models; however, the mechanistic approach of how IFNα treatment results in an 

antitumor response is not well understood [91-93].   

 
Methods 

To better understand how IFNα plays a role in antitumor response, meta-analysis 

was performed on 10 cancer cell lines treated with IFNα.  Exploring the immune system 

response across cellular and disease states gives a more comprehensive understanding of 

immune system response in a tumor microenvironment. For Experiment 3, I queried GEO 

for specific experiments where cancer cells were treated with IFNα2a. To explore how 

genes may be differential expressed in cancer cells treated with IFNα2a, a GEO 

experiment where four cancer cell lines were treated with IFNα at different time points 

was analyzed through the OBDI pipeline. 

 
Build Ontology 

1. Steps 1-4, and 8 are same as Experiment 1.  Since the framework is generalized, 

specific methods to disjoin classes and adding samples as instances are not 

repeated.  

2. The OWL class cancer_cell_lines is added as a subclass to cell in vitro.  Since 

Experiment 3 deals with the differential expression across melanoma cell lines, 

the cell type information is acquired from the paper associated to the GEO Series 

record [94]. Subclasses to cancer_cell_lines are colon, melanoma, lung, and 

pancreas.  The specific cell lines are defined under each subclass (See Figure 9.1).  
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3. The treatment contains a subtype CancerCellLineTreatment.  The treatments used 

in Experiment 3 are control and experimentalTreatment.  These subclasses have 

individuals associated to them as OWL members.  The control subclass has one 

member, control_medium.  The experimentalTreatment has two members: IFNα-

2a_24Hr and IFNα-2a_4H. 

4. The subclasses defined under the condition OWL class for Experiment 3 are 

based on the tissue of origin: colonControl, colonIFNα-2a, endothelialControl, 

endothelialIFNα-2a, lungControl, lungIFNα-2a, pancreasControl, and 

pancreasIFNα-2a.  

5.  Sample is the final class that completes the base ontology. 

CancerCellLineComparisonIlluminaBeadchip contains equivalency classes 

associated by all eight conditions separated with an “or.”  The asserted ontology is 

displayed in Figure 9.1. 

 
Acquire Data 

The third platform used to validate the OBDI methodology is the Illumina 

Expression BeachChip.  Data from a single melanoma experiment are preprocessed and 

organized for machine learning analysis [95].  The GEO Series record used in 

Experiment 3 is GSE 21158 (see Figure 9.2).  

 
Organize Data 

Organizing the melanoma GEO samples vary since the experiment was analyzed 

using the Illumina Expression BeadChip.  The previously described Affymetrix platform 

uses a glass or silicone chip where the probes are attached; however, the Illumina 



  

 

84 

technology uses microscopic beads that are associated to a specific probe.  To further 

explore the immunological space of cancer immunotherapy, I chose to focus on 

expression array samples where different melanoma cell lines are treated with Interferon-

alpha (IFN-alpha).  There are 10 different melanoma cell lines that are treated with 10 

U/ml IFN-alpha for 4 hour and 24 hours, respectively. Each cell line has associated 

control samples that were not treated with IFN-alpha.   

 
Process Data 

The samples retrieved from GEO experiment, GSE21158, were normalized using 

quantile normalization [63].  The data were downloaded to the pipeline by interfacing 

with Gene Pattern.  Once data were available locally, each sample was separated into 

columns and stored as an individual file.  The samples are organized using the ontology 

and the metadata XML file. 

