2,198 research outputs found

    Analog/RF Circuit Design Techniques for Nanometerscale IC Technologies

    Get PDF
    CMOS evolution introduces several problems in analog design. Gate-leakage mismatch exceeds conventional matching tolerances requiring active cancellation techniques or alternative architectures. One strategy to deal with the use of lower supply voltages is to operate critical parts at higher supply voltages, by exploiting combinations of thin- and thick-oxide transistors. Alternatively, low voltage circuit techniques are successfully developed. In order to benefit from nanometer scale CMOS technology, more functionality is shifted to the digital domain, including parts of the RF circuits. At the same time, analog control for digital and digital control for analog emerges to deal with current and upcoming imperfections

    Temporal and spatial combining for 5G mmWave small cells

    Get PDF
    This chapter proposes the combination of temporal processing through Rake combining based on direct sequence-spread spectrum (DS-SS), and multiple antenna beamforming or antenna spatial diversity as a possible physical layer access technique for fifth generation (5G) small cell base stations (SBS) operating in the millimetre wave (mmWave) frequencies. Unlike earlier works in the literature aimed at previous generation wireless, the use of the beamforming is presented as operating in the radio frequency (RF) domain, rather than the baseband domain, to minimise power expenditure as a more suitable method for 5G small cells. Some potential limitations associated with massive multiple input-multiple output (MIMO) for small cells are discussed relating to the likely limitation on available antennas and resultant beamwidth. Rather than relying, solely, on expensive and potentially power hungry massive MIMO (which in the case of a SBS for indoor use will be limited by a physically small form factor) the use of a limited number of antennas, complimented with Rake combining, or antenna diversity is given consideration for short distance indoor communications for both the SBS) and user equipment (UE). The proposal’s aim is twofold: to solve eroded path loss due to the effective antenna aperture reduction and to satisfy sensitivity to blockages and multipath dispersion in indoor, small coverage area base stations. Two candidate architectures are proposed. With higher data rates, more rigorous analysis of circuit power and its effect on energy efficiency (EE) is provided. A detailed investigation is provided into the likely design and signal processing requirements. Finally, the proposed architectures are compared to current fourth generation long term evolution (LTE) MIMO technologies for their anticipated power consumption and EE

    Towards Energy-Efficient and Reliable Computing: From Highly-Scaled CMOS Devices to Resistive Memories

    Get PDF
    The continuous increase in transistor density based on Moore\u27s Law has led us to highly scaled Complementary Metal-Oxide Semiconductor (CMOS) technologies. These transistor-based process technologies offer improved density as well as a reduction in nominal supply voltage. An analysis regarding different aspects of 45nm and 15nm technologies, such as power consumption and cell area to compare these two technologies is proposed on an IEEE 754 Single Precision Floating-Point Unit implementation. Based on the results, using the 15nm technology offers 4-times less energy and 3-fold smaller footprint. New challenges also arise, such as relative proportion of leakage power in standby mode that can be addressed by post-CMOS technologies. Spin-Transfer Torque Random Access Memory (STT-MRAM) has been explored as a post-CMOS technology for embedded and data storage applications seeking non-volatility, near-zero standby energy, and high density. Towards attaining these objectives for practical implementations, various techniques to mitigate the specific reliability challenges associated with STT-MRAM elements are surveyed, classified, and assessed herein. Cost and suitability metrics assessed include the area of nanomagmetic and CMOS components per bit, access time and complexity, Sense Margin (SM), and energy or power consumption costs versus resiliency benefits. In an attempt to further improve the Process Variation (PV) immunity of the Sense Amplifiers (SAs), a new SA has been introduced called Adaptive Sense Amplifier (ASA). ASA can benefit from low Bit Error Rate (BER) and low Energy Delay Product (EDP) by combining the properties of two of the commonly used SAs, Pre-Charge Sense Amplifier (PCSA) and Separated Pre-Charge Sense Amplifier (SPCSA). ASA can operate in either PCSA or SPCSA mode based on the requirements of the circuit such as energy efficiency or reliability. Then, ASA is utilized to propose a novel approach to actually leverage the PV in Non-Volatile Memory (NVM) arrays using Self-Organized Sub-bank (SOS) design. SOS engages the preferred SA alternative based on the intrinsic as-built behavior of the resistive sensing timing margin to reduce the latency and power consumption while maintaining acceptable access time

    A Detailed Analysis of Contemporary ARM and x86 Architectures

    Get PDF
    RISC vs. CISC wars raged in the 1980s when chip area and processor design complexity were the primary constraints and desktops and servers exclusively dominated the computing landscape. Today, energy and power are the primary design constraints and the computing landscape is significantly different: growth in tablets and smartphones running ARM (a RISC ISA) is surpassing that of desktops and laptops running x86 (a CISC ISA). Further, the traditionally low-power ARM ISA is entering the high-performance server market, while the traditionally high-performance x86 ISA is entering the mobile low-power device market. Thus, the question of whether ISA plays an intrinsic role in performance or energy efficiency is becoming important, and we seek to answer this question through a detailed measurement based study on real hardware running real applications. We analyze measurements on the ARM Cortex-A8 and Cortex-A9 and Intel Atom and Sandybridge i7 microprocessors over workloads spanning mobile, desktop, and server computing. Our methodical investigation demonstrates the role of ISA in modern microprocessors? performance and energy efficiency. We find that ARM and x86 processors are simply engineering design points optimized for different levels of performance, and there is nothing fundamentally more energy efficient in one ISA class or the other. The ISA being RISC or CISC seems irrelevant

    Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in Hybrid Tiered-Memories

    Full text link
    Modern computing systems are embracing hybrid memory comprising of DRAM and non-volatile memory (NVM) to combine the best properties of both memory technologies, achieving low latency, high reliability, and high density. A prominent characteristic of DRAM-NVM hybrid memory is that it has NVM access latency much higher than DRAM access latency. We call this inter-memory asymmetry. We observe that parasitic components on a long bitline are a major source of high latency in both DRAM and NVM, and a significant factor contributing to high-voltage operations in NVM, which impact their reliability. We propose an architectural change, where each long bitline in DRAM and NVM is split into two segments by an isolation transistor. One segment can be accessed with lower latency and operating voltage than the other. By introducing tiers, we enable non-uniform accesses within each memory type (which we call intra-memory asymmetry), leading to performance and reliability trade-offs in DRAM-NVM hybrid memory. We extend existing NVM-DRAM OS in three ways. First, we exploit both inter- and intra-memory asymmetries to allocate and migrate memory pages between the tiers in DRAM and NVM. Second, we improve the OS's page allocation decisions by predicting the access intensity of a newly-referenced memory page in a program and placing it to a matching tier during its initial allocation. This minimizes page migrations during program execution, lowering the performance overhead. Third, we propose a solution to migrate pages between the tiers of the same memory without transferring data over the memory channel, minimizing channel occupancy and improving performance. Our overall approach, which we call MNEME, to enable and exploit asymmetries in DRAM-NVM hybrid tiered memory improves both performance and reliability for both single-core and multi-programmed workloads.Comment: 15 pages, 29 figures, accepted at ACM SIGPLAN International Symposium on Memory Managemen

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators
    corecore