
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Validation of UMTS emulation through PlanetLab

Evrard, Benjamin; Gomand, Gille

Award date:
2009

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/validation-of-umts-emulation-through-planetlab(123e5cec-4767-4396-916a-2aa04e935b8e).html

Facultés Universitaires Notre-Dame de la Paix de Namur
Faculté d’Informatique

Validation of UMTS emulation
through PlanetLab

Benjamin EVRARD
Gille GOMAND

Mémoire présenté en vue de l’obtention
du grade de Mâıtre en Informatique

Année académique 2008-2009

Abstract

With UMTS, the 3rd Generation of mobile phones gives to users the opportunity to enjoy
applications requiring high data rate (e.g. video streaming). At the University of Namur,
Hugues Van Peteghem has designed and implemented a testbed emulating UMTS Release 99 as
a part of his PhD Thesis. This Master Thesis aims at validating it by comparing results from
the testbed with those from a real environment. The goal is to check the validity of the testbed
results (i.e. if it is giving realistic results). This document presents an approach to perform
tests and experiments in a real environment from a basic end user perspective as opposed to a
supervised experimental set-up. Tests and experiments were both performed from a PlanetLab
Node and from a classical Linux-based laptop. The results are not directly comparable to
those from the testbed because of discrepancies in the intended environment, the latter being
a UMTS Release 5 environment with unknown parameters. However, this dissertation and
presented results can be easily used for future work.

Keywords: 3G, UMTS, HSDPA, PlanetLab, testbed.

Résumé

Avec l’UMTS, la 3e génération de téléphones mobiles offre la possibilité aux utilisateurs
de profiter d’applications requièrantes un haut débit de données (ex. streaming vidéo). A
l’Université de Namur, Hugues Van Peteghem a conçu et implémenté un testbed émulant la
version 99 de l’UMTS dans le cadre de sa thèse de doctorat. Ce mémoire vise à le valider
en comparant les résultats venant du testbed avec ceux venant d’un environnement réel.
L’objectif est de vérifier la validité des résultats du testbed (càd, s’il donne des résultats
réalistes). Ce document présente une approche pour réaliser des tests et des expériences dans
un environnement réel selon la perspective d’un utilisateur final de base par opposition à une
installation expérimentale contrôlée. Les tests et les expériences ont été réalisés à partir d’un
noeud PlanetLab, ainsi qu’à partir d’un ordinateur portable classique fonctionnant sous Linux.
Les résultats ne sont pas directement comparables avec ceux venant du testbed à cause de
divergences dans l’environnement attendu, ce dernier étant un environnement UMTS de version
5 avec des paramètres inconnus. Cependant, ce mémoire et les résultats présentés peuvent être
facilement utilisés pour de futurs travaux.

Mots clés: 3G, UMTS, HSDPA, PlanetLab, testbed.

Acknowledgements

We would like to express our gratitude to all of those who gave us the possibility to complete
this Master Thesis.

Professor Roberto Canonico, our internship supervisor,
for his availability, support, and advices concerning our work during our stay at the CINI
laboratory of the University of Naples Federico II in Italy. We also would like to thank the
CINI laboratory team to have cordially received us. In particular, Giovanni Di Stasi for his
constant support and his help during our first days in Napoli and Alessio Botta for his valuable
advices.

Professor Laurent Schumacher, our Thesis supervisor,
for his high availability and precious advices as well as his feedback and his many corrections.

Hugues Van Peteghem, PhD, and George Toma, researcher at the University of Namur,
for their help and advices relating to some parts of our Thesis.

Our families and friends,
for their understanding and their continuous support during our studies.

Contents

Contents i

List of Figures v

List of Tables vii

List of Acronyms ix

1 Introduction 1

2 UMTS 3
2.1 UMTS architecture overview . 3
2.2 Multiple access methods . 5
2.3 WCDMA . 6
2.4 Transport Channels . 8
2.5 RLC modes . 9
2.6 QoS traffic classes . 9
2.7 HSDPA . 10
2.8 Evolution . 11

3 The Emulating UTRAN Testbed 13
3.1 Testbed goals . 13
3.2 Testbed architecture . 14
3.3 Testbed characteristics . 16

3.3.1 RAN & Air Interface . 16
3.3.2 Downlink-Oriented . 17
3.3.3 Traffic Generation . 17
3.3.4 Mobility Management . 18

4 State of the Art 21

5 PlanetLab 23
5.1 Introduction . 23
5.2 PlanetLab presentation . 23
5.3 Features of this testbed . 24
5.4 PlanetLab and OneLab . 26
5.5 Private OneLab and PlanetLab . 27

i

ii Contents

5.6 Why integrate PlanetLab into our experiments? 27
5.7 Summary of the projects and acronyms . 27

6 Description & Initialization 29
6.1 Global architecture . 29
6.2 Hardware . 29

6.2.1 PCMCIA card . 31
6.2.2 SIM cards . 31

6.3 Setup of a UMTS connection . 31
6.3.1 Nozomi Driver . 31
6.3.2 The PPP protocol . 32
6.3.3 wvdial . 32
6.3.4 gcom and minicom . 33
6.3.5 UMTS connection . 34
6.3.6 Issues . 35

7 Environment - Tests 37
7.1 Properties of the network . 37
7.2 Tools . 39

7.2.1 Traffic Generator and Wget . 39
7.2.2 Tcpdump and Wireshark . 40
7.2.3 Scripts to establish the connection and gcom 40
7.2.4 UMTSmon . 40
7.2.5 Google Earth network link and Vodafone database 40

7.3 Tests . 41
7.3.1 Test 1 - HSDPA . 42
7.3.2 Test 2 - Strength of the signal . 42
7.3.3 Test 3 - Cell id . 43
7.3.4 Test 4 - Traceroute . 43
7.3.5 Test 5 - RLC Mode . 44
7.3.6 Test 6 - Type of the user . 44
7.3.7 Test 7 - Maximal downlink traffic . 44
7.3.8 Test 8 - Loss of ACKs . 47

7.4 Issue: the firewall problem . 48
7.4.1 Position of the problem . 48
7.4.2 How can we bypass the problem? . 48
7.4.3 Details of the solution for TG . 48
7.4.4 Limits . 50
7.4.5 Alternative: STUN . 50

7.5 Results Analysis . 51
7.5.1 Assumptions and consequences . 51
7.5.2 Physical environment . 52
7.5.3 PRN and LB through three providers . 54
7.5.4 Real environment and NT . 54

8 Experiments 55
8.1 Experiments overview . 55
8.2 Video Streaming . 56

8.2.1 Synthetic Traffic . 56

Contents iii

8.2.2 Real Traffic . 57
8.3 VoIP . 59

8.3.1 Synthetic Traffic . 59
8.3.2 Real Traffic . 60

9 Analysis of the experiments 63
9.1 Jitter measurement . 63
9.2 Video Streaming . 66

9.2.1 Real Traffic . 66
9.2.2 Synthetic Traffic . 72

9.3 VoIP . 74
9.3.1 Real Traffic . 74
9.3.2 Synthetic Traffic . 76

9.4 Global analysis . 77

10 Conclusion 79

Bibliography 81

A UMTS connection 87
A.1 Script to initiate the connection on a Linux box 87
A.2 Script to realize the connection UMTS . 87
A.3 Connection established . 88

B AT-commands scripts 91
B.1 HSDPA . 91
B.2 Signal quality . 92

B.2.1 +CSQ . 92
B.2.2 RSSI - dBm . 92

B.3 Cell ID . 92
B.3.1 +CREG . 92
B.3.2 +CGREG . 93

B.4 Type of the user . 93
B.4.1 +CAEMLPP . 93
B.4.2 +CPPS . 94
B.4.3 +CFCS . 94

C Programs modifications 97
C.1 TG . 97

C.1.1 force the source port in prot udp.c . 97
C.1.2 re-use the socket in prot udp.c . 97

C.2 openRTSP . 97
C.2.1 modifications in RTPSource.cpp . 97
C.2.2 modifications in RTPSource.hh . 98
C.2.3 modifications in playCommon.cpp . 98

C.3 Wireshark . 99
C.3.1 modifications in tap-rtp-common.c for videoTest-1.mp4 99
C.3.2 modifications in tap-rtp-common.c for videoTest-2.mp4 99

iv Contents

D TG configuration files 101
D.1 Simple example . 101
D.2 Synthetic video streaming . 101
D.3 Synthetic VoIP . 103

E Scripts for the tests and experiments 107
E.1 Main script . 107
E.2 AT-commands . 110
E.3 Traceroute . 111
E.4 Maximal downlink traffic . 112

E.4.1 Script for tg . 112
E.4.2 Script for wget . 114

E.5 Synthetic Video Streaming . 115
E.6 Synthetic VoIP . 118
E.7 Video Streaming Real . 119
E.8 VoIP Real . 121
E.9 SIPp XML Scenarios . 123

F Scripts used to compute the results 131
F.1 Jitter . 131

F.1.1 Main scripts . 131
F.1.2 computeJitterGeneral.c . 132

G Part of results of tests and experiments 135
G.1 Static Approach - Tests . 135

G.1.1 Test 3 - Cell id . 135
G.1.2 Test 7 - Maximal downlink traffic . 135

List of Figures

2.1 Third generation network overview. 3
2.2 Network elements in a PLMN. 4
2.3 Allocation of bandwidth in FDMA, TDMA and CDMA. 6
2.4 Allocation of bandwidth in WCDMA in the time–frequency–code space. 7
2.5 Beginning of the channelisation code tree. 7
2.6 Code tree example. 8
2.7 Peak data rate evolution for WCDMA. 11

3.1 UTRAN testbed representation. 15
3.2 UMTS lower layer emulation. 17
3.3 Emulated world representations. 18
3.4 Torus world. 18

4.1 CellTrack on Symbian OS. 22

5.1 PlanetLab Nodes in the world (March 2009). 24
5.2 Screenshot of the web interface. 25
5.3 OneLab project’s evolution. 26
5.4 Links between the different projects. 28

6.1 Global view. 30
6.2 Laboratory at the University of Naples. 30
6.3 Vodafone UMTS card. 31
6.4 GSM, UMTS cells. 34

7.1 Configuration for the environment tests. 37
7.2 Cells around the laboratory. 41
7.3 Delay through UTRAN. 43
7.4 Environment for the test 1 with wget. 45
7.5 wget results. 45
7.6 Environment for the Maximal Downlink traffic test with TG. 46
7.7 tg (2 Mbps, packet size: 1,450 Bytes) results. 46
7.8 Schema of a lost ACK. 47
7.9 Schema of the Vodafone firewall problem. 49
7.10 openFirewall. 50
7.11 STUN protocol example for a SIP/RTP flux. 51

v

vi List of Figures

7.12 Illustration of the mobility experiment. 52
7.13 Okumura-Hata model elements. 53

8.1 Experiments configuration overview. 55
8.2 Three-level traffic model. 56
8.3 SIPp scenario. 61

9.1 Hidden RTP payload in TCP packets. 66
9.2 Average jitter for videoTest-1.mp4 over TCP. 67
9.3 Cumulative Distribution Function of the jitter for videoTest-1.mp4 over TCP. . 68
9.4 Average jitter for the synthetic video streaming experiments (MQ) 73
9.5 CDF of the jitter for the synthetic video streaming experiments (MQ). 73
9.6 Average jitter for the real VoIP experiments. 75
9.7 Cumulative Distribution Function of the jitter for the real VoIP experiments. . . 75
9.8 Average jitter for the second synthetic VoIP experiments. 76
9.9 CDF of the jitter for the second synthetic VoIP experiments. 77

List of Tables

2.1 Comparison of different transport channels. 9

5.1 Minimum CPU, RAM, and storage requirements for a node. 25
5.2 Projects around PlanetLab. 27

6.1 Hardwares of the systems. 30

7.1 Signal strengths following systems and providers. 42
7.2 Cell ID following systems and providers. 43

8.1 Videos chosen for the video streaming experiments. 58

9.1 videoTest-1.mp4 - Packet loss. 66
9.2 videoTest-2.mp4 - Packet loss. 67
9.3 videoTest-1.mp4 - Average jitter. 69
9.4 videoTest-2.mp4 - Average jitter. 69
9.5 PSNR evaluation results - videoTest-1.mp4. 71
9.6 PSNR evaluation results - videoTest-2.mp4. 71
9.7 Synthetic Video Streaming traffic - Packet loss. 72
9.8 Synthetic Video Streaming traffic - Average rate. 72
9.9 Synthetic Video Streaming traffic - Average jitter. 72
9.10 Real VoIP traffic - Packet loss. 74
9.11 Real VoIP traffic - Average jitter. 74
9.12 Synthetic VoIP traffic - Packet loss. 76
9.13 Synthetic VoIP traffic - Average rate. 76
9.14 Synthetic VoIP traffic - Average jitter. 76

vii

List of Acronyms

1G 1st Generation
2G 2nd Generation
3G 3rd Generation
3GPP 3rd Generation Partnership Project
4G 4th Generation

ACK Acknowledgement
AM Acknowledged Mode
AMC Adaptive Modulation and Coding
AMR Adaptive MultiRate
APN Access Point Name
ARQ Automatic Repeat reQuest
ASCII American Standard Code for Information

Interchange

BER Bit Error Rate

CAC Call Admission Control
CDMA Code Division Multiple Access
CINI Consorzio Interuniversitario Nazionale per

l’Informatica
CN Core Network
CS Circuit-Switched

DCH Dedicated CHannel
DoS Denial of Service
DS-CDMA Direct-Sequence Code Division Multiple

Access
DSCH Downlink Shared CHannel
DSL Digital Subscriber Line

E2E End-to-End

ix

x List of Acronyms

EDGE Enhanced Data rates for GSM Evolution
ETSI European Telecommunications Standards

Institute

FACH Forward Access CHannel
FDM Frequency Division Multiplex
FDMA Frequency Division Multiple Access

GGSN Gateway GPRS support node
GoP Group of Pictures
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile communications

HARQ Hybrid ARQ
HS-DSCH High-Speed Downlink-Shared Channel
HSDPA High Speed Downlink Packet Access
HSPA High Speed Packet Access
HSUPA High Speed Uplink Packet Access

IP Internet Protocol
IPv6 IP version 6
ISDN Integrated Services Digital Network
ISP Internet Service Provider
IVR Interactive Voice Response

LB Linux Box
LED Light-Emitting Diode
LTE Long-Term Evolution

MPEG-1 Motion Picture Experts Group Layer-1
MPEG-4 Motion Picture Experts Group Layer-4
MT Mobile Terminal

NAT Network Address Translation
NIC Network Interface Card
NodeB WCDMA base station
NT Namur Testbed

OVSF Orthogonal Variable Spreading Factor

PCMCIA Personal Computer Memory Card
International Association

List of Acronyms xi

PDF Portable Document Format
PDP Packet Data Procotol
PDU Protocol Data Unit
PEAQ Perceptual Evaluation of Audio Quality
PESQ Perceptual Evaluation of Speech Quality
PIN Personal Identification Number
PL PlanetLab
PLC PlanetLab Central
PLE PlanetLab Europe
PLMN Public Land Mobile Network
PLN PlanetLab Node
PPP Point-to-Point Protocol
PRN PrivateLab Node
PS Packet-Switched
PSNR Peak Signal-to-Noise Ratio
PSTN Public Switched Telephone Network

QoE Quality of Experience
QoS Quality of Service

RAN Radio Access Network
RDT Real Data Transport
Rel’5 UMTS Release 5
Rel’6 UMTS Release 6
Rel’7 UMTS Release 7
Rel’8 UMTS Release 8
Rel’99 UMTS Release 99
RLC Radio Link Control
RNC Radio Network Controller
RRM Radio Resource Management
RSSI Received Signal Strength Indication
RT Real-Time
RTCP Real-time Transport Control Protocol
RTP Real-time Transport Protocol
RTSP Real-Time Streaming Protocol
RTT Round-Trip Time

SDU Service Data Unit
SF Spreading Factor
SIM Subscriber Identity Module
SIP Session Initiation Protocol
SMS Short Message Service
SNodeB Serving NodeB
STUN Session Traversal Utilities for NAT

xii List of Acronyms

TCP Transport Control Protocol
TDM Time Division Multiplex
TDMA Time Division Multiple Access
TEMS TEst Mobile System
TG Traffic Generator
TM Transparent Mode
TTI Transmission Time Interval

UDP User Datagram Protocol
UE User Equipment
UM Unacknowledged Mode
UMTS Universal Mobile Telecommunications System
UPMC Université Pierre et Marie Curie
URL Uniform Resource Locator
UTRAN UMTS Terrestrial RAN

VoIP Voice over IP

WCDMA Wideband CDMA

XML Extensible Markup Language

Chapter 1
Introduction

Since the introduction of the Global System for Mobile communications (GSM), also called 2nd

Generation (2G), the mobile phones have constantly increased in popularity. Nowadays, the
number of mobile phones exceed the number of landline phones. In many markets, the mobile
phone penetration is over 100%. The introduction of the Universal Mobile Telecommunications
System (UMTS), also called 3rd Generation (3G), which is now widely widespread, provides the
high bit-rate services that enable high-quality images and video to be transmitted and received,
and to provide access to the Web with higher data rates. Users have now the opportunity to
enjoy multimedia applications on their mobile phones. The iPhone from Apple is the perfect
illustration of this new generation of mobile phones that can take advantage of the 3G providing
high data rate.