The sample for each experiment is formatted differently in GEO because of the 

platform specification used to generate the high throughput data.  In order to perform 

meta-analysis for the Illumina BeadChip experiment, the data are directly imported into a 

Gene Pattern module.  Unlike the samples analyzed from the Affymetrix chip, individual 

samples from the Illumina BeadChip GEO experiment cannot be downloaded.  The 

GEOImporter module downloads the experiment from GEO and the file is temporarily 

stored in the Gene Pattern file format [10].  When using Gene Pattern to process samples, 

an annotation file, like the clm file, can be used to annotate the GSM IDs with 

appropriate machine learning conditions.  However, The GEOImporter module does not 

account for an annotation file, like the clm file. To account for this, I incorporated an 

annotation file into the pipeline to convert GSM IDs into corresponding machine learning 
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condition.  The annotation is created using the reasoned OWL file for the experiment 

labeled CancerCellLineComparisonIlluminaBeadchip.  Although the GEOImporter 

module does not allow for the replacement of GSM IDs with machine learning 

conditions, it simplifies data processing and acquisition by creating a gct file that contains 

all samples from the melanoma experiment, GSE20156.  The same method is used to 

covert Gene Pattern gct files into ARFF files. Once the ARFF file is generated, meta-

analysis can be performed using ML-Flex. 

 
Analyze Data 

Same as previously described (see Experiment 2). 

 
Results 

Inferred Ontology 

Inferred ontology serves as a backbone for allocating appropriate samples into 

their respective machine learning conditions.  This is done in a standardized way since 

the various parameters of a GEO Series record are store as OWL entities. Figure 9.3 

displays how the reasoner can be used to infer the samples into the appropriate 

conditions. 

 
ML-Flex Results 

Machine learning analyses similar to Experiment 2 are performed using the 

cancer cell line data.  The full data set was used to analyze 90 cancer samples using 

individual machine learning algorithms and ensemble learners.  Without performing 

feature selection, the ensemble learners and SVM perform better than Naïve Bayes or 

Decision Tree.  Figure 9.4 displays the accuracy for each algorithm when no feature 



  

 

86 

selection is used on the 90 samples. The meta-analysis for Experiment 3 did not yield 

high classification accuracy, and the feature list contained an extensive list of genes.  In 

the ensemble learning methods, mean probability and weighted mean probability 

performs poorly with the highest classification accuracy (64.4%). SVM classifier also 

performs poorly with an accuracy of 63.3%.    

 
Probe Level Analysis of Cancer Cell Lines 

Feature selection was performed using the ReliefF ranking method using three 

different classification algorithms: Naïve Bayes, Decision Tree, and SVM.  The SVM 

algorithm was used to perform forward selection.  The feature list was reduced to 1304 

attributes and the accuracy for all three algorithms increased to 80%. 

The extensive feature list was searched for any genes that may be related to the 

mechanisms involved in the induction of Tregs, revealing kynureninase (KYNU) as part 

of the feature list. KYNU is part of the kynurenine pathway that breaks down kynurenine 

during tryptophan metabolism. Figure 9.5 depicts the expression of KYNU compared in 

melanoma cell lines and across treatment time points. The results indicate that when 

melanoma cell lines are treated with IFNα2a from 4 hours, the expression of KYNU is 

significantly higher (p-value = 1.47E-4) than samples treated with IFNα2a from 24 hours. 

The expression pattern of KYNU in melanoma cells treated with IFNα2a for 24 hours is 

similar to untreated melanoma cell lines (control).  

 
Discussion 

From the analysis performed in Experiment 1, it was evident that INDO plays a 

role in inhibiting the effectiveness of cancer immunotherapy. INDO is also differentially 
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expression in DCs treated with different maturation stimuli. To promote translational 

research in the field, cancer cell lines treated with IFNα2a are analyzed using OBDI. 

IFNα2a is similar to the IFNα treatment used to mature DCs, while downregulating the 

expression INDO. These findings were supported by the integrated analysis made 

possible by using OBDI.    

To overcome tumor-induced immunosuppression, IFNα can be used as an inducer 

of DCs in cancer vaccines [89]. Injecting patients with IFNα-matured DCs in conjunction 

with chemotherapy is designed to suppress Tregs, while creating an environment for DCs 

to take up antigens and present them to T cells in lymph nodes.  Patients treated with 

adjuvant IFNα-2b who had a measurable autoimmune response had higher probability of 

relapse-free survival, as well as a higher probability of overall survival [92]. The 

suppression of Tregs is important in the effectiveness of DC based vaccines; however, an 

enhanced CD8+ T cell response has been observed in stage IV melanoma patients 

vaccinated with melanoma-associated peptides near local lymph nodes, in conjunction 

with adjuvant IFNα injections [91]. 

