1,409 research outputs found

    Addressing Insider Threats from Smart Devices

    Get PDF
    Smart devices have unique security challenges and are becoming increasingly common. They have been used in the past to launch cyber attacks such as the Mirai attack. This work is focused on solving the threats posed to and by smart devices inside a network. The size of the problem is quantified; the initial compromise is prevented where possible, and compromised devices are identified. To gain insight into the size of the problem, campus Domain Name System (DNS) measurements were taken that allow for wireless traffic to be separated from wired traffic. Two-thirds of the DNS traffic measured came from wireless hosts, implying that mobile devices are playing a bigger role in networks. Also, port scans and service discovery protocols were used to identify Internet of Things (IoT) devices on the campus network and follow-up work was done to assess the state of the IoT devices. Motivated by these findings, three solutions were developed. To handle the scenario when compromised mobile devices are connected to the network, a new strategy for steppingstone detection was developed with both an application layer and a transport layer solution. The proposed solution is effective even when the mobile device cellular connection is used. Also, malicious or vulnerable applications make it through the mobile app store vetting process. A user space tool was developed that identifies apps contacting malicious domains in real time and collects data for research purposes. Malicious app behavior can then be identified on the user’s device, catching malicious apps that were overlooked by software vetting. Last, the variety of IoT device types and manufacturers makes the job of keeping them secure difficult. A generic framework was developed to lighten the management burden of securing IoT devices, serve as a middle box to secure legacy devices, and also use DNS queries as a way to identify misbehaving devices

    The crowd as a cameraman : on-stage display of crowdsourced mobile video at large-scale events

    Get PDF
    Recording videos with smartphones at large-scale events such as concerts and festivals is very common nowadays. These videos register the atmosphere of the event as it is experienced by the crowd and offer a perspective that is hard to capture by the professional cameras installed throughout the venue. In this article, we present a framework to collect videos from smartphones in the public and blend these into a mosaic that can be readily mixed with professional camera footage and shown on displays during the event. The video upload is prioritized by matching requests of the event director with video metadata, while taking into account the available wireless network capacity. The proposed framework's main novelty is its scalability, supporting the real-time transmission, processing and display of videos recorded by hundreds of simultaneous users in ultra-dense Wi-Fi environments, as well as its proven integration in commercial production environments. The framework has been extensively validated in a controlled lab setting with up to 1 000 clients as well as in a field trial where 1 183 videos were collected from 135 participants recruited from an audience of 8 050 people. 90 % of those videos were uploaded within 6.8 minutes

    WiMAX in the Classroom: Designing a Cellular Networking Hands-on Lab

    Get PDF
    Wireless networking has recently gained tremendous attention in research and education. Since the concepts taught in wireless courses are difficult to acquire only through lectures, hands-on lab experience is indispensable. While Wi-Fi based networking labs have been introduced before, to the best of our knowledge, labs that use a cellular technology have not been designed yet. Therefore, we present a WiMAX hands-on lab designed for a graduate course in wireless and mobile networking. The lab is based on the mobile WiMAX hardware and software developed and deployed within the GENI WiMAX project. We provide a brief overview of the course and of the main concepts taught in the WiMAX lecture. Then, we describe in detail our WiMAX network and the structure of the lab experiment. The effectiveness in achieving the learning objectives is evaluated via the lab reports submitted by the students. Finally, we review some of the lessons we learned during design and implementation of this lab. These can provide important insights to designers of similar labs
    • …
    corecore