At the University of Namur, as a part of his PhD Thesis [1], Hugues Van Peteghem has
designed and implemented a testbed which is representing the radio part of the UMTS, called
UMTS Terrestrial RAN (UTRAN). This testbed will be called the Namur Testbed (NT) in the
following. His objective was “to establish a suitable open-source software/hardware Real-Time
(RT) platform in order to thoroughly analyse and improve Quality of Service (QoS) management
in the UTRAN.” [1]

The NT gives to operators and infrastructure manufacturers the possibility to test and fine
tune their existing algorithms or new algorithms based on specific scenarios. This is a very
interesting tool because of its very low cost and its easiness as compared with testing in a real
environment.

The issue is whether such a testbed emulating a real environment is giving realistic results,
or at least as realistic as possible. This is the topic of this Master Thesis. Originally, the
main objective was to reproduce experiments, which were performed on the NT, in a real
environment in order to compare results with those of the NT. The goal is to validate it by
checking the validity of its results (i.e. if it is giving realistic results).

However, as explained in our traineeship report [2], because of discrepancies in the intended
environment, the results to be presented in this document will not be directly comparable
with those of the NT. Therefore, this document will rather present an approach to perform
tests and experiments in a real environment from a basic end user perspective, where network
parameters are uncontrolled and unknown, as opposed to a supervised experimental set-up,
where the network is under control. Besides being uncontrolled, the real environment in which

2 • Chapter 1 Introduction

experiments were performed is a UMTS Release 5 (Rel’5) environment, better known as High
Speed Downlink Packet Access (HSDPA), whereas the NT complies with UMTS Release 99
(Rel’99). Nevertheless, this dissertation and presented results can be easily used for future
works. All the more so the NT will evolve to UMTS Release 5.

The Consorzio Interuniversitario Nazionale per l’Informatica (CINI) laboratory in Napoli,
where our traineeship and the experiments were carried out, is registered in OneLab and
PlanetLab consortiums. Being a worldwide consortium, the PlanetLab network is assimilated
to a Virtual Internet. The members of such consortia provide powerful computers used by
researchers to perform their experiments and tests in realistic deployment environment.

The CINI laboratory is responsible of the deployment and the integration of the UMTS
connection on a PlanetLab Node. The tests and experiments described in this dissertation were
both performed from a PlanetLab environment (using a PlanetLab Node) and from a classical
environment (using a common Linux-based laptop), in order to compare results from different
environment.

The present dissertation is structured as follows:

Chapter 2 describes the main parts of the UMTS universe and its mechanisms needed to
fully understand the studied aspects in this document. It also introduces the evolution of the
UMTS Release 99, called HSDPA (UMTS Release 5).

Chapter 3 presents the Namur Testbed, its architecture, characteristics and limitations
which are related to the scope of our work.

Chapter 4 explains the PlanetLab environment which was a part of the experiments
environment.

Chapter 5 provides a brief state of the art.

Chapter 6 aims to explain the real environment in which the experiments were performed.
It describes the hardware, and the tools used to connect to UMTS.

Chapter 7 explains the tests realized to (try to) discover some parameters of the cellular
network used for our experiments.

Chapter 8 describes the experiments, tools used, and their configurations. Video streaming
and Voice over IP (VoIP) experiments were both performed using real and synthetic traffic.

Chapter 9 analyses the results obtained by running experiments in terms of QoS metrics
(jitter and packet loss rate) computed at the application layer. For the video streaming
experiments using real traffic, Quality of Experience (QoE) evaluation is performed by using
Peak Signal-to-Noise Ratio (PSNR) metric.

Chapter 10 concludes and presents some future work outlooks.

Chapter 2
UMTS

This chapter introduces the main concepts from the UMTS universe including the key elements
of the UMTS and HSDPA technologies needed to fully understand the studied aspects in this
document. The descriptions are keeping as simply as possible. Some detailed explanations of
the UMTS technology are beyond the scope of this document. Reader familiar with UMTS can
safely skip this chapter.

2.1 UMTS architecture overview

As shown in Fig. 2.1, UMTS systems can be roughly divided into three (network) parts: the air
interface, the Radio Access Network (RAN), and the Core Network (CN).

The air interface is the technology of the wireless link located between the NodeB and the
User Equipment (UE), which interfaces with the user. The Core Network is responsible for
switching and routing calls and data connections to external networks, giving access to the
wider Internet or Public Switched Telephone Network (PSTN). The Radio Access Network
handles all radio-related functionality (e.g., dealing with most of the consequences of the
terminal’s mobility, etc.).

Figure 2.1: Third generation network overview. [1]

4 • 2.1 UMTS architecture overview Chapter 2 UMTS

Another way to group UMTS network elements is to divide them into sub-networks. The
UMTS is modular and can have several network elements of the same type. This allows the
division of the UMTS into sub-networks. The latter can operate either on their own or together
with other sub-networks. Such a sub-network is called an UMTS Public Land Mobile Network
(PLMN). Typically, one PLMN is operated by a single operator, and is connected to other
PLMNs as well as to other types of network, such as ISDN, PSTN, the internet, and so on.
Fig. 2.2 gives a representation of the elements in a PLMN, connected to external networks.

Figure 2.2: Network elements in a PLMN. [3]

Hereunder is given a short introduction to all the elements [3].

The UE consists of two parts:

• The Mobile Equipment (ME) is the radio terminal used for radio communication over the
Uu interface.

• The UMTS Subscriber Identity Module (USIM) is a smartcard that holds the subscriber
identity, performs authentication algorithms, and stores authentication and encryption
keys and some subscription information that is needed at the terminal.

UTRAN also consists of two distinct elements:

• The NodeB converts the data flow between the Iub and Uu interfaces. It also participates
in radio resource management.

• The Radio Network Controller (RNC) owns and controls the radio resources in its domain
(the NodeBs connected to it). The RNC is the service access point for all services that
UTRAN provides the CN, e.g. management of connections to the UE.

The following CN elements are only briefly described:

• Home Location Register (HLR) is a database located in the user’s home system that stores
the master copy of the user’s service profile.

• Mobile Services Switching Centre/Visitor Location Register (MSC/VLR) is the switch
(MSC) and database (VLR) that serves the UE in its current location for Circuit-
Switched (CS) services. The MSC function is used to switch the CS transactions, and
the VLR function holds a copy of the visiting user’s service profile, as well as more precise
information on the UE’s location within the serving system.

• Gateway MSC (GMSC) is the switch at the point where UMTS PLMN is connected to
external CS networks. All incoming and outgoing CS connections go through GMSC.

Chapter 2 UMTS 2.2 Multiple access methods • 5

• Serving GPRS Support Node (SGSN) functionality is similar to that of MSC/VLR but is
typically used for Packet-Switched (PS) services.

• Gateway GPRS Support Node (GGSN) functionality is close to that of GMSC but is in
relation to PS services.

The external networks can be divided into two groups:

• CS networks provide Circuit-Switched connections, like the existing telephony service.
ISDN and PSTN are examples of CS networks.

• PS networks provide connections for packet data services. The internet is one example of
a PS network.

The interfaces are the following:

• Cu interface is the electrical interface between the USIM smartcard and the ME.

• Uu interface is the Wideband CDMA (WCDMA) radio interface. The Uu is the interface
through which the UE accesses the fixed part of the system.

• Iu interface connects UTRAN to the CN.

• Iur interface allows soft handover between RNCs from different manufacturers.

• Iub interface connects a NodeB and a RNC.

2.2 Multiple access methods

In computer networks and telecommunications, a multiple access method (or channel access
method) allows several terminals connected to the same multi-point transmission medium to
transmit over it and to share its capacity. A channel access scheme is based on a multiplex
method, which allows several data streams or signals to share the same communication channel
or physical media.

These are different fundamental forms of channel access schemes :

FDMA

Frequency Division Multiple Access (FDMA) is a channel access method based on the Frequency
Division Multiplex (FDM) scheme, which provides different frequency bands to different data
streams (users or nodes). FDMA gives users an individual allocation of one or several frequency
bands, or channels.

Early systems, now referred to as 1st Generation (1G), used this analog technology, called
FDMA, to deliver a radio-based voice channel to a mobile telephone user.

TDMA

Time Division Multiple Access (TDMA) is a channel access method based on the Time Division
Multiplex (TDM) scheme which shares the same frequency by dividing the signal into different
time slots. Therefore, it provides different time slots to different transmitters in a cyclically
repetitive frame structure.

In the late 1980s, 2nd Generation systems were deployed using digital technologies. The first
U.S. system used TDMA. In the early 1990s, this technology was used to introduce the GSM to
Europe. Actually, the GSM uses combined FDM/TDM for the air interface.

6 • 2.3 WCDMA Chapter 2 UMTS

CDMA

Code Division Multiple Access (CDMA) employs a special coding scheme. CDMA assigns a
specific, orthogonal code to each node. Each node then uses its unique code to encode the data
bits it sends. Therefore, different nodes are multiplexed and can transmit simultaneously over
the same physical channel.

In case of wireless physical channel, all users share the same radio frequency at the same
time. Each user in a cell is allocated a distinct sequence of bits, called a chipping sequence.
Each bit being sent is encoded by multiplying the bit by a signal (the code) that changes at a
much faster rate (known as the chipping rate) than the original sequence of data bits.

In the mid 1990s, CDMA became the second type of digital 2G system, with the U.S.
introduction of Interim Standard-95 (IS-95), now referred to as cdmaOne.

Fig. 2.3 shows a representation of these different multiple access methods.

Figure 2.3: Allocation of bandwidth in FDMA, TDMA and CDMA. [4]

2.3 WCDMA

While the IS-95 (or cdmaOne) evolved to CDMA2000 in 3G, the UMTS, which is an evolution
of GSM to support 3G capabilities, uses the WCDMA technology.

WCDMA is a wideband Direct-Sequence Code Division Multiple Access (DS-CDMA) system.
The user data are spread over a wide bandwidth by multiplying them with quasi-random bits
(called chips) derived from CDMA spreading codes. A variable Spreading Factor (SF) and
multicode connections are used to support very high bit rates (up to 2 Mbps). An example of
this arrangement is shown in Fig. 2.4.

It is good to point out that handovers between GSM and WCDMA are supported in order
to be able to leverage the GSM coverage for the introduction of WCDMA.

As already explained, CDMA uses unique spreading codes to spread the data before
transmission. The receiver then uses a correlator to despread the wanted signal, without being
annoyed by unwanted signals. The rate of a spreading code, referred to as chip rate rather than
bit rate, is produced at a much higher rate than the one of the data rate.

WCDMA uses Direct-Sequence spreading, where spreading process is done by directly
combining the baseband information to high chip rate binary code. The Spreading Factor is
the ratio of the chip to baseband information rate.

Chapter 2 UMTS 2.3 WCDMA • 7

Figure 2.4: Allocation of bandwidth in WCDMA in the time–frequency–code space. [3]

Since the UMTS uses WCDMA as air interface, it respects the spreading/despreading
concept [5]. The spreading/channelisation codes of UTRAN are based on the Orthogonal
Variable Spreading Factor (OVSF) technique.

By using OVSF codes, the Spreading Factor can be changed and the orthogonality can be
maintained between different spreading codes of different lengths. The codes are picked from the
code tree, which is illustrated in Fig. 2.5. When a connection uses a variable Spreading Factor,
it is allowed to despread according to the smallest Spreading Factor. The only requirement is
that channelisation codes are used from the branch indicated by the code used for the smallest
Spreading Factor. The downlink orthogonal codes within each base station are managed by the
RNC in the network.

Figure 2.5: Beginning of the channelisation code tree. [3]

When a particular Spreading Factor is allocated, e.g. Spreading Factor 8, then the codes
as part of the same branch (sub-tree) cannot be used anymore. Therefore, from the code tree,
booking a Spreading Factor 8 will occupy 1/8th of the total code tree resource (Fig. 2.6).

8 • 2.4 Transport Channels Chapter 2 UMTS

Figure 2.6: Code tree example. [3]

Note there is a difference between uplink and downlink. In the downlink direction the code
tree is shared by the users of the cell or sector; in the uplink, all users have independent code
trees.

The spreading code allocated and the bandwidth are linked since the SF defines how many
chips are used to code one user data symbol. Therefore, higher SFs will subsequently reduce the
data rate. WCDMA supports a maximal chip rate of 3.84 Mchips/s and the available downlink
SFs vary from 4 to 512.

2.4 Transport Channels

In the UTRAN, data generated at higher layers are carried over the air interface using transport
channels. All these channels are defined as unidirectional (i.e. uplink or downlink).

The are two types of transport channel: Dedicated CHannels (DCHs) and common channels.
The main difference between them is that a common channel is a resource divided between all
or a group of users in a cell, whereas a DCH resource (identified by a certain code on a certain
frequency) is reserved for a single user only.

The only dedicated transport channel is the Dedicated CHannel (DCH). It carries the service
data and control information of a single user at variable bit rate. The DCH is characterised by
features such as fast power control and fast data rate change on a frame-by-frame basis.

There are six different common transport channel types defined for the Rel’99 UTRAN.
We only focus on two of them that are described in the PhD Thesis [1] and implemented in
the NT: “The Downlink Shared CHannel (DSCH) which carries signalling and service data of
several users at variable bit rates, and the Forward Access CHannel (FACH) which carries also
the service data of several users but at a fixed bit rate.” [1]

As presented in Table 2.1, the FACH and DCH carry user data flow with a fixed bit rate
depending on their SF. The DSCH has a variable bandwidth since its SF occupies the free room
left in the OVSF tree after the DCHs SF allocation.

Chapter 2 UMTS 2.5 RLC modes • 9

Table 2.1: Comparison of different transport channels.

Channel DCH DSCH FACH
SF Fixed [512-4] Variable [256-4] Fixed [256-4]

Multiusers Dedicated Shared Shared

2.5 RLC modes

The Radio Link Control (RLC) protocol provides segmentation and retransmission services for
both user and control data. The UMTS RLC layer is able to transmit RLC Protocol Data
Units (PDUs) in three different modes: Transparent Mode (TM), Unacknowledged Mode (UM)
and Acknowledged Mode (AM).

Hereunder is a brief description of these modes.

Transparent Mode

The TM is the simplest mode, no protocol overhead is added to higher layer data. A TM RLC
entity does not add any RLC protocol overhead to Service Data Units (SDUs). The entity is
transparent to SDUs.

Unacknowledged Mode

In UM, no retransmission protocol is in use. There is no guarantee of correct delivering of RLC
PDUs to the peer entity. However, RLC overheads are adding to SDUs. The header provides
a sequence number. Since RLC PDUs are numbered, a UM entity can provide segmentation
of SDUs and their reassembling at the receiver side. If a missing RLC PDU is detected by the
receiving UM entity, the latter automatically discards all RLC PDUs that belong to the same
SDU.

Acknowledged Mode

AM is the most elaborated RLC mode. This mode is used if a reliable data transfer over the
UMTS radio interface is required. An AM RLC can deliver reassembled SDUs to the upper
layer either in sequence or out of sequence. This configuration of the RLC uses the Automatic
Repeat reQuest (ARQ) technique. It provides reliable data transfers and handles errors by
retransmitting data according to receiver demands. This technique requires one bi-directional
connection between the transmitter and the receiver, i.e. the UE and the NodeB. The direction
from the transmitter to the receiver is used for data transmission. The opposite direction is used
by the receiver to transfer status reports. They allow the receiver to inform the transmitter about
the RLC PDUs which have to be retransmitted.

2.6 QoS traffic classes

3rd Generation Partnership Project (3GPP) defined four QoS traffic classes : Conversational,
Streaming, Interactive and Background. The representative applications are, respectively, VoIP,
web browsing, video streaming and e-mail. Each of these classes have some End-to-End (E2E)
QoS requirements to be met by the network in order to function properly. For example,

10 • 2.7 HSDPA Chapter 2 UMTS

e-mail applications (Background) have a better tolerance to delays than VoIP applications
(Conversational).

2.7 HSDPA

High Speed Downlink Packet Access (HSDPA) is an upgrade on Rel’99 of the UMTS standard.
This is a new standard, defined as UMTS Release 5, that extends WCDMA to increase the
downlink communication rate and reduce the latency of the link. It enables a data speed
of approximately (maximum) 14 Mbps. The Round-Trip Time (RTT) can be pushed below
70 ms while the RTT of a WCDMA UMTS Release 99-dedicated channel is typically 100–200 ms.

HSDPA is a protocol of the High Speed Packet Access (HSPA) family, positioned as a 3.5G
service. It functions as a bridge between WCDMA, generally known as 3G services, and the 4th

Generation (4G) service slated for future introduction.