Kynurenine is metabolized by INDO in order to drive the metabolism of 

tryptophan. The in silico analysis in this experiment generated an extensive feature list 

where, KYNU, an enzyme that breaks down kynurenine, was differentially expressed in 

melanoma cell lines treated with IFNα2a for 4 hours and melanoma cell lines treated with 

IFNα2a for 24 hours. KYNU plays a role in the further breakdown of kynurenine into 3-

Hydroxyanthranilic Acid (3-HAA). A treatment of 3-HAA has shown to drive the 

production of TGF-β; therefore, inducing Tregs mediated by the production of TGF-β [57, 

96]. 3-HAA also plays a role in impeding the antitumor immune system response by 



  

 

88 

inhibiting the antigen dependent proliferation of CD8+ T cells [96]. When melanoma cell 

lines are treated with IFNα2a a longer time point (24 hours), the expression of KYNU is 

reduces. Lower expression of KYNU can affect the production of 3-HAA and thereby 

reducing the production of TGF-β in the tumor microenvironment. A reduced amount of 

TGF-β may inhibit the proliferation of Tregs.    

The in silico findings from analyzing cancer cell lines can lead to designing 

laboratory experiments to further explore the role of tryptophan metabolism via the 

kynurenine pathway in immune system response [91, 93, 96, 97].  
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Figure 9.2: In Experiment 3, there are 90 samples that can be classified into 
four different cell lines. Each cell line is treated with IFNa2a for 4 hours and 
24 hours, respectively.  
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Figure 9.3: The inferred ontology displays how samples are added to specific conditions 
based on their defined equivalency rules. 
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10. EXPERIMENT 4: RNA-SEQUENCE DATA ANALYSIS 

The fourth experiment was chosen to explain how data from RNA-Seq 

experiments can be successfully analyzed using OBDI. Differential expression analysis 

is widely performed using microarrays and beachip; however, RNA-Seq is gaining 

popularity among researchers interested in performing differential expression analysis. 

RNA-Seq experiments require lesser quantity of RNA to run the laboratory experiments 

and produce results with higher sensitivity. RNA-Seq analysis can play an important 

role in discovery-based experiments. In order to make the OBDI pipeline up-to-date, it 

was important to explore how RNA-Seq could be incorporated within the pipeline.     

Methods of genomic and mutation analysis have given us a better understanding 

of cancer genetics, but they provide limited insight on mRNA-based interpretation 

during tumorogenesis [98, 99].  Gene fusions are commonly associated with cancers, 

where two previously separate genes come together.  They can occur due to 

chromosomal activities such as: translocations, insertions, deletions, and inversions [95].  

The sequencing of short reads can recapitulate microarray expression predictions and 

also provide additional information that cannot be obtained by microarray 

methodologies.  Sequencing short reads can provide thorough information about the 

existence of spliced variants, which occur during a regulated process where parts of an 

exon may be included or spliced out [100, 101]. 
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RNA sequencing (RNA-Seq) is a high throughput methodology used to 

sequence the cDNA [102]; whereas, microarrays are tools used to analyze gene 

expression. Compared to microarray technologies, RNA-Seq has higher sensitivity, 

requires smaller amounts of RNA and has a larger dynamic range which can contribute 

to differential expression analysis [100].  

Since the OBDI pipeline was developed to integrate and process high 

throughput data, a GEO experiment, containing a small set of RNA-Seq samples, was 

used as a proof of principle study to evaluate the RNA-Seq analysis integration within 

the pipeline.  There are several modules in Gene Pattern that help with preprocessing of 

sequencing.  These modules are integrated into the OBDI pipeline allowing the user to 

analyze RNA-Seq data.  For this analysis, I focus on RNA-Seq samples analyzed on the 

Illumina Genome Analyzer, where the researchers explored the genetic alterations that 

occur in tumor cells. 