In HSDPA, the variable SF and the fast power control are disabled and replaced by means
of Adaptive Modulation and Coding (AMC), extensive multi-code operation and a fast and
spectrally efficient retransmission strategy. The main characteristics of HSDPA are described
hereunder.

Hybrid ARQ (HARQ) improves on the conventional ARQ that is essential to wireless
communications under constantly varying conditions. The conventional ARQ requests
repeatedly for a packet data with a decoding quality when an error is found. Differently from
this, HARQ combines retransmitted data with received data that was not yet decoded in order
to improve the reception quality and achieve a more efficient transmission.

Adaptive Modulation and Coding Scheme assesses the status of continuously varying
radio wave propagation paths while maintaining a constant transmission power and then
automatically selects the optimal modulation method. To maintain a good spectral efficiency
and to enable a large dynamic range of the HSDPA link adaptation, a user may simultaneously
utilise up to 15 multi-codes in parallel. By using a more robust coding, a fast HARQ
and a multi-code operation, a variable SF is not needed anymore. The SF is fixed and is
always 16. The total number of channelisation codes with SF 16 is respectively 16. However,
as a code space for common channels is needed, the maximum usable number of codes is set to 15.

High-Speed Downlink-Shared Channel (HS-DSCH) is the transport channel carrying the
user data with HSDPA operation. This channel is dynamically time- and code-multiplexed and
allocated to multiple users’ data transmissions, resulting in more efficient allocation of wireless
resources. The idea in HSDPA is to enable a scheduling such that, if desired, most of the cell
capacity may be allocated to one user for a very short time, when conditions are favourable. The
Transmission Time Interval (TTI) (or interleaving period) has been defined to be 2 ms to achieve
a short round-trip delay for the operation between the terminal and NodeB for retransmissions.
Therefore, for a given 2 ms frame, data may be sent to a number of users simultaneously, using
different channelisation codes. The maximum number of users to receive data on a given 2 ms
frame is determined by the number of allocated channelisation codes.

Chapter 2 UMTS 2.8 Evolution • 11

2.8 Evolution

WCDMA was the first air interface adopted by the European Telecommunications Standards
Institute (ETSI) for the 3G, called UMTS Release 99 (Rel’99).

Later, 3GPP specified an important evolution on top of WCDMA, called HSPA, composed
of two major steps: High Speed Downlink Packet Access (HSDPA), called UMTS Release
5 (Rel’5) and High Speed Uplink Packet Access (HSUPA), called UMTS Release 6 (Rel’6).
Further HSPA evolution is specified in 3GPP UMTS Release 7 (Rel’7), also known as HSPA+.

In the same time, 3GPP is also working on a new radio system called Long-Term
Evolution (LTE). The standard was frozen in December 2008. UMTS Release 7 (Rel’7)
and UMTS Release 8 (Rel’8) solutions for HSPA evolution will be worked in parallel with
LTE development, and some aspects of LTE work are also expected to reflect on HSPA evolution.

Fig. 2.7 shows the peak data rate evolution through the different releases.

Figure 2.7: Peak data rate evolution for WCDMA. [3]

Chapter 3
The Emulating UTRAN Testbed

This chapter gives a short description of the Namur Testbed that emulates a UMTS Release
99 access network (the UTRAN part). This testbed was realized by Hugues Van Peteghem
as part of his PhD Thesis at the University of Namur that he handed in March 2008. The
following description is based on some excerpts from his PhD Thesis, “Building a Testbed
Emulating Cellular Networks; Design, Implementation, Cross-Validation and Exploitation of a
Real-Time Framework to Evaluate QoS and QoE in the UTRAN” [1]. This chapter focuses on
the characteristics of the testbed that are related to the scope of our work. For further details,
please refer to the Thesis [1].

3.1 Testbed goals

As described in [1], to develop and test new wireless technologies, different methodologies are
available and can be classified in four tracks.

The first track uses analytical developments. Thanks to network calculus tools, statistical
modelling and finite state machines, it is possible to create a model of the behaviour of computer
networks.

The second track is the simulation type. Due to the complexity of communication networks,
it is difficult to have a good understanding of them while using only analytical studies. Networks
simulators allow to test scenarios that might be difficult or expensive to emulate using real
hardware. For example, simulating the effects of a sudden burst in traffic or a DoS attack on a
network service.

The third track is the measurement campaigns on a testbed. When the size and
the complexity of a network simulation increase, networks simulators are limited due to
scalability issues and implementation difficulties. In this case, testbeds can be considered as a
complementary tool. Besides being cheaper than a real deployment, they emulate real network
behaviour in a more accurate way than a simulator would do in complex world simulations (due
to hardware limitations). Moreover, testbeds are more suitable to reproduce the behaviour of a
single user while simulators are more suitable for global systems performance analysis.

The fourth track combines all the field tests. While testbeds are based on assumptions that
could influence and bias the conclusion made, the advantage of field tests is that results are

14 • 3.2 Testbed architecture Chapter 3 The Emulating UTRAN Testbed

directly applicable without any post-processing. However, this approach is more expensive and
has reproducibility issue of test environment when confronting different results.

The approach of Hugues Van Peteghem’s Thesis is a third track approach while using the
other tracks to cross-validate the obtained results. The objective was “to establish a suitable
open-source software/hardware RT platform in order to thoroughly analyse and improve QoS
management in the UTRAN.” [1]

In contrast with most testbeds, that are restricted to a single service, the NT is open
to all typical UMTS applications. “It shall work on an acceptable QoS level for all these
simultaneously active services e.g. a population of users within the same cell, some of them
having standard conversations (Conversational), others browsing the Internet (Interactive)
or retrieving their Emails (Background), while a few more users arrive and initiate a video
streaming session (Streaming).” [1]

In addition to the possibility to test E2E QoS performance (metrics like packet delay, loss
rate, jitter, cell throughput, etc.), the NT is able to assess the QoE perceived by the end user
in many different scenarios (mobility, traffic load, traffic type, etc.).

These advantages give operators and infrastructure manufacturers the possibility to test and
fine tune their existing algorithms or new algorithms based on specific scenarios.

3.2 Testbed architecture

As shown in Fig. 3.1, the NT “emulates a Rel’99 UTRAN segment consisting of one RNC
managing four NodeBs, each of them serving a population of UEs. The NodeBs are placed on
a hexagonal grid being the standard macrocellular set-up [6, 7].” [1]

The NT, that emulates this UTRAN segment, is composed of nine Linux-operated personal
computers. Linux Red-Hat-based Fedora Core 6, kernel 2.6.20 was chosen as operating system
due to its flexibility, its ability of being customized, and its cost/performance ratio. Computers
are interconnected with 100 Mbit/s Ethernet links, creating a little network working over IP
version 6 (IPv6) and isolated from the Internet. From the implementation perspective, this
testbed is fully developed in the C language and can be seen as an assembly of numerous modules.

The network is subdivided in three computer groups (A, B and C).

Group A - NodeBs

“The computers in group A represent four independent trisectorial macrocell NodeBs. Their
role is to take care of the traffic coming in from the UE (resp. RNC) and to forward it to the
RNC (resp. UE). Most of the QoS management functions are performed at these spots as they
are the bottlenecks of the UTRAN (border between the wireless and the wired networks). Since
the network does not contain any real NodeB, these computers handle the emulation of the
UMTS air interface (BER, Service Data Unit (SDU) segmentation), etc.).

In the early UMTS standardisation the NodeBs were seen as simple access points linking
the UEs to the UTRAN and the CN. With the introduction of HSDPA, they gained more
responsibilities in terms of QoS management and packet scheduling. Therefore, in anticipation

Chapter 3 The Emulating UTRAN Testbed 3.2 Testbed architecture • 15

Figure 3.1: UTRAN testbed representation. [1]

16 • 3.3 Testbed characteristics Chapter 3 The Emulating UTRAN Testbed

of a future evolution of the testbed, the computers emulating the NodeBs are designed in a Rel’5
philosophy while the testbed is still emulating a Rel’99 UTRAN.” [1]

Group B - UEs

“Each computers of this group act as a population of UEs attached to their Serving NodeB
(SNodeB) (emulated on the attached A group computer). Each of them generates several
uplink flows (from the UE to the RNC) representing the emulated UEs network activity.

In order to simultaneously emulate several autonomous UEs on a single computer, these
computers use a control panel based on virtual network interfaces management. A physical
network interface can have multiple IP addresses assigned to it.” [1]

Group C - RNC

This group is only composed of one computer acting as the testbed’s unique RNC. “It is the
sink of the traffic coming from the four NodeBs and generates the downlink traffic flows (from
the RNC to the UEs) for each of the emulated UEs. As in a real UTRAN, the complexity is
gathered in the RNC since it is in charge of the CAC and RRM. It consequently controls the
entire emulation.” [1]

3.3 Testbed characteristics and limitations

This section describes the characteristics and limitations of the NT which are related to the
scope of our tests and experiments in real environment.

3.3.1 RAN & Air Interface

As there is no radio transmissions, the lower layers of the UMTS air interface are emulated
over a classical Ethernet (wired) link as shown in Fig. 3.2, as well as the properties of
wireless networks. The most important features that characterize these networks are a limited
bandwidth, more errors encountering than wired networks, and these errors are time-correlated.

The limited bandwidth availability over an air interface is emulated thanks to the Token
Bucket traffic shaper and rate limiter. The Token Bucket controls the amount of data that is
injected into a network.

The Traffic Controller Network Emulation (NetEm)1 is used to emulate the complex
behaviour of the variable BER property. Indeed, this property is “slightly more complicated to
emulate, since it has to take into account a larger number of parameters such as user speed, its
position, the environment in which it is evolving, etc.” [1]

Also, “the RAN RTT (computed between the RNC and the UE) is much more important
in a real UTRAN since the packets are evolving on a wired network. In order to be as close
to reality as possible, the testbed includes a fixed delay to each packet transiting over the
emulated layers. This delay has been fixed to 50.2ms following the 3GPP specifications [8].

1NetEm is a waiting queue capable to delay, drop, corrupt, duplicate or even record packets.

Chapter 3 The Emulating UTRAN Testbed 3.3 Testbed characteristics • 17

Figure 3.2: UMTS lower layer emulation. [1]

An other assumption which had been set due to the air interface emulation is the DCH
allocation time. This is the delay a UE undergoes between its DCH request and the time point
it transmits data through it. This allocation time mainly contains the Call Admission Control
(CAC) procedure made by the RNC to allocate a SF to the UE. This delay duration has been
fixed to 900ms as proposed in [9].” [1]

Finally, the NT focuses only on two of the RLC modes: Transparent Mode (TM) and
Acknowledged Mode (AM); this choice has been determinated by the kind of traffic generation.

3.3.2 Downlink-Oriented

“The testbed is focused on the downlink. The major part of the data is transported in this
direction. Therefore, the air interface emulation influences only on this direction. For example,
considering an Interactive session, the testbed affects, with a given Bit Error Rate (BER) and
bandwidth restriction, the Transport Control Protocol (TCP) segments used to download a
web page, but the Acknowledgement (ACK) segments returned by the UE do not suffer any
additional perturbation or bandwidth restriction.”[1]

3.3.3 Traffic Generation

The traffic generation inside the NT is made by the Traffic Generator (TG) [10] that creates
the network load. This traffic generation can be done following the different traffic classes that
have been defined by 3GPP and which need to be supported in UMTS (see Section 2.6).

The traffic generator uses stochastic distributions of packets carrying dummy data to mimic
at the best traffic patterns from real life applications. This way, there is no need to create many
real life user sessions. However, it is still possible to introduce a real life application session

18 • 3.3 Testbed characteristics Chapter 3 The Emulating UTRAN Testbed

during an emulation. This allows the evaluation of the user’s QoE. For example, introducing a
real video streaming session while the emulation is running would give a good hint of what a
UMTS user would experience under such circumstances.

3.3.4 Mobility Management

In the previous representation of the emulated world (see Fig. 3.1), NodeBs were considered as
omnidirectional (Fig. 3.3(a)). In fact, they are composed of three sectors emitting in different
directions (Fig 3.3(b)).

(a) Omnidirectional NodeBs. (b) Trisectorial NodeBs

Figure 3.3: Emulated world representations. [1]

To avoid boundaries (if a UE “leaves” the emulated world), the testbed uses a wrap around
technique. This way, “if a UE is about to leave the emulated world by crossing one edge, it
reappears at the opposite edge (still within the same cell if necessary), as if moving on a torus
(Fig. 3.4).” [1]

Figure 3.4: Torus world. [1]

Inside this emulated world, “UEs are able to move with four different fixed speeds defined
by the 3GPP in [11]: 3 km/h representing a pedestrian, 30 and 70 km/h, which represents a UE
on board of a vehicle within city limits and 120 km/h, which represents a UE on a train or on
a car on the speedway.” [1]

Chapter 3 The Emulating UTRAN Testbed 3.3 Testbed characteristics • 19

The UEs move following a random walk scheme based on the Gauss-Markov mobility model
presented in [12, 13]. The UEs motions follow some real physical constraints. For example, a
vehicle moving at 120 km/h cannot turn as abruptly as a pedestrian.

Of course, the NT manages handovers and interference. When a UE is moving, it has to
stay connected to the network, and so to a NodeB. Handover is the mechanism which appears
when a UE switches from a NodeB to another NodeB.

Chapter 4
State of the Art

This chapter aims at describing the different works and tools prior to our work. Tools and
publications about the way to collect information on the access network have been explained;
this is the base of our work on the environment. The second part of the Thesis is to perform
several experiments. Because our experiments aimed at validating similar experiments described
in [1], we have not reviewed the literature for references related to user experience in 3G
networks.

Before starting to develop the approach of the NT validation, a choice has been made.
Actually, there are different ways to work with a UMTS connection:

1. Direct access to a cell; it is necessary to obtain an agreement with a manufacturer or an
operator.

2. Regular access to a commercial network by means of any Network Interface Card (NIC):
PCMCIA card, USB card, mobile phone, etc.

3. Use of a Femtocell [14]. This is a new technology of indoor, residential cells. It is based
on the same idea than a WiFi hotspot but on the 3G technology.

As the goal of this Thesis is to validate a UMTS emulation, we had to choose among these
three possibilities.

The direct access is no longer an option: in the past the CINI laboratory had been granted
access to an Alcatel test cell, but for now Alcatel has suspended the access right.

For the Femtocell, it is too early to purchase hardware as a residential customer.
Therefore our approach is focused on a commercial access. In addition, we will see that the

CINI laboratory has performed different tests on UMTS (refer to Section 5.6).

As mobile phone is the most widespread hardware in relation with cells, tools have been
developed to use this interface through the network. cellTrack has been identified as such
tool [15].

As we see in Fig. 4.1, this software reveals useful information: cell ID, signal strength, etc.
Nevertheless it has been only implemented for Symbian OS; it was therefore not possible for us
to use it.

Operators are used to check the quality of their network using professional TEst Mobile
System (TEMS) product. This kind of mobile phones integrates functions to detail the

22 • Chapter 4 State of the Art

environment. This is the case for the experiments performed in Vienna [16, 17] . Three different
operators have been used at several locations. The method takes measurements on UMTS
network especially about the transport channel. The necessity to use a TEMS product is not
compatible with our approach.

Figure 4.1: CellTrack on Symbian OS [15].

Except for the work over UMTS through a PlanetLab node (refer to Section 5.6), to the best
of the authors’ knowledge, no article in the literature jointly addressed environment tests over
a 3G connection with a PCMCIA at the time we designed our experiments in Autumn 2008.

Since then, different articles have been published, describing similar experiments [18, 19].
In particular, [20] presents results of tests in 3G networks. The configuration was the same,
the technology was UMTS and the main objective was to determine the transport channel.
Their method was only focused on this parameter. It was too late to integrate their solution,
nevertheless, our results indicate that this approach would not have changed much (refer to
Section 7.5.1).

Therefore our approach is based first on the work realized by the CINI laboratory as later
detailed in Chapter 6.

Chapter 5
PlanetLab

5.1 Introduction

This chapter aims at describing the PlanetLab (PL) environment. This environment has been
used to perform a part of the experiments. We are going to describe its features and discuss its
merits.

The CINI laboratory (where the tests have been performed) is registered in OneLab project
where it is responsible of the deployment and the integration of the UMTS connection on a
PlanetLab node; to realize the project they use an approach with Private OneLab. Finally we
explain why PlanetLab has been integrated in our tests.

5.2 PlanetLab presentation

PlanetLab is an open, globally distributed platform for developing, deploying and accessing
planetary-scale network services.

PlanetLab’s goal is to support both short-term experiments and continuously-running
network services, and ultimately to develop and demonstrate a new set of network services
at planetary scale. It is available as a testbed for computer networking and distributed systems
research. It is not a grid infrastructure, a similar or a research network separated from the
internet [21].

The PlanetLab Consortium is established to support and enhance the PlanetLab platform
in meeting these goals. It is responsible for overseeing the long-term growth of PlanetLab’s
hardware infrastructure; designing and evolving its software architecture; providing day-to-
day operational support; and defining policies that govern its appropriate use [22]. PlanetLab
members actively participate in developing tools for the greater good of the community, and as
a result each user has a wide choice of tools to use in order to complete regular slice maintenance
tasks.

This is a group of computers, using internet as a communication media, It was established
in 2002. As of March 2009, PlanetLab was composed of 913 nodes at 460 sites worldwide (see
Fig 5.1).

The architecture of PlanetLab is based on two important levels: the node-level and the
network-level. The first one means that on each node several virtual machines can run at
the same time, each one offering a different service. We have to note that the resources are
distributed fairly and that the services are isolated from each other. Concerning the second level

24 • 5.3 Features of this testbed Chapter 5 PlanetLab

Figure 5.1: PlanetLab Nodes in the world (March 2009) [23].

(network-level), it manages the different nodes, it groups the authorities for the management
and the slices [24].

In distributed testbeds, a portion of the testbed resources, called a slice, is assigned to each
experiment. Slicing is usually implemented by means of virtualization techniques.

The slices are a set of virtual machines at different PlanetLab Nodes. An instance of a slice
on a certain host is called a sliver. The authorities control softwares running on the node and
check the security.

Regarding the slices, the authorities manage the namespaces on nodes and create the slices
for the users [25].

5.3 Features of this testbed

First of all, the network size can be underlined. Indeed, the number of nodes available for the
applications executions is impressive.

The next point is the node geographic distribution: PlanetLab enables to test new ideas
under real Internet conditions which involve a large variety of non-controllable conditions.

Finally, the node conditions are also peculiar: machines shared by a large number of users
and a node can die, can be updated, etc. We can mention a few other competing testbeds
which have not these very features of PlanetLab: Orbit [26], Emulab [27], Vini [28].

The objectives followed by PlanetLab are to provide a robust environment to the variations
of the resources availability. Therefore, the user obtains also a realistic execution environment
which enables to replicate tests in controlled conditions. The main goal of PlanetLab is to
produce a “real” network. PlanetLab can support seamless migration of an application from
an early prototype, through multiple design iterations, to a popular service that continue to
evolve.

This infrastructure is able to support different experiments at the same time. A node of
PlanetLab works with shared resources as the CPU, memory, storage, etc. Obviously, there are
several points which are required and described in Table 5.1. These requirements, specifications

Chapter 5 PlanetLab 5.3 Features of this testbed • 25

are described by the management of PlanetLab composed of Princeton University, University of
California and University of Washington.

Table 5.1: Minimum CPU, RAM, and storage requirements for a node [29].

Until 12/31/2007 1/1/2008 to 12/31/2008 1/1/2009 to 12/31/2009
CPU Intel Pentium 2.4Ghz Intel Pentium 3.2Ghz Intel Xeon 30x0 2.4Ghz

AMD 2400+ AMD 3200+, (Mcore/Core2Duo)
or 2.4Ghz
MultiCore/DualCore

RAM 1 GByte 4 GByte 4 GByte
DISK 180 GByte 320 GByte 500 GByte

The interface to manage a node, the users, the slices, etc. is a web interface. The following
screenshot (Fig. 5.2) gives a thumbnail of the administration of a node.

Figure 5.2: Screenshot of the web interface.

26 • 5.4 PlanetLab and OneLab Chapter 5 PlanetLab

5.4 PlanetLab and OneLab

OneLab is a European Project, funded by the European Commission. The project started in
September 2006 with two overarching objectives: to extend the current PlanetLab infrastructure
and to create an autonomous PlanetLab Europe (PLE) (migrating European nodes and slices
to an independent EU authority) [24].

PlanetLab Europe is a Europeanwide research testbed that is linked to the global PlanetLab
through a peer-to-peer federation:

• PlanetLab is engaged in a federation trial with the OneLab project.

• OneLab is federating PlanetLab Europe which extends the PlanetLab service across
Europe.

• OneLab is federating with other PlanetLab infrastructures worldwide (e.g. PlanetLab
Japan) and with other types of testbeds.

The OneLab project supports network research and evaluate design solution for the future
Internet technologies. OneLab is extending PlanetLab Europe into new environments, beyond
the classic wired internet. OneLab is deepening PlanetLab Europe by incorporating new
monitoring tools and new functionalities. It is a selected PlanetLab but it adds diversity [30].
The objectives of OneLab is not to start from scratch. It started from an existing testbed,
namely PlanetLab (PL) (see Fig. 5.3). It also works on the “validation/integration” idea; to be
sure that once the functionality is added, it can be deployed on every node. OneLab has the
merit to have an international exposition, just like PlanetLab.

Extending PlanetLab, it adds wireless capabilities to the kernel: support for WiFi, UMTS
(project of the CINI laboratory), WiMax, wireless ad hoc networks, emulated (for emerging
wireless technologies). New features and technologies are integrated into the system when they
become available by means of Private OneLab (see Section 5.5). It focuses on a PlanetLab
everywhere, Internet Protocol (IP) on everything!

Figure 5.3: OneLab project’s evolution [31].

Chapter 5 PlanetLab 5.5 Private OneLab and PlanetLab • 27

5.5 Private OneLab and PlanetLab

The objective of extending PlanetLab has been pursued in OneLab through development of a
number of extensions to the PlanetLab architecture, aimed at enriching it with new wireless
access technologies, with powerful traffic monitoring instruments and with new emulation
capabilities [32].

These new features have been implemented and validated in a project-wide distributed
testbed, the so-called Private OneLab, whose resources are provided by and accessible to OneLab
members only. Private OneLab serves as an incubator of new features to be eventually included
in the public infrastructure. As these new features are thoroughly tested and validated, they
can be later moved into the public PlanetLab Europe testbed [24].

One project of OneLab was the integration of the UMTS connection into a PlanetLab node.
This objective is assigned to the CINI laboratory. For this new possibility, the team decided
to choose a public connection because it is widely available and better suited to replicate real
world scenarios. In this configuration, the Ethernet interface is used for control data and UMTS
for the experiments. A slice user can use the UMTS connection [23].

5.6 Why integrate PlanetLab into our experiments?

The CINI laboratory has deployed its UMTS connection on a Private OneLab node which is
based on a Linux system.

It is interesting to take an advantage of the UMTS link through the PlanetLab network. The
objective is to add a new parameter in the validation: the hardware and the system (see Section
6.1) for the hardware differences. It is possible that both new elements involve the results? The
cause could be the kernel which is different (on OneLab, it is a modified Linux kernel); an other
one could be the architecture of the system which involves a limited root access on OneLab
(problem met by the CINI to establish the UMTS connection), etc. The following tests and
experiments take into account this parameter and evaluate it.

5.7 Summary of the projects and acronyms

Figure 5.4 and Table 5.2 illustrate the different links existing between the projects.

Table 5.2: Projects around PlanetLab [33].
Project Name Acronym Description
PlanetLab PL Project name of the international testbed

PlanetLab Central PLC Reference to the main PlanetLab, federated in the USA

OneLab / European research project improving PLC

PlanetLab Europe PLE European PLC administered by OneLab (UPMC)

Private OneLab PrivateLab Private experimental PlanetLab, new features for PLE

Finally we can mention Private PlanetLab. It groups each project which link to PlanetLab
Central (PLC): AT&T, EverLab, KAIST, OneLab, Polish Telecom, University of Tokyo, Vini.

In the following chapters, PrivateLab is used to mention Private OneLab; PlanetLab means
PlanetLab Europe. For the different schemas, these abbreviations are used: PlanetLab Central
(PLC), PlanetLab Europe (PLE), PlanetLab Node (PLN) and PrivateLab Node (PRN).

28 • 5.7 Summary of the projects and acronyms Chapter 5 PlanetLab

Figure 5.4: Links between the different projects [31].

Chapter 6
Description & Initialization

The main goal of this Thesis is to compare the UMTS capacities in a real environment with the
situation of the NT. The tests are deployed on a PlanetLab environment, it is a static approach.
Then, in addition, we are going to see if this PlanetLab configuration has an influence on the
UMTS connection; to compare the results a common Linux-based laptop is used as a reference.

6.1 Global architecture

In this section, we explain the situation of the laboratory in relation with the UMTS connection
and the PlanetLab Europe (PLE) association. This association is a group of computers available
as a testbed (see Section 5.1). PrivateLab is a small PlanetLab like and is used at the CINI
laboratory in order to test features before introducing them into the PlanetLab Node (PLN)
(see Section 5.5 and [34]).

The main node to use a UMTS connection is the PrivateLab Node (PRN). As explained in
Section A, we obtain a UMTS IP address through a ssh connection on the PrivateLab Node and
few dedicated commands. In the case of the Linux Box (LB) we use our own script. After these
steps, we have an Internet access via the UMTS Personal Computer Memory Card International
Association (PCMCIA) card on PrivateLab.

6.2 Hardware

As shown in Fig. 6.1, we work on three systems: a LB, a PlanetLab Node and a PrivateLab
Node. In addition, we use a Vodafone PCMCIA card for our UMTS connection, and for this
one we have access to three Subscriber Identity Module (SIM) cards.

The Linux Box makes reference to a Toshiba laptop with Fedora Core 6 as operating system.
A PCMCIA card is also installed with both interfaces: /dev/noz0 and /dev/noz2. We have a
full access to this laptop.

Regarding the PlanetLab Node, we work on the onelab09.inria.fr node on which we are
logged in uninaonelab umts slice.

Concerning PrivateLab, we work on the onelab03.dis.unina.it node. On this node we
have access to the unina umts slice and also the root account. A PCMCIA card is installed on
onelab03.dis.unina.it and then we have access to the same interfaces that on LB: /dev/noz0
and /dev/noz2. It is also important to take into account that the “OneLab” operating system
is based on a Fedora 8 distribution.

30 • 6.2 Hardware Chapter 6 Description & Initialization

Figure 6.1: Global view.

In order to compare easily the different hardwares, Table 6.1 summarizes the situation.

Table 6.1: Hardwares of the systems.
CPU Cache RAM OS - GNU/Linux

Linux Intel(R) Pentium 4(TM) 2 GHz 512 KB 512 MB 2.6.18-1.2798.fc6

PlanetLab Intel(R) Xeon(TM) 2.80GHz 512 KB 3804 MB 2.6.22.19-vs2.3.0.34.29.onelab

PrivateLab Intel(R) Celeron(TM) 366 MHz 128 KB 256 MB 2.6.22.19-vs2.3.0.34.28.onelab

The hardware is deployed in the laboratory as shown in Fig. 6.2. The main point to note, is
that the Linux Box is at the center of the office and elevated to 1 meter above the ground. For
the PrivateLab PCMCIA card, it is 20 cm above the ground and close to the wall.

Figure 6.2: Laboratory at the University of Naples.

Chapter 6 Description & Initialization 6.3 Setup of a UMTS connection • 31

6.2.1 PCMCIA card

In order to obtain a UMTS connection on a PrivateLab Node and on the Linux Box, we need
to host a UMTS NIC (see Fig. 6.3).

Manufacturer: Option Wireless Technology

Model: GT 3G+ EMEA

Hardware Revision: 2.2

Figure 6.3: Vodafone UMTS card.

6.2.2 SIM cards

In our environment we will work with three different SIM cards. These cards come from two
distinct providers: Vodafone and WIND. We can also note we have three different contracts:
Vodafone post-paid (VPOST), Vodafone pre-paid (VPRE) and WIND pre-paid (WIND).

In this Thesis we use both providers to illustrate explanations, tests and experiments without
making a difference (the exception is the firewall problem which concerns only the Vodafone
provider, see Section 7.4).

6.3 Setup of a UMTS connection

As we need a root access to setup the connection, different scripts have been written by the
CINI Lab team to work on a PrivateLab Node. Indeed, the Chapter 5 explained that to deploy
a new hardware on PLE, it takes a long time to be sure that there is no problem, it needs to be
validated. This reason involves the usage of the PRN of the CINI laboratory which is based on
a similar structure.

Nevertheless, the second node used for the tests and experiments is a PlanetLab Node because
it does not need a special hardware (onelab09.inria.fr). Therefore, on the PrivateLab Node,
the scripts allow a user working on a particular slice to obtain the root access (necessary to use
UMTS connection) for a defined program [35]. IT is not the same for the Toshiba Laptop since
we have a full access.

6.3.1 Nozomi Driver

First of all to use the UMTS NIC on both environments (LB and PRN), the PCMCIA card
must be recognized as a device by the operating system. As described in [35], it is necessary
to install the Nozomi driver which is freely available at [36]. We need to compile the driver
and to add the module into the kernel directory. Once the driver is loaded and the UMTS NIC
plugged in, four new devices are detected if the card is installed correctly.

32 • 6.3 Setup of a UMTS connection Chapter 6 Description & Initialization

Only two ports (#0 and #2) can be used:

[root@localhost ~]# ls /dev/noz*

/dev/noz0 /dev/noz1 /dev/noz2 /dev/noz3

The advantage of having two ports is that you can have your Point-to-Point Protocol (PPP)
link on one port (refer to Section 6.3.4) and several AT commands on the other port. For
example, you can monitor the data connection, check the signal strength or the registration
without breaking the PPP data link.

6.3.2 The PPP protocol

Assuming the NIC is an area covered by the provider of its SIM card, PPP is used to set-up the
UMTS connection. PPP is the protocol used for establishing Internet connections by using dial-
up and Digital Subscriber Line (DSL) modems, as well as many other types of Point-to-Point
Protocol links. The pppd daemon works together with the kernel PPP driver to establish and
maintain a PPP link with another system (called the peer), and to negotiate IP addresses for
each end of the link. The daemon can also authenticate the peer and/or supply authentication
information to the peer.

6.3.3 wvdial

wvdial is a PPP dialer, which starts the PPP protocol in order to connect to the Internet,
interacting with the local PPP daemon. Once installed, it is necessary to edit the configuration
file /etc/wvidial.conf. In fact when wvdial starts, it first loads its configuration from this file
which contains basic information about the modem port and init string, as well as information
regarding the Internet Service Provider (ISP), such as the phone number, the user; name, and
the password.

#/etc/wvdial.conf

[Dialer Defaults]

Phone = *99***1#

Username = any

Password = any

Stupid Mode = 1

Dial Command = ATD

[Dialer pcmcia]

Modem = /dev/noz0

Baud = 460800

Init1 = ATZ

Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0

ISDN = 0

Modem Type = Analog Modem

[Dialer 2gonly]

Init3 = AT+COPS=0,0,"I WIND",0

[Dialer 3gonly]

Init3 = AT+COPS=0,0,"I WIND",2

[Dialer wind]

Init4 = AT+CGDCONT=1,"IP","internet.wind"

Details:
The *99***1# is the provider’s phone number.
The user name and the password are not
defined because they are hard coded in the SIM
card.
Stupid Mode set on 1 tells wvdial not to wait
for a prompt, just start pppd immediately; this
is required because there is no authentication.
Next we find the Dial Command. On the web,
we can find two commands ATDT and ATD. We
chose ATD because this is the standard given
in [37]. For the configuration of the modem,
we ask to wvdial to work with /dev/noz0
interface of the UMTS NIC.
Baud is the speed at which wvdial will
communicate with the modem.
wvdial can use up to nine initialization strings
to set up your modem. Before dialling, these
strings are sent to the modem in numerical
order.

Chapter 6 Description & Initialization 6.3 Setup of a UMTS connection • 33

Init 1 is ATZ, it initializes the modem. Then Init 2 groups different commands which
configure the echo, verbose, character modes, also the way to answer. FCLASS informs that some
fax or voice capabilities are present.

For the third step we can make a choice for the configuration of the provider. The first 0
specifies that we configure the home network; the second one the way to define the provider
(short name, long name, etc.); and then the technology that we use (0 is for GSM and General
Packet Radio Service (GPRS) and 2 is for UTRAN). The exact name of the provider is obtained
by the AT command AT+COPS=? (as explained in Section 6.3.4).

The last step of the configuration defines the Packet Data Procotol (PDP) context where
we have to specify our operator’s Access Point Name (APN) (in this case, it is the APN of the
WIND provider). The information about the AT commands can be found in [37] and for the
wvdial configuration [38].

6.3.4 gcom and minicom

Before starting a PPP connection, the UMTS NIC must be initialized and registered on the
network. For this purpose we can use gcom or minicom to check the registration.

gcom is a scripting language interpreter, useful for establishing communications on serial
lines and through PCMCIA modems as well as GPRS and 3G datacards.

minicom is a lower level program, a terminal which can directly dial with the modem. It has
the great advantage to interpret AT commands without any script.

Once the UMTS NIC is plugged in, the Light-Emitting Diodes (LEDs) (blue and red, for the
Vodafone Option card) of the card will be turned on; the SIM card is registering to the network.
By default the card prefers a UMTS network but if it does not find a UMTS network (blue
LED), the card will choose a GSM network (red LED). If we want to have more information
about the registration, we can list all available providers (with the operator script of gcom or
with the AT command AT+COPS=? in minicom) and then look at the network that the card has
chosen:

minicom

at+cops=?