 
Methods 

The GEO experiment contains four samples from melanoma cell lines, eight 

samples from patient melanoma derived short-term cultures, and two samples from 

leukemia cell lines.  These samples were analyzed using the Illumina Genome Analyzer 

and the reads were aligned using the Burrow-Wheeler Alignment (BWA) tool and the 

human reference genomes, hg18 [103, 104].  Individual sample files are stored in BAM 

format [103].  

In this experiment, melanoma and leukemia samples are analyzed in silico using 

OBDI.  Melanoma short-term cultures are cell lines created from patient tumors that 

have undergone few passages outside the patient.  A majority of melanoma short-term 
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cell lines proliferate readily under laboratory conditions [105] and passages refer to the 

splitting of cultures to allow cells to continue growing.  Passages refer to the numerous 

cell divisions that occur during cell culturing.  In Giricz et al, researchers proposed that 

multiple passages might contribute to subtle genomic modifications that may occur 

during cell culturing.   

RNA-Sequencing technologies are currently being used in conjunction with 

microarray experiments.  The processing of RNA-Seq samples varies significantly; 

however, the RNA-Sequencing processing module in OBDI can be used to process and 

analyze RNA-Seq data. 

 
Build Ontology 

1. Steps 1-4, and 8 are same as Experiment 1.  Since the framework is generalized, 

specific methods to disjoin classes and adding samples as instances are not 

repeated.  

2. The OWL class cancer_cell_lines is added as a subclass to cell in vitro. Since 

this experiment deals with the differential expression across melanoma cell 

cultures, the cell type information is acquired from the paper associated to the 

GEO Series record [95].  Subclasses related to cancer_cell_lines are: blood, and 

skin. Four cell lines are defined under both subclasses (See Figure 10.1).  

3. The treatment contains a subtype CancerCellCulturePassage.  The treatments 

used are based on the number passages involved during cell culturing.  Each 

subclass has one OWL individual associated as a member.  The controlLeukemia 

and controlMelanoma subclasses have one member, GreaterThan30.  The 

shortTermMelanoma has one member, LessThan20. 
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4. The subclasses defined under the condition OWL class are 

LeukemiaNormalPassage, MelanomaNormalPassage, and MelanomaShortTerm.  

5.  Sample is the final class that completes the base ontology.  MelanomaRNA-Seq 

contains equivalency classes associated by all three conditions separated with an 

“or.” The asserted ontology is displayed in Figure 10.1. 

 
Acquire Data 

To develop this part of the pipeline, the entire GEO experiment file is 

downloaded and processed to reveal the individual BAM files.  The method of 

preprocessing the files is similar to how the Affymetrix samples from previous 

experiments were handled. Figure 10.2 displays the samples that are encoded into the 

ontology and used to perform analysis using OBDI.  

 
Organize Data 

Methods are the same as Experiment 1.  Instead of handling cel files, BAM files 

are organized.  

 
Process Data 

Once the BAM files are extracted, Gene Pattern modules are incorporated into 

the pipeline.  There are several tools available for the analysis of RNA-Seq data.  There 

are modules in Gene Pattern that incorporate some of the major tools used in RNA-Seq 

analysis: Bowtie, BWA, Cufflinks, and TopHat [10].  

Since the data are already in BAM format, Cufflinks was used to generate the 

Fragment Per Kilobase of exon Million fragments mapped (FPKM) values for each 

sample [106].  BAM files are already aligned to the reference genome, so Cufflinks can 
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be used to test for differential expression for RNA-Seq samples.  To execute this 

module, users must provide a Generic Feature Format (GFF) or a Genome Annotation 

File (GTF).  These files aid in the assembly of RNA-Seq samples into transcript reads 

[107], which allow for the annotation of RNA-Seq samples at the level of gene 

information [10, 107].  The human GTF files are provided with the OBDI tool; however, 

if researchers use the RNA-Seq module to analyze other organisms, the GFF files can 

be accessed via Gene Pattern [10].  The RNA-Seq fragment counts can be used to 

measure the relative abundance in FPKM values [106].  