+COPS: (2,"I WIND","I WIND","22288",2),(1,"I WIND","I WIND","22288",0),

(1,"vodafone IT","voda IT","22210",0),(1,"vodafone IT","voda IT","22210",2),

(1,"I TIM","TIM","22201",0)

OK

We can see that in our case few networks are available. We can look in details the information
of our provider:

(2,"I WIND","I WIND","22288",2) 2: current network. 1 is for an available
network.
I WIND: is the short name of the provider.
I WIND: the long name (the same in this case).
22288: is the provider ID code.
2: is the technology used. Here, it is UTRAN;
GSM is 0.

34 • 6.3 Setup of a UMTS connection Chapter 6 Description & Initialization

Then we can check the registration on the network (with gcom or the AT command
AT+COPS?).

minicom

at+cops?

+COPS: 0,0,"I WIND",2

0: means that we are in the automatic mode.
0: we use the long name of the provider.
I WIND: the provider.
2: the techonology used (UTRAN).

The last information is very important because if the registration is made on the GSM
mode, after the ppp initialization, we will get an IP address but on GPRS and not UMTS.

The solution to avoid this problem is to put the card only in UMTS mode. Hence GSM
networks will not appear. We can always match gcom and the AT command in minicom (3G is
the script, and it uses AT OPSYS=1). When completed, it will be the default setting.

6.3.5 UMTS connection

In the following paragraphs we describe the process to obtain the connection on both different
hardwares with a UMTS cell (see Fig. 6.4).

Figure 6.4: GSM, UMTS cells.

Linux box

Now that each step has been described, we can have a look on the commands used on the LB.
First special part in the connection is the initialization. It initializes with a script (see Appendix
A), when the card is plugged in.

root@...:sh umtsInit.sh

This script prepare the connection: it loads the module in the kernel, it tests the interfaces
and also checks the available networks.

The second element is the command route add IP. Next to the connection, this command
force the use of the UMTS (following the IP address).

PrivateLab node

For this hardware, we will connect us with the scripts which are designed to make easier the
connection process. As described in the paper of the CINI Laboratory [34], the script to establish
to connection will use the following commands:

Chapter 6 Description & Initialization 6.3 Setup of a UMTS connection • 35

bash: umts status This command checks the status of the
connection.

bash: umts start We attempt to connect the card on the
network. If we get an IP address, it works.

bash: umts stop Command to stop the UMTS connection.

bash: umts add IP This command is similar to bash: route add
IP ppp0. By default the system use the eth0
interface so we need to specify which IP address
must go through the ppp0 interface (see A.2,
end of the script).

Connection

The connection is realized by a common script for both systems: run umtsStart.sh (see
Appendix A.2). This script contains commands or scripts previously defined. Depending on the
inputs (provider and directory which defined the hardware), the script initiates the connection
with umtsInit.sh for LB and umts start for PRN. Next it continues to make a difference
between both systems with commands like route add IP and umts add IP to define a route
used by the UMTS.

This script produces an output which contains an IP address: the connection is established
(appendix A.3). We can note that the same script is used on both systems; the ways are different
but the script chooses following the system.

6.3.6 Issues

Two interfaces

The use of the AT commands is helpful to obtain information on the network. As we
know, we can use it to scan the networks, configure the card, etc. but one problem is the
impossibility to use them when the connection is established. Imagine that in a terminal
we run root@...:wvdial umts wind or that the card is configured in minicom and we use
ATD*99***1#. In both cases, the system will answer CONNECT and then it will be impossible to
type any AT command to collect any information during the connection.

In fact, this is normal, because when ATD is used, the card waits for a PPP connection, for an
answer to pppd. It is locked on the daemon, but it is the /dev/noz0 which is busy. As explained
in [36], we can use the other interface to monitor the data connection, check the registration,
etc. without breaking the PPP data link.

What is the real network used?

In general, each hardware has an automatic mode in its configuration. This is also the case for
the UMTS NIC used at the CINI laboratory. So, it is possible that when the card is plugged
and the registration checked, the obtained answer is : +COPS: 0,0,"I WIND",0. It means that
we are on the WIND network, in the automatic registration and in the GSM mode.

After this registration, the second step is to use wvdial to obtain an IP address. The answer
is positive but is it a UMTS network? The documentation [37] shows that it is the GSM/GPRS
mode; to be on the UMTS/UTRAN, we need to be registered on: +COPS: 0,0,"I WIND",2.

36 • 6.3 Setup of a UMTS connection Chapter 6 Description & Initialization

If this network is available, what is the problem?
As explained in [37], we tried to force the network like this: AT+COPS=1,0,"I WIND",2 which

uses the manual mode for the registration, but it did not work.
The specification of the AT commands [37] and the official commands of Option specifications

[39] did not give information any more on the choice of the technology. Finally we found in [36]
and in an other page of the Option support that there was a proprietary command (non defined
in the specifications) which could force the technology: AT OPSYS=1 (then the card works only
on the UTRAN mode). This option was also specified in gcom behind the 3G script.

In that case it is important to note that an automatic configuration is not sufficient and it
needs the special AT command to reach the UTRAN network.

Once the card is locked on UMTS, the failure to get registered is only due to the weakness
of the radio signal.

Chapter 7
Environment - Tests

In this chapter we work out different tests in relation with the environment defined in the
previous chapter. If we want to evaluate the multimedia experiments, we first have to know
the experimental network as best as possible. This is why different properties are selected and
tested; they correspond to the UMTS characteristics of the NT.

One main issue is touched on this approach: the Vodafone firewall problem. It is essential
to explain it because it impacts the capacities of the Vodafone network.

Finally, this chapter closes with an analysis describing the environment following the selected
characteristics.

7.1 Properties of the network

First of all, we have to note that the UMTS connection is a commercial access (Vodafone and
WIND - refer to Section 6.2.2). Therefore, we cannot control the network parameters. Thus, we
have to know the possibilities and the properties of this network in order to decide what kind
of scenarios we can compare with the NT.

Figure 7.1: Configuration for the environment tests.

In this configuration we have to know the following parameters. For each parameter, we will
describe why we need it (if useful for the environment, defined on the NT, etc.) and also how we
will collect its setting. These parameters are selected to compare the real situation to the NT
as much as possible. This approach is realized on the configuration shown on Fig. 7.1, where
the PCMCIA card is plugged in the PRN. Vodafone is used as reference in figures, nevertheless
it can always be replaced by WIND 1.

1For the tests on the Linux Box, the PRN is replaced by the laptop

38 • 7.1 Properties of the network Chapter 7 Environment - Tests

Spreading Factor: The SF defines how many chips are used to code one user data symbol
(refer to Chapter 2).
Why? This information will regulate the bandwidth because higher SFs will subsequently
reduce the data rate and lower SFs will increase the data rate.
How? In order to evaluate the SF, different measurements are taken on the bandwidth.
Otherwise, the only possibility to know the value of the SF on a commercial connection
(with a PCMCIA card) is to ask it to the provider or to derive it in an analytical way.

Transport channel: In the UTRAN, data generated at higher layers are carried over the air
interface using transport channels. There are two types of transport channel: dedicated
and common/shared channels.
Why? Here we work on the quality of the connection because a common channel is a
resource divided between users in a cell, whereas a DCH is a reserved resource for a single
user.
How? Like the SF, we can not discover the information. If the provider does not give the
information, we are forced to work on assumptions.

Maximal downlink traffic: This is the limit of the bandwidth speed on download.
Why? Every network has its theoretical limit, we will check if we have a good coverage.
How? We will discover it with two different ways. The first one is to download a file of
10 MB. This way, the connection stabilizes itself and we can register the speed. It can be
a good indication but it depends also on the web server (similar to Fig. 7.1 where the web
server replaces the PlanetLab Node). The second way is the generation of synthetic traffic
from a PlanetLab Node to the PrivateLab Node (see Fig.7.1).

HSDPA: The NT complying with UMTS Rel’99 has been realized on the UMTS standards.
In our case, the Vodafone’s network uses maybe the HSDPA standards.
Why? The great advantage of this one is to have a higher downlink speed but in our case,
we will check which technology the providers have deployed.
How? For this property we will use the AT commands.

Strength of the signal: This information is determined by the PCMCIA card.
Why? This will be a good information on the quality of the connection. It can also help
us to check the distance between the Mobile Terminal (MT) and the NodeB.
How? To discover these properties we can use three softwares: UMTSmon, gcom or minicom.

Position of the cell: Each NodeB has a GPS position or a direct address in the city.
Why? With this indication, we will obtain an estimated distance between the cell
and the MT. We can also check how the signal strength is reduced because the signal is
attenuated in relation to the distance.
How? We have two scripts that can show cells’ position in Google Earth. These files are
linked to a data base and we will check if our cells are listed. We have also access to the
official list of all Vodafone’s cells in Italy.

Load of network: As we will use a commercial connection, we can not control the network
(number of users connected and kind of connections).
Why? In every network, each user takes a part of available resources. If there are many
users at the same time, the quality of the network will be degraded. The load of network
E2E is also important for the quality of the connection.
How? Whether Vodafone can help us and give an idea of the load of network; or we have
to assume that the load of network is from medium to high at noon and low at midnight.

Chapter 7 Environment - Tests 7.2 Tools • 39

RAN Round-Trip Time: In the NT, there is no radio transmission and normally the Round-
Trip Time (RTT) is much more important in a real UTRAN. To be close to the reality, it
has been fixed to 50.2 ms [8].
Why? It can be interesting if we check this property because, like others, it simulates a
real behaviour.
How? We can use traceroute program to try to check the time but we foresee that few
machines will answer.

Downlink oriented: We have to keep in mind that the NT is downlink oriented; so in a TCP
connection acknowledgements (ACK) are not disturbed, which is different from the reality.
Why? It seems normal that we will have a loss of quality in the real network, we would
like to see if this characteristic is a low or high assumption.
How? During a generation of traffic, we will analyze the traffic of ACK packets. The loss
of packets will determine the load of the assumption.

Types of users: In the NT, the SF allocation scheme is based on two main properties: the
traffic class and the user profile (as described in [1, p.73]).
Why? It would be interesting to discover which kind of user we are in this real network
because the quality of the link depends on this characteristic.
How? The AT commands can be useful. We have also to look at the contract of our SIM
cards.

Radio Link Control Mode: the UMTS Radio Link Control (RLC) layer is able to transmit
in three different modes : Acknowledged Mode (AM), Unacknowledged Mode (UM) and
Transparent Mode (TM). The NT is focused only on two of the RLC modes: TM and AM
(for details see Section 3.3.1). In our environment, we can not choose the RLC mode.
Why? Like other properties, this parameter has consequences on the quality of the
connection.
How? Normally, with the AT commands, we can discover the mode that we use.

Traffic classes: The NT is designed for four traffic classes: conversational, streaming,
interactive and background.
Why? It is possible that the provider does not allow a terminal to use all these classes.
We have to check if we are not always in the background class.
How? It mights depends on the environment. In our situation, it is impossible to obtain
this information with this hardware.

7.2 Tools

Here we are going to list all softwares or scripts needed to perform our tests on the PRN and
on the LB.

7.2.1 Traffic Generator and Wget

For the generation of traffic, two tools are used. The first one is wget [40], which allows to
download a file as fast as possible without going to the bandwidth limit; this is a “real” traffic,
not forced.

The second tool is Traffic Generator (TG), TG [10] is a traffic generator program that creates
one-way UDP or TCP streams between a source and a sink.

40 • 7.2 Tools Chapter 7 Environment - Tests

The traffic is described in terms of interarrival times and packet lengths. Information
regarding the source and sink, such as packet transmit and receive times, is recorded in a
binary log file for later post processing by dcat. dcat takes the binary log file and produces an
ASCII representation. We can find in Appendix D.1 a simple example of a TG configuration.

TG is a generator that we can configure as we like. In that case, the traffic tries to reach
the limit of the bandwidth; this is a synthetic traffic that we force to the limit.

The interest of wget is also that it uses the TCP protocol. This protocol cannot be used
with TG (please refer to Section 7.4); wget is therefore relevant to compare the behaviour of
TCP with User Datagram Protocol (UDP).

7.2.2 Tcpdump and Wireshark

tcpdump [41] prints out a description of the contents of packets on a network interface. It
can also be run with the -w flag, which causes it to save the packet data to a file for later
analysis. tcpdump has no graphical interface and it is suitable to the PlanetLab and PrivateLab
environment. It is mainly used to capture packets but it is not appropriate to analyse packets.
This is why we will also use Wireshark [42] which is a free packet sniffer computer application.
It has the advantage to have a graphical interface and can easily provide statistics and graphics.

7.2.3 Scripts to establish the connection and gcom

In order to use the UMTS connection, we will connect us with the scripts which are designed
to make easier the connection process (refer to appendix A for the scripts and Section 6.3
for commands detail). We can note that, behind the commands on PRN (umts start, umts
status, ...), we can find the gcom software which allow us to initialize the PIN for the UMTS
SIM card.

7.2.4 UMTSmon

UMTSmon [43] is a tool to control and monitor a wireless mobile network card (GPRS, EDGE,
WCDMA, UMTS, HSDPA) in a laptop running the Linux operating system. It handles PIN
codes, operator choice (roaming), signal strength and network statistics, sending/receiving SMS.
This program is similar to gcom. Unfortunately it needs a graphical interface which is not
available on a PrivateLab Node. In order to avoid problems between scripts developed by the
CINI Laboratory and UMTSmon, we will focus on gcom. gcom has been introduced in section 6.3.4
along with minicom.

7.2.5 Google Earth network link and Vodafone database

If we want to know as best as possible the environment we need to know where the cells are.
After many searches on the Internet we found these network links that we can use in Google
Earth [44, 45]. This link estimates the location of GSM cells based on measurements that relate
the cell ID of the current cell with geo-coordinates recorded with a GPS device. This location
information can be used to provide people with an estimate of their location based on cell ID
only.

In Section 7.3.3, we will see if the link and the cells displayed (like on Fig 7.2) match with
our cell ID. For the Vodafone network, we have also access to the complete database of cells
available in Italy. In these files we have the exact addresses of the cells.

Chapter 7 Environment - Tests 7.3 Tests • 41

Figure 7.2: Cells around the laboratory [45].

7.3 Tests

If the main goal of this Thesis is to validate the NT, we also have to check if there is a difference
between a PRN and the reference - LB. For this purpose, we have to keep in mind that both
machines are not in the same conditions (see Fig. 6.2). Nevertheless, both are static.

Here, we are going to check if the environment changes according to both systems. The
schema of our tests will be detailed with the PrivateLab Node but it is the same procedure for
the Linux Box.

The last point to note: each test will also be executed on the three different SIM cards:
Vodafone post-paid (VPOST), Vodafone pre-paid (VPRE) and WIND pre-paid (WIND). The
wired interface (ETH) will be used as a reference, and tested at 18.00. The tests on the UMTS
connection will start at 12.00. In this situation, we assume the load of network as medium to
high. It was also planned to perform the experiments at 4.00 (assumed as a low load of network)
but due to limited time and limited SIM cards credits, we had to restrict our experiments on
the 12.00 time slot. For the same reason, tests were run only once.

Each test was monitored by a main script in which it is possible to modify parameters
like the system (Linux Box or PrivateLab node), the interface (eth0 - wired connection, or
ppp0 for the UMTS connection), the provider, the date and the PlanetLab node (node used as
destination). These parameters are necessary for the initialisation of the tests but also to save
data automatically. For the detail of the script refer to Appendix E.1. It is important to note
that, once run, this script starts each test and each experiment automatically one by one.

Now we will take a look at the different tests realized on the systems. We will begin with
simple environment tests and then we will work on information requiring a scenario.

42 • 7.3 Tests Chapter 7 Environment - Tests

7.3.1 Test 1 - HSDPA

The most important information to determine at the top of the tests is: “is the UMTS or
HSDPA technology deployed on the environment?”. The difference has already been explained
in Chapter 2; HSDPA is an evolution, the potential is well more important.

The more simple way to check this information is to find an AT command returning
whether the connection is HSDPA or not. This kind of command is not defined in the 3GPP
specification [37]. Nevertheless, the PCMCIA card manufacturer (Option) has defined different
proprietary AT commands. One of them (AT OHCIP, for the script see B.1) was available on
their web site [39] and answer to: ""HSDPA Call In Progress"?".

Traffic must be generated to try this AT command because a “call in progress” is required.

Results:

LB : All results return HSDPA = 1 (used).

PRN : On the node it returns 0. Nevertheless, the other tests show characteristics of the
HSDPA; no explanation has been found.

It is the first important result: every provider in this environment uses the HSDPA
technology. The different tests which work out on the NT with UMTS parameters cannot
be directly compared.

7.3.2 Test 2 - Strength of the signal

For this characteristic gcom or minicom can be used but we will focus our test on gcom.
These two programs use ETSI AT commands [37]. There are many AT commands

standardized. One of them, signal quality +CSQ, returns Received Signal Strength Indication
(RSSI) and channel bit error rate <ber> from the MT. This command is already included in
gcom, we just have to put the parameter in the command line of gcom: bash:gcom sig -d
device .

It is also possible to use AT commands to obtain other information about the location.
With gcom, we can write short scripts which contain AT commands (by this way, see B.2.1 - we
can do the same with minicom).

Table 7.1 summarizes the results.

Table 7.1: Signal strengths following systems and providers.
Signal strength - [RSSI]

System VPOST VPRE WIND
PrivateLab Node 18.99 19.99 23.99
Linux Box 22.99 23.99 26.99

The signal strength returned a result in the RSSI form, indicates that the signal for the PRN
is lower (average: signal = 20.66) than for LB (average: signal = 24.65). WIND has the best
result, with a RSSI of 26.99 on LB.

Chapter 7 Environment - Tests 7.3 Tests • 43

7.3.3 Test 3 - Cell id

In this way we can try to use the +CREG and +CGREG commands [37, p.47 and 157] to obtain
the location area code, the cell ID and the access technology of the registered network
(UTRAN,UTRAN w/HSDPA,UTRAN w/HSUPA). The scripts of these files are defined in B.3.

Table 7.2 gives the results.

Table 7.2: Cell ID following systems and providers.
cell id - [hexadecimal form]

System VPOST VPRE WIND
PrivateLab Node 026F 026F 0CB8
Linux Box 026F 026F 0CB8

The cell IDs are in hexadecimal format, we have to modify these values to obtain the cell
IDs in the decimal form in order to match values with those in the database. We obtain 623
for 026F and 3256 for 0CB8. For now these values do not match with our data (see Section
7.2.5) but in the following sections we will see whether it is possible to match with a cell, once
all properties are collected. The AT command should normally define the technology but it is
not the case; it returns only the location area and the cell ID.

7.3.4 Test 4 - Traceroute

For this test we would like to know if it is possible to measure the RAN RTT and obtain time
statistics on the data path. For security reasons, servers are likely to not answer.

In the NT the delay to the RNC is fixed to 50.2ms. So we are going to try to use traceroute
over a Public Land Mobile Network (PLMN) (see Fig. 2.2). Next, we launch a ping on the
first IP address returned by traceroute (for the scripts, see appendix E.3).

Results:

Figure 7.3: Delay through UTRAN.

The NT follows the 3GPP specifications but is it the reality? First of all, the 50.2 ms is
the time to reach the Radio Network Controller (RNC) and in this case, is it the RNC which
answers? Unfortunately, it is not this element of the network, this is the Gateway GPRS support
node (GGSN) - the gateway to the Internet. Nevertheless, if we take a look to Fig. 7.3, the
result (ping: 113.4 ms) is not too bad. Indeed, if we consider that the network follows the 3GPP
specification, it only takes few ms to reach the GGSN since the RNC. In this condition, we can
accept the assumption of the NT with reference to the results in the real environment.

44 • 7.3 Tests Chapter 7 Environment - Tests

7.3.5 Test 5 - RLC Mode

In this section, we try to discover the RLC mode. We have to find a way to know in which mode
we are: synchronous, asynchronous or transparent mode.

This test is, actually, not possible following our conditions, our environment. The only
approach to determine the mode (ACK or Transparent) would be this one: compare the traces
of WIND and Vodafone for the same transmission, hope that both are disturbed, and see if
there is a difference of time, sign of retransmission for one and not for the other.

This is unrealisable but we can note that the use of the 3G technology is not spread widely
yet. Then we can speculate that WIND and Vodafone have chosen the easiest solution, i.e.
Transparent, as long as it is not necessary to activate the ACK mode.

7.3.6 Test 6 - Type of the user

As explained in [37, p.68], it seems that it is possible to know if the SIM card has a priority level
in the network. It will be impossible to change this level but we hope to know our level. On
[37, p.69] levels begin from 0 to 4; it corresponds maybe to the four users profiles established
in [1, p.73] with a “root” in addition. It is maybe another property, we have to check this
characteristic.

We have to test these specific commands (for the script see B.4):

1. +CAEMLPP

2. +CPPS

3. +CFCS

Results:

This answer is the same for all three commands: an ERROR result code. This means that
the user has no priority level, or that the command has not been implemented for this hardware.
The 3GPP specifications ([37]) have defined the commands allowing access to the information,
the data into the network. The problem here is that the hardware used is a “basic” hardware,
not like a TEst Mobile System (TEMS) [46]. Therefore, there are not a lot of functions which
are implemented.

In our case, user functions have not been selected for this hardware; this explains the ERROR
result code.

In order to give a priority following the SIM cards used, the contract of the cards can
be considered: two providers (Vodafone and WIND) and two different contracts (Vodafone
Pre-paid, Vodafone Post-paid).

Other AT commands regarding the QoS are defined in the specifications ([37]). Nevertheless,
like these about the type of user, they are not available for this kind of hardware.

7.3.7 Test 7 - Maximal downlink traffic

The main goal of this test is to make certain if we are on a UMTS or HSDPA network. This test
also shows the limit of the network, the differences between the theoretical speed of the network
and the reality.

For the generation of traffic, two techniques have been considered, but one of them has
proved to be applicable. In the first time, wget is the generator. Next it is TG which is used.
The difference and advantages between both tools are explained in 7.2.1.

Chapter 7 Environment - Tests 7.3 Tests • 45

wget

The configuration for this test is shown in Fig. 7.4 . We start a tcpdump session and then we
download a file with wget. The script can be found in the appendix E.4.2. We can note that
for the UMTS connection we have to modify the route to use the ppp0 interface. Once we will
have the file.dump (i.e. the trace) we will analyse it in Wireshark to obtain statistics. This
test has been realized with a 10 MB PDF file (we use the ”-o” option to obtain the figures, file
to download http://www.umtsstreamingexperience.be/validation/test.pdf).

Figure 7.4: Environment for the test 1 with wget.

Results:

1,2 1,3 1,4 1,5 1,6 1,7

Average rate - [Mbps]

VPOST

VPRE

WIND

P
ro

v
id

e
r

PrivateLab node
Linux Box

Figure 7.5: wget results.

As we have already seen before, the theoretical speed for the UMTS technology is 2 Mbps.
Even if it can reach 7.2 Mbps or 14 Mbps following Fig 2.7 on the release 5, the environment is
locked on 2 Mbps because, for now, it satisfies the users.

The Ethernet connection (ETH) is faster than the HSDPA connections: the results in
appendix G.1.2 indicates that ETH is ten times faster on PRN and forty times faster on LB
than HSDPA (this is why ETH does not appear in Fig. 7.5). This figure shows that we reach
similar speeds in general, with an advantage for WIND (1.612 Mbps - see G.1.2). wget shows
that for a real - no synthetic - transfer, it uses correctly (more than 75% of 2 Mbps allowed)
the line without reaching the limit of HSDPA. The test confirms again the HSDPA environment
and not a UMTS environment allowing only 384 kb/s for the downlink.

The Linux Box has an advantage on the PrivateLab Node, but it is not significative.

http://www.umtsstreamingexperience.be/validation/test.pdf

46 • 7.3 Tests Chapter 7 Environment - Tests

tg

This test uses a similar configuration on the PRN, TG-Server and tcpdump, and a TG-Client
on the PLN - as we see in Fig. 7.6).

Figure 7.6: Environment for the Maximal Downlink traffic test with TG.

We can find the tg configurations and the main script in appendix E.4.1. There are two kinds
of configuration. The first one tries to reach a speed of 2,000 kb/s (because the first test with
wget suggests a HSDPA environment) with a packet size of 1,450 Bytes and the other one with a
packet size of 250. For these tests the quality is not important then we can use the UDP protocol.

Results:
Here, the objective is to reach the limit of the connection. The Ethernet test indicates that

the configuration of the TG files enables to reach an average speed higher than 2 Mbps.

1,35 1,4 1,45 1,5 1,55 1,6 1,65

Average rate - [Mbps]

VPOST

VPRE

WIND

P
ro

v
id

e
r

PrivateLab node
Linux Box

Figure 7.7: tg (2 Mbps, packet size: 1,450 Bytes) results.

The results are generally similar to the wget results, with again an advantage for the provider
WIND (see Fig. 7.7 in the case of TG configured for 2 Mbps with a packet size of 1,450 Bytes).
Another thing to note: with the use of small packets, the speed increases again by few kb.

About the packet loss, following the percentages (see G.1.2 - WIND with better results:
19,7% with packets for 1,450 Bytes and 31,6% for packets of 250 Bytes), it seems clear that if
we use smaller packets for a higher speed, the packet loss rate will also be higher. In this case,

Chapter 7 Environment - Tests 7.3 Tests • 47

the objective is only to reach a high average speed; but in a real context this approach is not
the best. It is important to evaluate the best average speed with a low packet loss rate.

Comment

The analysis of this test has revealed that if a TG packet is malformed, it is considered as lost.
This information has to be taken into account in the different analysis of this Thesis.

7.3.8 Test 8 - Loss of ACKs

Figure 7.8: Schema of a lost ACK.

The emulation realized on the NT is devoted to the VoIP and the video streaming, which
generally work on the UDP protocol. Therefore, the loss of ACK (as detailed on Fig. 7.8) is
not important. In the modelling of the testbed, it could take a place in the emulated load of
network; but it was not the main objective. Indeed, the 3G technology aiming to the multimedia
in the cellular networks, this testbed identifies the trends for the VoIP and the video streaming
in a context of different cells, users (static or mobile).

Nevertheless, if the goals change in the future, this restriction, where the ACKs on the uplink
are never disturbed, could not be left.

The test has been realized in a similar way to the test (see Section 7.3.7). The use of TG
is restricted to WIND which is the only provider that allows using the TCP protocol with TG
(see Section 7.4 for the explanation). The TG configuration file for the test is included in the
script E.4.1 where the average speed to reach is 384 kb/s. This limit is chosen to avoid to reach
the limit of the bandwidth during the traffic generation. Indeed, these ACKs appear in the
NT essentially in the load of network. Therefore, it is more relevant to test the loss following a
traffic where the objective is not to reach the limit of the network.

Results:
The approach used is to check the number of ACKs in the trace of the source and compare

it to the number in the trace of the destination. For each test the result is positive; no ACK
has been lost. This involves that the assumption done on the NT could be accepted. However,
we have to keep in mind that each test was run only once.

48 • 7.4 Issue: the firewall problem Chapter 7 Environment - Tests

7.4 Issue: the firewall problem

The Vodafone firewall problem was one of the main difficulties we met. The problem has been
underlined by the CINI laboratory [47]. If the name of the issue is focused on a firewall, this
could also be a Network Address Translation (NAT). We should name it: the middlebox problem.
Nevertheless, we keep “Firewall problem” to point the same issue that the CINI laboratory. This
problem, once understood, appeared in nearly each experiment; therefore, it is relevant to detail
it. In a first time, the problem in general will be explained and the solution used will be
presented. Afterwards the solution for TG will be detailed because the generator has been used
in subsequent experiments, and also because a modification of source code has been necessary.

7.4.1 Position of the problem

Before the beginning of the explanation, it is important to note that this problem concerns only
the Vodafone provider; during our experiments, WIND has never shown any similar behaviour.

Vodafone Firewall, seems to be a good protection for the Vodafone network. Indeed, this
structure allows any software to generate an outgoing traffic. In that case, the firewall does not
interfere in the connection.

But, inversely (i.e. ingoing traffic), it dos not happen on the same way. It is impossible
for an agent from the external world to reach one user in the Vodafone network; the doors are
closed and the problem appears. This is exactly that kind of scenario that we need, because the
NT is focused on the downlink traffic.

As a first approach, this system could be considered as too closed and prevent all programs
to work. Developers know the problem and elaborate techniques to avoid it. For example, all
features of Skype can be used on the Vodafone connection. This is possible because such software
uses both UDP and TCP traffic and implements some techniques for a firewall traversal [34].

For the tools used in these experiments, it is unfortunately not the same; the programs use
only one protocol.

7.4.2 How can we bypass the problem?

In the first time, we can consider scenarios which work and do not work. Following the schema
(Fig. 7.9), scenario 1, describing an access from an external user does not work. Scenario 2
shows a Vodafone user who generates traffic to a second user belonging to the external network.

Both scenarios are useful. The first one indicates that there is a system which stops the
traffic for one direction (the firewall).

The second one shows, by its completion, that it is possible for an internal user, to create a
route to an external user. Therefore, on this system, it manages to define a way from one IP to
an other IP following a source port and a destination port.

Once the route is created, the user can generate a traffic and stop it when s/he wants. When
the traffic generation stops, the firewall cannot be sure that it is the end of the traffic; it has to
wait for a while in order to be certain that the traffic has stopped.

The solution appears at this moment: while the firewall is waiting to close the route, we will
generate our traffic in the other sense for the same IPs, same ports but inverting destination
and source (this is scenario 3 on Fig. 7.9).

7.4.3 Details of the solution for TG

As we saw before (see Section 7.2.1), TG allows in its configuration file to specify the destination
port but not the source port. After reading the source code, it appears that the source port is

Chapter 7 Environment - Tests 7.4 Issue: the firewall problem • 49

Figure 7.9: Schema of the Vodafone firewall problem.

chosen dynamically. The first modification is then: force the source port of TG (see Appendix
C.1.1)2. The solution which generates traffic in the other direction as fast as possible creates
another problem: if we want to use the same port for two connections on the same machine,
and we generate the second connection (client-server) too fast, the operating system forbids it.

Why? Because on a UNIX system, a connection creates a socket which passes through three
states: ESTABLISHED, TIMEWAIT, CLOSED. Therefore, as long as the socket is not closed,
it has the grip on the port. However, when the traffic is down, the socket stays more or less
60 sec in the TIMEWAIT state. Here comes the difficulty: the firewall closes the route after
approximately ten seconds.

The solution is the second modification of the source code: force the new socket to re-use
the address (the port) already bound (see appendix C.1.2).

In this configuration, it is now possible to realize scenario 3 of Fig. 7.9. Even if it could be
interesting to see how much time the firewall waits before closing, the implementation of the
scenario does it as fast as possible (so the answer is unknown). Nevertheless, it is relevant to
note that in these conditions, it only takes few seconds to establish the second connection. This
time-out can be illustrated with a traffic graph from wireshark (Fig. 7.10).

As previously described, the first part of the flow (in green) opens the route on the firewall
and then the connection, downlink traffic (in red), is established.

The five seconds of time-out are necessary to close correctly the first connection and also to
start the second automatically through ssh connections.

2The numbers for the ports have been chosen arbitrarily, but without being well-known ports

50 • 7.4 Issue: the firewall problem Chapter 7 Environment - Tests

Figure 7.10: openFirewall.

7.4.4 Limits

This scenario solves the problem with the UDP protocol. In the case of TCP the “Downlink
traffic” (see Fig. 7.10) never wants to start. Why? It appears that to each end of the “open the
route” part, TG loses one packet. This packet loss has as consequence that the second part of
the scenario can not start.

It is possible that with another implementation of the scenario, which could try to better
manage the ends of connections, both systems could communicate. The time limit after which
the firewall closes the route would be important to know.

This was not the objective of this implementation which tries to realize the connection as fast
as possible. Furthermore we can keep in mind that WIND has not this problem and therefore it
is the reference for the TCP protocol in this environment. In general, multimedia applications
(video streaming and VoIP) use UDP which implies that the tests and experiments focus mainly
on this protocol. Finally, it is important to note that to deploy this kind of solution, we need
an access to the ports of the software; if it is the case for TG, it is not possible for openRTSP in
case of real traffic (see Section 8.2.2).

7.4.5 Alternative: STUN

As described in Section 7.4.4, the solution on the source and destination ports modification has
limits. An alternative that can be taken into account is the Session Traversal Utilities for NAT
(STUN) protocol (created in 2003, RFC 3489). STUN protocol allows multimedia applications
(data, voice and video) to pass through routers and firewalls, configured on NAT [48]. An
example of the use of STUN protocol is shown in Fig 7.11:

Telephone A would like to realize a VoIP session with C (by SIP and RTP). In this
configuration, the telephone A has only a private IP address, behind the NAT. It needs to
obtain its public address from the NAT. This case involves problems in Session Initiation
Protocol (SIP) protocol which needs the public address of the client.

The STUN solution: STUN server B gives to the telephone A its public IP address, and
port number that the NAT has allocated for the application’s UDP connections to remote
hosts. Then the SIP client can integrate the public IP address in its SIP/RTP traffic [48].

It could be interesting to compare this solution with the solution implemented for this Thesis.

Chapter 7 Environment - Tests 7.5 Results Analysis • 51

Figure 7.11: STUN protocol example for a SIP/RTP flux [48].

7.5 Results Analysis

7.5.1 Assumptions and consequences

In this chapter different properties have been detailed. Among these characteristics, few of them
have not a concrete result. We will discuss them in order to obtain the best description of the
environment.