Finally, Gene Pattern also contains modules that allows for creating gct files 

from the FPKM values [10].  This provides users with the familiar tab-delimited file 

that has been generated in the previous experiments.  Since there are 14 gct files created 

for each sample, this module requires preprocessing to combine the samples into a 

single matrix.  Once this achieved, the generalize code converts gct files to ARFF files 

that can be used.  The RNA-Seq samples can now be analyzed in ML-Flex to perform 

machine learning analysis.     

 
Analyze Data 

Unless stated otherwise, all methods in Experiment 4 are identical to Experiment 

2. 

 

Results 

Inferred Ontology 

Similar to the previous experiment, the purpose of the inferred ontology was to 

accurately associate individual RNA-Seq samples to the correct machine learning 
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conditions.  There were two melanoma cell lines in Experiment 4 that were grouped 

together under one condition.  To reason the ontology accurately, it was important to 

add both cell line information in the equivalency class of the specific condition. Figure 

10.3 shows how the samples are inferred into the right conditions based on the rules 

defined for the condition class.  

 
ML-Flex Results 

Machine learning analysis on the calculated FPKM is plotted in Figure 10.4. 

Mean probability performs the highest with an accuracy of 76.9% and J48 performs the 

lowest with an accuracy of 46.2 % classification accuracy.  The SVM algorithm is used 

to perform feature selection along with the ReliefF ranking method.  The SVM 

algorithm performs with an accuracy of 69.2% when no feature selection is performed. 

Feature selection is performed using SVM along with the ReliefF ranking method. 

When twelve features are selected, the classification accuracy increases to 84.6%. 

INDO was not part of the feature selected list; however, I evaluated the FPKM values. 

The FPKM values for INDO remained 0 across all samples; however, the FPKM value 

does increase in short-term melanoma samples that underwent 14 passages.  In samples 

labeled GSM506411 and GSM506412, the FPKM values increased to 1.28 and .70, 

respectively.  

 
Discussion 

RNA sequencing analysis plays an important role in providing insight to 

researchers who are exploring the genetic modifications that occur in a tumor 

environment. By analyzing RNA-Seq using OBDI and by creating ontological 
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representations, I am able to make OBDI pipeline flexible to the continuing growth of 

genomic data. The analysis done using ML-Flex shows that RNA-Seq data can be 

successfully analyzed using the OBDI pipeline.  
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Figure 10.1: This figure shows the asserted ontology that is developed to 
analyze RNA-Seq data from melanoma cell lines that are cultured for a short 
term in a laboratory setting. The framework of the ontology is similar to that 
of Experiment 3. There are 14 samples (denoted by GSM IDs) associated to 
MelanomaRNA-Seq. 



  

 

102 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.2: Experiment 4 serves as a proof of principle analysis. RNA-Seq 
samples are classified into three classes that include melanoma and leukemia 
samples. 
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Figure 10.4: Accuracies of machine learning algorithms and ensemble learners.

Figure 10.3: The inferred ontology used in Experiment 4. 



 

 
 

11. DISCUSSION  

OBDI is successfully used to integrate and analyze data across GEO 

experiments. OBDI is used to mobilize data in studies that exist in silos. Only 6% of 

samples in GEO are integrated into curated DataSets, allowing the opportunity to 

generate methods that aid the process of data integration across GEO experiments. 

OBDI is a pipeline that aids with the process of combing GEO samples; thereby, 

promoting knowledge discovery by perform analysis on combined studies.  

  The OBDI pipeline reduces the barrier of data integration by encoding various 

laboratory elements into consistent representation. Using ontologies to combine GEO 

samples allows for generating newly curated OBDI data sets. OBDI helps maintain 

consistency of experiments over time by reasoning over ontologies to preform analysis. 