The first elements that we can develop are the traffic classes and the load of network. Both
have one common characteristic: there is no technique, no tool in our environment which allows
to obtain an information. In that conditions, we can only speculate the values. Concerning the
classes, we suppose that it works following the 3GPP specifications adding a QoS sytem. For
the load of network, we consider that following the idea that the use of the 3G technology is not
very spread yet, we make the assumption that the load of network is low.

Another point that we cannot discover is the RLC mode. The explanation of the test involves
the assumption of the easiest solution: the transparent mode.

Afterwards, deduced properties can be revealed. This is the case for the SF and the transport
channel. Indeed, both elements are determined by an other characteristic. The result of the
first and the seventh tests indicate that HSDPA technology is deployed in the environment.

The consequence of the use of this technology is that both properties are fixed. The SF is
equal to 16 and the transport channel uses the HS-DSCH channel (refer to Section 2.7).

Nevertheless all points cannot be revealed with the hardware. For the type of user, the only
difference is the type of contract: pre-paid and post-paid.

52 • 7.5 Results Analysis Chapter 7 Environment - Tests

7.5.2 Physical environment

Following the set of tests, it is interesting to locate as best as possible the physical environment
(buildings, cells, distance, terminals). The goal is to assign the providers to the cells available in
the surroundings. This approach wants to illustrate that the surroundings must be taken into
account, because they have an influence on the results.

Figure 7.12: Illustration of the mobility experiment.

Fig. 7.12 shows the nearest cells from the laboratory, and also the NIC position. Cells have
been pointed by means of Google Earth, and followed by a visual confirmation.

Other information provides by a mobility experiment can be accepted. This experiment
consists of moving NIC around the physical environment. Data of this experiment have been
introduced in Fig. 7.12. The cell ID has been checked, like the signal strength, and is shown on
Fig. 7.12.

It could be interesting in this environment to identify which cell matches with Vodafone or
WIND. The first element which can be revealed by the experiment is the distance: 162 m from
NIC to cell A, 163 m from NIC to cell B (Distances obtains by means of Google Earth). We can
also point the signal strength: an average of RSSI equal to 23 for Vodafone and 27 for WIND.

In this situation we dispose of two providers and two different cells (A and B). Nevertheless
the information collected cannot help to identify the pairs: cell and provider.

In order to determine what cell we exactly use (following the provider), we try to identity
it on a theoretical way. In this approach we use the Okumura-Hata model [49, 50]. The idea of
the model is that the received power decreases as the distance between the MT and its NodeB
increases.

Chapter 7 Environment - Tests 7.5 Results Analysis • 53

This relation is shown in [1, p.62]. The model identifies the signal strength following
different variables: the power of the cell and its height, the height of the terminal and the
distance from the cell.

Here is the Okumura-Hata equation:

LU = 69.55 + 26.16 log f − 13.82 log hB − CH + [44.9− 6.55 log hB] log d

Where CH = 3.2(log(11.75 ∗ hM))2 − 4.97

LU : Path loss in Urban Areas. Unit: decibel (dB): has to be computed.

hB : Height of base station Antenna. Unit: meter (m): cell A: 25; cell B: 45 (estimated).

hM : Height of mobile station Antenna. Unit: meter (m): 12 (estimated).

f : Frequency of Transmission. Unit: megahertz(MHz): reality: 2.1 Ghz but the model limit is
1.92 Ghz.

CH : Antenna height correction factor.

d : Distance between the base and mobile stations. Unit: kilometer (km): cell A: 0,162; cell
B: 0.163.

Figure 7.13: Okumura-Hata model elements.

The computed path loss for cell A is 98.05 dB and for B is 95.94 dB. Next it is necessary to
link the path loss with the Receiving Power rate (PRx), as illustrated in Fig. 7.13.

Therefore, to obtain PRx: PTx − LU = PRx, where PTx means Transmissing Power rate.
Following [3], the maximal value for PTx is 43 dBm, and if the cell uses a shared transport

channel (as supposed in Section 7.5.1), we can consider that 80% of the power can be allocated.
Let consider that the connection uses High-Speed Downlink-Shared Channel (HS-DSCH), PTx

is equal to 42 dBm.
In these conditions we obtain a PRx equals to -56.05 dBm for cell A and -53.04 dBm for cell

B. To compare these values with the RSSI that we can measure, we can use Table B.2.2 given
in appendix provided by Option manufacturer.

54 • 7.5 Results Analysis Chapter 7 Environment - Tests

Results:

Cell A: RSSI of 28
Cell B: RSSI of 30

If we consider LB is in better conditions than PRN (see Fig. 6.2), cell B should be associated
to the highest RSSI which is WIND. Therefore cell A should be assigned to Vodafone. We can
also note a difference between our signal strength results and this model, this can be explained
by the fact that our tests have been realized indoor.

Nevertheless, we assume that this approach contains few estimations; it must be considered
only as an assumption on the physical environment.

7.5.3 PRN and LB through three providers

In a first time, we compare PRN and LB. In most of case, LB is better than PRN. Is there
really a difference or is there a parameter which involves all results? We take in consideration
the second one. Indeed, as shown in Fig. 6.2, it appears that PRN is in worst propagation
conditions than LB. PRN is in a small room, on the ground, next to the wall; LB is in the
middle of a bigger room. This is the only pertinent reason which justify the difference between
PRN and LB.

For the providers, it is the same: WIND seems better and VPRE and VPOST similar; does
it indicate that WIND has a better technology than Vodafone? Of course not. As the signal
strength shows it to us, WIND seems to have a better situation. In this case, it is normal that
it has the best results.

These are the only point which differs; otherwise is it similar? The behaviour might change in
another environment and create differences between Vodafone and WIND; or between post-paid
and pre-paid.

7.5.4 Real environment and NT

As we saw in the different tests, the comparison between the real environment and NT cannot
be realised. The environment uses the HSDPA technology which is not suitable with UMTS
and NT. In addition such variables are fixed. This is the case of the controlled users: we can
manage only one user in the experiments.

Chapter 8
Experiments

This chapter describes the two experiments that were performed in December 2008 at the CINI
laboratory in Napoli. The goal was to reproduce the experiments that were performed earlier on
the NT by Hugues Van Peteghem. The experiments have been designed as similar as possible
to those on the NT. However, because of some constraints due to the real environment, some
changes have been applied to the experimental scenarios. They will be described through this
chapter.

8.1 Experiments overview

Fig. 8.1 presents an overview of the environment and configuration of the two experiments,
video streaming and VoIP, that are described and detailed hereunder.

Figure 8.1: Experiments configuration overview.

During the experiments, tcpdump was running both on the client side and on the server side.
All terminals outputs were redirected into a file to log them.

For both video streaming and VoIP, the experiments are performed using real traffic (with
openRTSP and SIPp) and synthetic traffic (with TG).

As for tests described in Chapter 7 and previously explained in Section 7.3, the experiments
were run only once by means of the main script (see Appendix E.1 for the script).

56 • 8.2 Video Streaming Chapter 8 Experiments

8.2 Video Streaming

This section describes the configuration and the tools used to perform the video streaming
experiments.

Following 3GPP specifications, the Motion Picture Experts Group Layer-4 (MPEG-4)
standard was chosen as video encoding for the IP-based streaming services of UMTS to mobile
terminals. It has been chosen as a standard since it can support very low bit rates down to
5 kbps and low frame rates of 15 frames/s [1].

8.2.1 Synthetic Traffic

As the objective of the following section is to detail the synthetic experiment, a generic, three-
level traffic model (see Fig. 8.2) has been chosen in the PhD Thesis to characterise the traffic [1].
Here is the meaning of the levels:

Session level : Lasts as long as the application is running. Its statistics are mainly influenced
by user behaviour.

Connection level: Describes the connection behaviour of a single session.

Packet Level: Represents the packet inter-arrival and size distribution for each state of the
Connection Level.

Figure 8.2: Three-level traffic model [1].

According to the multi-level model, a session is equal to a connection since the session lasts
during the while streaming connection. The session length is determined by an exponential
distribution around 120 seconds.

Video content compression in MPEG-4 standard is done via a Group of Pictures (GoP);
either by intra-frame compression removing redundancies within a simple frame of video, or by
inter-frame compression removing redundancies across a GoP over time. MPEG-4 uses both
intra- and inter- frame compression, and its frames are designated as I-, P- or B- frames.

Chapter 8 Experiments 8.2 Video Streaming • 57

Considering a constant bit rate video streaming at 25 frames/s, the size of the frames of
each video session is described in [51] by a gamma distribution with different parameters. This
depends on whether the user is streaming a high or low quality video [1, p.47].

In order to implement this experiment, TG is used. TG configuration takes into account the
gamma distribution to determine the packet length. Indeed, the model must assign mean and
standard deviation of the size for each frame category. These values have been computed in the
PhD Thesis, in order to illustrate a low or medium quality video.

The generator of TG input files for the video streaming emulation is based on the source
code used for the PhD Thesis (see Appendix D.2). This generator is managed by the synthetic
video script (videoStreamTG.sh, in Appendix E.5) realized for LB/PRN environment.
videoStreamTG.sh is called with the gamma distribution parameters in the main script (see
Appendix E.1).

Considering that the length of the session is 120 seconds, it has to be noted that both
scenarios (low and medium quality) are realized one by one without respecting any model on
the sessions inter-arrivals.

As described in Section 8.1, the synthetic video script is based on the scenario illustrated
in Fig. 8.1. This schema identifies the hardware and commands necessary to perform the
experiment.

8.2.2 Real Traffic

Server

As described in the PhD Thesis [1], Helix Server [52], a multi-format, cross platform streaming
server, was used as the video streaming server. The evaluation version for Linux RHEL 4.0 was
used and the license was renewed every month.

The streaming server was installed on a PlanetLab Node located in France
(onelab09.inria.fr). The reason of this choice is the distant location. It should give
a clearer impact on the latency than a local location. Also, during the Helix Server
installation, the PlanetLab Node in Napoli gave us some troubles that remained unexplained
despite (limited) investigations.

Helix Server was started in the background as root with the following command (from the
main Helix Server installation directory):

./Bin/rmserver rmserver.cfg &

Client

As client, openRTSP [53] was used. It is a command-line program that can be used to open,
stream, receive, and record media streams that are specified by a RTSP URL (i.e., an URL
that begins with rtsp://). This tool was selected for its useful command-line interface, since no
graphical interface is running on PlanetLab Nodes. Moreover, another advantage of this tool is
its ability to receive media streams over TCP or over UDP and record them. Also, openRTSP
provides some QoS statistics.

58 • 8.2 Video Streaming Chapter 8 Experiments

Videos files

In [1], Hugues Van Peteghem used RealVideo format for the video streaming experiments.
However, for our experiments the MPEG-4 format was preferred to RealVideo format for several
reasons.

The first motivation is the difficulty to find a command-line multimedia player able to
download and record a RealVideo stream. To run the official RealPlayer, a graphical interface
is needed, but as already mentioned such an interface is missing on PlanetLab. Moreover, at
least at the time of the tests design, the Linux version of this player (version 11) could not record
the video stream. Only the Windows version was able to record it in a proprietary format of
RealNetworks : Internet Video Recording (.ivr) format, hardly convertible into another format.
There was no direct converter, at least at that time.

Another reason is the planned post-processing for analysis purposes. To stream a RealVideo
file, the proprietary transport protocol Real Data Transport (RDT) is used. Because of this
protocol, Wireshark [42] can not compute the stream statistics (like jitter and packet loss). It
was more complicated to obtain these statistics, given the tight schedule.

The RTP protocol is used to stream MPEG-4 videos. This protocol is more widely used
than RDT, more tools can handle with it. Furthermore, the MPEG-4 format is the standard in
UMTS for streaming videos.

Table 8.1 gives the properties of the two chosen videos for the video streaming experiments.

Table 8.1: Videos chosen for the video streaming experiments.

Properties
Videos Duration Frame Rate Height Width Time stamp Frequency

videoTest-1.mp4 59 sec 25 fps 240 px 320 px 90,000 Hz
videoTest-2.mp4 7 sec 30 fps 240 px 320 px 5,544 Hz

The first video has been chosen for its standard/recommended Sampling Frequency or Time
stamp Frequency (i.e. 90,000 Hz for MPEG-4) following the RFC 3016 [54] and the RFC 3640
[55]. This choice is explained in Chapter 9. The second video is a sample video included in the
Helix Server package. These videos were placed in the sub-directory Content of the Helix
Server directory.

The videos can be found at this link : http://www.umtsstreamingexperience.be/
validation/.

Tests

Videos were both downloaded once in TCP and once in UDP. However, during the experiments
using Vodafone connection (VPOST and VPRE), due to the firewall problem (see Section 7.4),
the real video streaming traffic using UDP transport protocol could not pass through the
firewall. Contrary to the synthetic traffic (with TG) or the real VoIP traffic (with SIPp), the
trick for the firewall traversal could not be applied since the destination port for the download
traffic could not be chosen.

http://www.umtsstreamingexperience.be/validation/
http://www.umtsstreamingexperience.be/validation/

Chapter 8 Experiments 8.3 VoIP • 59

The command used to get a video from the server (and record it) is the following :

openRTSP -f Framerate -w Width -h Height -4 -n -Q -t -v
rtsp://ServerAddress :port /VideoFile.mp4 > received VideoFile.mp4 2> log.txt

where
-f is the video frame rate
-w is the video image width
-h is the video image height
-4 to output a ’.mp4’-format file (to ’stdout’)
-n to be notified when RTP data packets start arriving
-Q to output QoS statistics about the data stream
-v to play only the video stream
-t to stream RTP/RTCP data over TCP, rather than (the usual) UDP
> to record the standard output (i.e., ’stdout’) into a file
2> to record the standard error output (i.e., ’stderr’) into a file

For example, to get videoTest-1.mp4 using UDP transport mode :

openRTSP -f 25 -w 320 -h 240 -4 -n -Q -v
rtsp://onelab09.inria.fr:8554/videoTest-1.mp4 > received UDP videoTest-1.mp4

2> log UDP videoTest-1.txt

Only the video stream was downloaded and recorded (-v option) because only video was
interesting for our analyses. Also, when downloading both video and audio, the created file of
the received video has not always the same size. The cause is presumably due to the openRTSP
writing process while handling some audio codec which are not well supported.

Recording the received video stream is needed to compare the original video and the received
one. The goal is to evaluate the QoE using Peak Signal-to-Noise Ratio (PSNR) metric. The
results are given in Chapter 9.

8.3 VoIP

This section describes the configuration and the tools used to perform the VoIP experiments.

To encode voice traffic, the 3GPP has decided to adopt the AMR vocoder, which is a patented
audio data compression scheme optimized for speech coding, with a rate of 12.2 kbps [56]. When
the user is speaking, the codec produces 32 Byte packets every 20 ms [1].

8.3.1 Synthetic Traffic

This kind of traffic is considered as bidirectional, there is a need for synchronisation. In a real
conversation, both participants are speaking throughout the session. Therefore, the emulated
downlink and uplink traffics have to be synchronized and mixed [1].

The model, illustrated in Fig. 8.2 (Section 8.2.1), identifies three levels in the traffic: session,
connection and packet level. In this type of application, a session starts as long as the user
makes a phone call. The NT can emulate several independent session arrivals; nevertheless this
experiment aims to identify the characteristics of one session.

60 • 8.3 VoIP Chapter 8 Experiments

The session duration for the VoIP on NT is exponentially distributed with a mean of 120
seconds [57].

Once the session starts, the connection model has to take into account the silence periods
in the human voice activity. As the voice activity represents only 32% of the overall time, NT
follows the two-state Markovian chain model [56].

When a user is speaking, the codec produces 32-Byte packets every 20 ms. The NT uses TG
to emulate this traffic. As described before, this experiment does not show several sessions with
a varying inter-arrival time. It realizes two scenarios one by one.

Both scenarios are instances of the two-state Markovian chain model. They vary on the
inter-arrivals of packets and on the length of the session. The first one lasts 1’04” and the
second 1’26”.

The scenarios have been selected in an arbitrary way in the set of scenarios which were
provided by the NT. The only condition was they had to last at least one minute.

The configuration of TG for both scenarios can be found in Appendix D.3. This experiment
is managed by a script, it is detailed in Appendix E.6; this script is called in the main script
(see Appendix E.1).

Finally we have to consider that this experiment happens in a similar way than the generic
schema in Fig. 8.1.

8.3.2 Real Traffic

This real traffic VoIP experiment is quite different from the experiment performed on the NT.
On the Namur Testbed, the real traffic VoIP tests were run with two Grandstream Networks

BudgeTone-100 Series IP phones [58]. “They used the G.720 vocoder with silent suppression,
which is close to the AMR vocoder since it also produces 32 - Byte packets every 20ms.” [1]

In our case, because of the environment constraints, the experiments should be designed
differently. First, because of the unavailability of these IP phones, a software that can reproduce
exactly or as close as possible the same vocoder had to be found. Also, no sound card was
available on the machines used for the experiments. It was impossible to use a microphone.

For the VoIP real traffic experiments, SIPp [59] was used. It is a free Open Source test tool
and traffic generator for the SIP protocol. It can read custom XML scenario files describing
from very simple to complex call flows. SIPp can also send media (RTP) traffic through pcap
replay. Media can be audio or audio and video.