Changes to the analysis for each OBDI experiment can be made by directly altering 

individual ontologies. For instance, the incorporation of ML-Flex allows user to explore 

a range of algorithms that can be used to perform differential expression analysis on the 

combined OBDI experiments. This allows users to keep relevant information regarding 

the in silico analyses in consistent representations, avoiding opportunities for errors and 

performing robust analysis on the integrated sets.     

Adding new samples from GEO can extend the current OBDI experiments. As 

data exploring the field of cancer immunotherapy increases in GEO, sample information 

can be added into the ontology; thereby extending the number of samples integrated and 

analyzed in OBDI. The OBDI pipeline can also be used to explore different biological 
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questions by changing the domain knowledge of interest. Generalizing the methods in 

OBDI can help generate testable hypothesis for different biomedical research domains.  

Using OBDI to integrate samples that previously existed in silos allowed me to 

generate a hypothesis that can drive research at the bench. Based on the results from 

Experiment 1, the expression of INDO across DC maturation treatment allowed me to 

explore the involvement of the kynurenine pathway during immune system response 

[97]. The downregulation of INDO in DCs treated with IFNα led to exploring the 

treatment of cancer cell lines with two time points of IFNα2a. Although these studies 

were available in GEO, without the use of OBDI, it would be difficult to integrate these 

samples and create in silico experiments that explored the various elements in a tumor 

microenvironment. Figure 11.1 summarizes the findings from Experiment 1-3 that may 

aid in guiding researchers to generate in vitro experiments.  

In Figure 11.1, I propose a testable experiment where tryptophan is not fully 

metabolized; therefore, the metabolites of tryptophan, kynurenine and 3-HAA, are 

present in lower levels in a tumor microenvironment. This may further hinder the 

interaction of AHR and kynurenine and also deplete the environmental concentrations 

of TGF-β. The lack of TGF-β in the environment may prevent the induction of iTregs to 

the tumor site [57]. Since 3-HAA has shown to inhibit antigen specific proliferation of 

CD8+ T cells, the downregulation 3-HAA may help in generating an antitumor immune 

response [96]. Finally, the addition of IFNα in cancer immunotherapy along with 

chemotherapy treatments may help over tumor-induced immunosuppression and 

improve clinical outcomes [89].  Using IFNα as an adjuvant therapy has shown to have 

potent antitumor impact in melanoma patients. Using OBDI I am able to explore 
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treatment that can be translated to a clinical setting and the IFNα treatment on 

melanoma patients has proven to be successful in disease free survival [92, 93].  

The immediate application of OBDI can be seen at the bench; however, the 

pipeline can be used to translate hypothesis that can drive experiments in clinical 

research. OBDI can help researchers create direct experiments because it increases the 

power of knowledge discovery by exploring the data across multiple studies.  

 
Limitations 

Since integrating data across different experiments is a complex process, there 

are limitations in the current OBDI methodology.  Building ontologies is a complex 

process; however, the OBDI pipeline does add several OWL components directly into 

the ontology by parsing the GEO metadata.  The first limitation of using OBDI is that 

there is a break between adding OWL elements and generating the final set of results 

using ML-Flex.  OBDI can be executed by using two command line options.  The first 

option allows for adding the various OWL components to the ontology.  Once the 

entities are added, users must add relationships between OWL entities using an 

ontology editor, like Protégé.  This task has been simplified because the metadata are 

added into the ontologies and will guide users to build the correct OWL relationships.  

The second command line option allows users to store the combined the data in the 

local directory, process and run the machine learning analysis on the integrated OBDO 

experiments. The second limitation is the sample size in each individual experiment.  

Due to the specificity of the biological problem assessed, finding relevant GEO 

experiments was a challenging task.  When integrating biological data and generating a 

biological relevant predictive model, it is crucial to choose appropriate GEO 
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experiments.  However, as research in the field progresses, more data from GEO or 

research laboratories can be integrated using OBDI to create new experiments. The 

sample size of the integrated OBDI experiments will grow, as more samples are made 

available.   

 

Future Work 

 OBDI can be used to incorporate other high throughput data from different 

repositories. This also allows users to explore data that is being generated in different 

biological domains.  As more samples are incorporated from different repositories, the 

current modules in OBDI must be expanded to other microarray and genomic platforms.  

GEO is the only database that is currently incorporated in OBDI.  Other 

databases store high throughput data that can easily be incorporated into OBDI.  The 

pipeline requires a link associated to the raw data and the supporting metadata.  

 

Relevance to Biomedical Informatics 

OBDI offers immediate support at the bench by aiding users to generate testable 

hypothesis at the bench. The results at the bench can be translated to clinical settings. 

Combining samples across GEO experiments can be challenging but integrated sets can 

provide insights that were previously overlooked  

In the field of biomedical informatics, translational research is a growing 

component where researchers are eager to incorporate the findings of a biomedical 

research directly to patient care.  The goal of this project was to provide support for 

bench researchers to better understand the molecular mechanisms involved during an 

immune response.  I hope that my informatics approach will aid research in the field of 
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immunotherapy vaccine development and support the development of new insights in 

the field of translational medicine. 
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Figure 11.1: This image displays the possible application of IFNα to generate a 
successfully antitumor immune response. The diagram also displays a hypothesis that can 
be tested at the bench using in vitro and in vivo experiments.  



 

 
 

12. CONCLUSIONS 

Only 6% of samples in GEO are manually curated GEO DataSets and the backlog 

hinders the ability to find new insights from the vast repository of studies. OBDI serves 

as a solution to combine data across GEO experiments and increase the power of 

knowledge discovery through high throughput data. The OBDI pipeline incorporates 

several bioinformatics methods, specifically related to ontologies, data processing and 

analysis. Ontologies serve as the framework for storing metadata elements and the in 

silico analysis elements used to conduct machine learning analysis. The OBDI pipeline 

uses ontologies to annotate and augment experiments from publicly available repositories 

(e.g., GEO). Using the ontological framework, samples are successfully organized across 

different GEO experiments.  The ontological framework within OBDI allows researchers 

working in a particular biomedical domain to store high throughput data elements and 

organize samples across different GEO experiments. The use of ontologies reduces the 

barrier to integrate new studies into the meta-analysis. Reasoning over ontologies helps 

maintain consistency of the OBDI experiment structure as more samples are added to 

current OBDI experiments. Using the OBDI pipeline, researchers can mobilize data that 

exists in silos to help generate testable hypothesis at the bench. 

OBDI’s ontological representation promotes the integration of complex data and 

prior knowledge. The new annotation from this dissertation extends the current biological 

knowledge in the cancer immunotherapy domain. Using the ontology, four different in 
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silico machine learning experiments were conducted that explore the mechanism of 

cancer immunotherapy at a molecular level. Each experiment focuses on different cell 

types. The OBDI pipeline supports researchers’ ability to create predictive models that 

may lead to new hypotheses. For example, I used OBDI to manage the results from 

Experiment 1 and generated a hypothesis around the maturation of DCs and mechanism 

by which mature DCs induce Tregs. When characterizing the maturation of DCs, the 

expression of two genes, INDO and KYNU, was assessed across DC maturation 

treatments. It was discovered that the expression of INDO and KYNU is down regulated 

in DCs treated with IFNα.  

These findings are generalized to Experiments 2 and 3 to further explore how the 

induction of Tregs may play a role in cancer immunotherapy.  As extant findings support, 

INDO plays a role in breaking down tryptophan into the first metabolite of the 

kynurenine pathway. Kynurenine interacts with AHR in Tregs, thus causing the 

proliferation of Tregs and suppressing immune system response. The IFNα treatment 

from Experiment 1 generalizes to Experiment 3, where the expression of cancer cell lines 

was treated with IFNα2a for 4 and 24 hours. KYNU plays a role in generating 3-HAA for 

the release of TGFβ into the environment. It was evident that melanoma cell lines treated 

with IFNα2a for 24 hours have a lower expression of KYNU. The combination of these 

results generate a testable hypothesis where a downregulation of INDO and KYNU may 

lower the production or affect certain tryptophan metabolites; thus, inhibiting the 

suppressive activity of Tregs in a tumor environment. Experiment 4 integrates sequencing 

data that expands the OBDI pipeline to include data beyond microarray experiments. 

OBDI can be used to replicate similar hypothesis driven studies in other biological 
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domains.  

Using the OBDI methodology, researchers can generate models and conduct 

laboratory experiments. Through publically available data (e.g., GEO), I am able to 

generate integrated models to help bench researchers understand the immune system at a 

molecular level.  By conducting machine learning analysis, I can compare different 

models and make new discoveries.  



 

 

APPENDIX A 

ML-FLEX PARAMETERS 

DATA_PROCESSORS Location where the ARFF or CSV 
files is stored  

CLASSIFICATION_ALGORITHMS Classification algorithms used for 
the specific analysis 

FEATURE_SELECTION_ALGORITHMS Feature selection algorithms used 
for the analysis 

TEST_INSTANCE_IDS 

When preforming testing/training, 
this parameter allows for 

specifying I.Ds that are used to 
testing instances  

TRAIN_INSTANCE_IDS 

When preforming testing/training, 
this parameter allows for 

specifying I.Ds that are used to 
training instances 

NUM_INNER_CROSS_VALIDATION_FOLDS 

List the number of “outer” folder 
while performing cross validation 

(0=LOOCV, 1=Train/Test, 
n=specify the number of 

instances).  

NUM_OUTER_CROSS_VALIDATION_FOLDS 

List the number of “inner” folder 
while performing cross validation 

(0=LOOCV, 1=Train/Test, 
n=specify the number of 

instances). 

NUM_FEATURES_OPTIONS 

Specify the appropriate number of 
features to use in order to 

generative the most “informative” 
model.  

 



 

 

 

APPENDIX B 

OBDI PARAMETERS 

MAIN_OUTPUT_FOLDER Location where all output files are stored 
GEO_DATA_LINKS GEO links to raw data 
GEO_XML_LINKS GEO links to metadata 

OWL_FILE Location of ontology file 

MASTER_INDEX_FILE Location of master indexing file created 
by the first part of OBDI 

RAW_FILE_FOLDER Same as MAIN_OUTPUT_FOLDER 
ZIPPED_RAW_FILES Same as MAIN_OUTPUT_FOLDER 

GENE_PATTERN_CLM_FILE Location of CLM file created by the first 
part of OBDI (Affymetrix Only) 

OPTIONAL_FEATURE_LIST Location of text file containing features to 
select 

GENE_PATTERN_GCT_FILE Same as MAIN_OUTPUT_FOLDER 
WEKA_ARFF_FILE Same as MAIN_OUTPUT_FOLDER 
MLFLEX_JAR_FILE Location of ML-Flex file 

MLFLEX_EXPERIMENT_FILE Obtained from OWL file 



 

 

 

APPENDIX C 

MASTER INDEXING FILE FORMAT 

The master-indexing file is a text file where each field is separated by a pipe 

character. The general format of the master-indexing file is as follows: 

GSM ID|Title Text related to the GSM ID|ML-Experiment Name|Relevant 

machine learning condition 

Based on the master-indexing file, a TreeMapping method is created that helps 

map each sample to the machine learning condition.  Since GSMxxx identifies the 

samples, the master-indexing file makes it easy to place the GEO samples into the 

appropriate machine learning condition folder.  

 

 

 

 

 

 

 

 

 



 

 

 

APPENDIX D 

SIGNING UP FOR GENE PATTERN 

To create a Gene Pattern account, follow the steps below: 

1. Point your internet browser to the following URL to create a Gene Pattern 

account: http://genepattern.broadinstitute.org/gp/pages/login.jsf 

2. Click on the following link: Click to Register 

3. Finish entering the required information and make a note of your username and 

password. 
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