The pcap file was home brewed. The Asterisk server [60] was installed on a PlanetLab
Node (onelab09.inria.fr). The Interactive Voice Response (IVR) of the Asterisk server
was called via Ekiga [61] while running Wireshark to capture the RTP stream (the voice as
payload). The RTP stream containing the voice is then extracted into a pcap file. The duration
of the voice recording is about 120 seconds. By capturing the voice of the IVR, the following
constraint is satisfied : the VoIP downlink stream has to represent a real human intervention in
a conversation. In other words, it has to respect the stochastic distribution explained in [1, p. 42].

As neither Ekiga nor Asterisk support AMR vocoder, the GSM 06.10 codec [62, 63]
was chosen since it is the closest available codec to AMR vocoder. Because AMR vocoder is
patented, it is not implemented and supported out of the box by Open Source softwares like

Chapter 8 Experiments 8.3 VoIP • 61

Ekiga and Asterisk.

SIPp was used on both sides : client and server. As shown in Fig. 8.3, the scenario was
designed to have the capacity to pass through a firewall while using UDP transport protocol.
A stream is sent in uplink, then in downlink passing by the same port.

The XML scenario files (see appendix E.9) and the pcap files can be found at this link :
http://www.umtsstreamingexperience.be/validation/.

Figure 8.3: SIPp scenario.

To start the SIPp server, the following command was used :

sipp -sf AlternateXMLScenario -i Interface -p Port -mi MediaInterface

-mp MediaPort -m Calls -trace msg -trace shortmsg -trace screen -trace err
-trace stat -trace counts -trace rtt -trace logs

To start the SIPp client, the following command was used :

sipp ServerAddress :Port -i Interface -p Port -mi MediaInterface -mp
MediaPort -sf AlternateXMLScenario -l SimultaneousCalls -r CallRate -m Calls

-trace msg -trace screen -trace err -trace stat -trace rtt -trace logs

where
-sf to load an alternate xml scenario file
-i to set the local IP address for ’Contact:’,’Via:’, and ’From:’ headers
-p to set the local port number
-mi to set the local media IP address
-mp to set the local RTP echo port number

http://www.umtsstreamingexperience.be/validation/

62 • 8.3 VoIP Chapter 8 Experiments

-m to stop the test and exit when ’Calls’ calls are processed (in our case, 1)
-l to set the maximum number of simultaneous calls (in our case, 1)
-r to set the call rate (in calls per seconds) (in our case, 1)
-trace msg to display sent and received SIP messages
-trace shortmsg to display sent and received SIP messages as CSV
-trace screen to dump statistic screens
-trace err to trace all unexpected messages
-trace stat to dump all statistics
-trace counts to dump individual message counts
-trace rtt to allow tracing of all response times
-trace logs to allow tracing of <log> actions

Here is a concrete example of these commands, in the case of an ETH connection (i.e.
non-UMTS connection) between a PlanetLab Node and a PrivateLab Node :

On the Server side (PlanetLab Node : onelab09.inria.fr) :

sipp -sf uas for real voiptest-2minutes.xml -i onelab09.inria.fr -p 9002
-mi onelab09.inria.fr -mp 9902 -m 1 -trace msg -trace shortmsg -trace screen
-trace err -trace stat -trace counts -trace rtt -trace logs

On the Client side (PrivateLab Node : onelab03.dis.unina.it) :

sipp onelab09.inria.fr:9002 -i onelab03.dis.unina.it -p 9001 -mi
onelab03.dis.unina.it -mp 9901 -sf uac for real voiptest-2minutes-PR.xml -l 1
-r 1 -m 1 -trace msg -trace screen -trace err -trace stat -trace rtt -trace logs

Chapter 9
Analysis of the experiments

In this chapter, we analyse the results of the experiments described in Chapter 8, in terms
of classical QoS metrics (jitter and packet loss rate) computed at the application layer. QoE
evaluation is also performed for the video streaming by using PSNR metric. These experiments
were realized in December 2008 at the CINI laboratory in Napoli.

9.1 Jitter measurement

As the End-to-End delay from the terminal to the RNC value is not an information that is
easily to retrieve in a real environment, the E2E delay value, as given in the PhD Thesis [1], is
replaced by the jitter metric.

The jitter is a term which is not easy to define because it is used in different ways by
different groups of people. Because having many definitions, it can cause confusion.

Following the RFC 3393 [64], “Jitter” commonly has two meanings: “The first meaning is
the variation of a signal with respect to some clock signal, where the arrival time of the signal is
expected to coincide with the arrival of the clock signal. This meaning is used with reference to
synchronous signals and might be used to measure the quality of circuit emulation, for example.
There is also a metric called “wander” used in this context.

The second meaning has to do with the variation of a metric (e.g. delay) with respect to
some reference metric (e.g. average delay or minimum delay). This meaning is frequently used
by computer scientists and frequently (but not always) refers to variation in delay.” [64]

The variation can be caused by network congestion, timing drift, or route changes. In
multimedia streams, the packet delay variation can be removed by using a play-out buffer at the
destination. It is important to know, in this case, the maximum delay variation, which is used
to size play-out buffers for such applications. However, for interactive real time applications
(i.e. time-sensitive applications) like VoIP, packet delay variation might affect the performance.
In audio communications, a high packet delay variation might cause pops and clicks.

In the first definition we will use, jitter refers to the packet delay variation and is calculated
as follows (see appendix F.1.2 for our implementation code):

Jittern = |Delayn −Delayn−1|

64 • 9.1 Jitter measurement Chapter 9 Analysis of the experiments

where n is the current received packet, and

Delayn = Arrivaln −Departuren

The average jitter is defined as

AverageJitter =

n∑
1

Jitter

n

This method is applied to calculate the jitter for all types of traffic (real and synthetic).

The second way of computing the jitter is only used for RTP streams (real video streaming
and real VoIP traffic). Actually, it is the interarrival jitter which is different from the jitter
previously explained, but it is sometimes also simply called “jitter” in documentation (what
causes confusion). It is computed thanks to Wireshark. Moreover, for real video streaming,
the interarrival jitter is also computed thanks to openRTSP. Both Wireshark and openRTSP
calculate the interarrival jitter following the RFC 3550 [65], as explained hereunder.

“The interarrival jitter J is defined to be the mean deviation (smoothed absolute value) of
the difference D in packet spacing at the receiver compared to the sender for a pair of packets.
As shown in the equation below, this is equivalent to the difference in the “relative transit time”
for the two packets; the relative transit time is the difference between a packet’s RTP timestamp
and the receiver’s clock at the time of arrival, measured in the same units.

If Si is the RTP timestamp from packet i, and Ri is the time of arrival in RTP timestamp
units for packet i, then for two packets i and j, D may be expressed as

Di,j = (Rj −Ri)− (Sj − Si) = (Rj − Sj)− (Ri − Si)

The interarrival jitter should be calculated continuously as each data packet i is received
from source, using this difference D for that packet and the previous packet i − 1 in order of
arrival (not necessarily in sequence), according to the formula

Ji = Ji−1 + |Di−1,i|−Ji−1

16 ” [65]

According to the definition above-cited, the computation of the interarrival jitter depends
on the RTP timestamp. The latter “reflects the sampling instant of the first octet in the RTP
data packet. The sampling instant must be derived from a clock that increments monotonically
and linearly in time to allow synchronization and jitter calculations. [..] The clock frequency
is dependent on the format of data carried as payload and is specified statically in the profile
or payload format specification that defines the format, or may be specified dynamically for
payload formats defined through non-RTP means.” [65]

In other words, the RTP timestamp which is based on the sampling frequency is used in
the interarrival jitter calculation. The sampling frequency depends of the codec. So, the RTP
timestamp is based on the sampling frequency of the codec. In the case of MPEG-4 video
stream, following RFC 3640 [55], it is recommended that the rate (sampling frequency) be set to
90,000 Hz. This is why the videoTest-1.mp4 was chosen for the video streaming experiments
in addition of the videoTest-2.mp4 which has a different (non-standard) rate.

Chapter 9 Analysis of the experiments 9.1 Jitter measurement • 65

If the wrong sampling frequency is used the calculations will give wrong results. This might
be the cause of the following problem. In Wireshark, the RTP statistics give weird interarrival
jitter values for the video streams. For example, it gives a mean jitter of 120 seconds for an
experiment which lasts 7 seconds.

Some investigations led us to make a quick little modification in the Wireshark (version
1.0.4) source code (see appendix C.3). The modification consists of forcing the clock rate for
the statistics computation. From that point, we have two specific versions of Wireshark, one
with the clock rate set to 90,000 and the other with the clock rate set to 5,544, respectively for
videoTest-1.mp4 and videoTest-2.mp4.

Despite this modification, the interarrival jitter values computed by these versions are not
exactly the same than those computed by openRTSP but they are close.

In the case of openRTSP, the source code provides a function to compute the jitter, which
is actually the interarrival jitter, and is given in timestamp units. However, the latter is not
printed in the QoS statistics (-Q option).

Some addition were made in the source code (see appendix C.2) to display the interarrival
jitter, and to convert it into time units (in seconds).

Notes

As Wireshark (official version) is not giving realistic results for (interarrival) jitter, we only
give in the following tables results from the modified Wireshark. Also, the number of received
packets displayed by openRTSP is different (about +/- 10 packets) than the one displayed by
Wireshark. However, both softwares display 0% of packets lost. Sometimes, Wireshark reports
packets lost while openRTSP reports no packet lost. These observations lead us to keep in mind
that tools are not always reliable. From a tool to another, the way of calculating jitter, packet
loss, and other statistics might differ. It would explain the difference in the results shown in
the following tables.

In addition to openRTSP and the modified Wireshark, we wrote our own script for
computing the jitter (see appendix F.1.1) which is based on the first definition of the jitter
previously explained. It computes it from the tcpdump captures at both client and server sides.
So, we need the capture from both sides to have the departure time and the arrival time of
packets.

However, in some cases, the first packets of the stream in the server side capture are missing.
The cause seems to be that tcpdump does not start quickly enough while the stream has already
started. As the RTSP packets which described the payload of the following RTP packets are
missing, Wireshark can not interpret the RTP payload of the following packets. It identifies
them as TCP packets with an unspecified RTSP payload (see Fig. 9.1). This is only in the case
of RTP over TCP. For RTP over UDP, the problem does not appear.

Therefore, the RTP sequence number included in the RTP payload is not readable. Since
on the client side, we have the full capture, Wireshark can interpret RTP payload and give
the RTP sequence number and the TCP sequence number. The latter is used to match (pair)
packets (those on client side, and those on server side).

Due to this inconvenience, the jitter is calculated only for available packets on both sides.
Moreover, the packet loss percentage is not calculated with our own script in case of real traffic
analysis. It is only calculated with openRTSP and modified Wireshark.

66 • 9.2 Video Streaming Chapter 9 Analysis of the experiments

Figure 9.1: Hidden RTP payload in TCP packets.

In the following tables, the “-” symbol means that the test could not be performed due to the
firewall issue (see Sections 7.4 and 8.2.2). Graphs in this chapter illustrate the jitter computed
by our own script. Concerning the Graphs representing the Cumulative Distribution Function
of the jitter, it is always Linux Box which has been selected to illustrate it.

9.2 Video Streaming

9.2.1 Real Traffic

Results

Table 9.1 and Table 9.2 give, respectively, for videoTest-1.mp4 and videoTest-2.mp4, the
packet loss results returned by openRTSP and modified Wireshark (on the client side),
following this pattern : openRTSP | modified Wireshark.

Table 9.1 and especially Table 9.2 illustrate the previously discussed matter of the tools
reliability. While openRTSP returns 0% of packet lost, modified Wireshark returns 99.5% of
packet lost for videoTest-2.mp4. At the application level, packet loss is 0% since videos were
fully and correctly recorded. As shown, the problem appears especially with videoTest-2.mp4.
The origin of weird results returned by modified Wireshark might be the same than the one
of wrong jitter calculation, previously discussed. However, the modification of the Wireshark
source code does not solve the problem for packet loss statistic, contrary to jitter statistic.
Obviously, openRTSP is here more reliable than modified Wireshark and therefore consider a
packet loss of 0%.

Table 9.1: videoTest-1.mp4 - Packet loss.

Packet Loss [%]
System Transport ETH VPOST VPRE WIND

PrivateLab Node
TCP 0.0 | 0.0 0.0 | 0.4 0.0 | 0.3 0.0 | 2.3
UDP 0.0 | 0.0 - - 0.0 | 0.0

Linux Box
TCP 0.0 | 0.0 0.0 | 1.1 0.0 | 0.3 0.0 | 0.3
UDP 0.0 | 0.0 - - 0.0 | 0.0

Chapter 9 Analysis of the experiments 9.2 Video Streaming • 67

Table 9.2: videoTest-2.mp4 - Packet loss.

Packet Loss [%]
System Transport ETH VPOST VPRE WIND

PrivateLab Node
TCP 0.0 | 0.0 0.0 | 99.5 0.0 | 99.5 0.0 | 99.5
UDP 0.0 | 0.0 - - 0.0 | 0.0

Linux Box
TCP 0.0 | 0.0 0.0 | 99.6 0.0 | 99.5 0.0 | 99.5
UDP 0.0 | 0.0 - - 0.0 | 0.0

For average jitter results shown in Table 9.3 and Table 9.4, the difference between the
Ethernet connection (ETH) and UMTS operators (VPOST, VPRE and WIND) is clear. Fig. 9.2
presents the average jitter computed by our own script and Fig. 9.3 shows the Cumulative
Distribution Function of the jitter for videoTest-1.mp4 over TCP on the three providers. The
VPOST connection has a worse jitter than VPRE and WIND but the difference is not so big,
all the more so the experiments were run only once.

The average interarrival jitter is significantly better over UDP than over TCP. It fits with
the transport mode mechanism. UDP does not care about loss or any other traffic issue. It never
waits feedback from the destination and thus can send packets regularly. The delay between
sending packets is more regular.

ETH VPOST VPRE WIND

Provider

0

5

10

15

20

A
v
e
ra

g
e
 J
it

te
r

[m
s]

PrivateLab
Linux Box

Figure 9.2: Average jitter for videoTest-1.mp4 over TCP.

68 • 9.2 Video Streaming Chapter 9 Analysis of the experiments

0 10 20 30 40 50 60 70 80 90 100

Jitter - [ms]

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

C
D

F

ETH
WIND
VPOST
VPRE

Figure 9.3: Cumulative Distribution Function of the jitter for videoTest-1.mp4 over TCP.

Chapter 9 Analysis of the experiments 9.2 Video Streaming • 69

T
ab

le
9.

3
an

d
T

ab
le

9.
4

gi
ve

,r
es

pe
ct

iv
el

y,
fo

r
v
i
d
e
o
T
e
s
t
-
1
.
m
p
4

an
d
v
i
d
e
o
T
e
s
t
-
2
.
m
p
4
,t

he
av

er
ag

e
jit

te
r

re
su

lt
s

re
tu

rn
by

op
en

R
T

S
P

,
m

od
ifi

ed
W

ir
es

ha
rk

(o
n

th
e

cl
ie

nt
si

de
)

an
d

ou
r

ow
n

sc
ri

pt
,

fo
llo

w
in

g
th

is
pa

tt
er

n
:

op
en

R
T

S
P
|m

od
ifi

ed
W

ir
es

ha
rk
|o

ur
ow

n
sc

ri
pt

.

T
ab

le
9.

3:
v
i
d
e
o
T
e
s
t
-
1
.
m
p
4

-
A

ve
ra

ge
jit

te
r.

A
v
e
r
a
g
e
J
i
t
t
e
r
[
m
s
]

Sy
st

em
T

ra
ns

po
rt

E
T

H
V

P
O

ST
V

P
R

E
W

IN
D

P
ri

va
te

L
ab

N
o
d

e
T

C
P

7.
74
|1

1.
68
|0

.3
2

52
.9

8
|3

1.
53
|1

8.
08

35
.3

7
|2

9.
65
|9

.2
6

34
.0

4
|3

5.
91
|1

1.
49

U
D

P
3.

87
|0

.5
3
|0

.7
7

-
-

7.
43
|2

0.
58
|6

.8
2

L
in

u
x

B
ox

T
C

P
11

.7
7
|1

1.
39
|0

.3
30

.9
2
|3

1.
12
|1

4.
07

32
.2

5
|3

2.
06
|1

2.
3

36
.1

3
|3

7.
62
|1

2.
75

U
D

P
1.

63
|0

.9
3
|0

.6
-

-
6.

63
|1

4.
99
|6

.4
9

T
ab

le
9.

4:
v
i
d
e
o
T
e
s
t
-
2
.
m
p
4

-
A

ve
ra

ge
jit

te
r.

A
v
e
r
a
g
e
J
i
t
t
e
r
[
m
s
]

Sy
st

em
T

ra
ns

po
rt

E
T

H
V

P
O

ST
V

P
R

E
W

IN
D

P
ri

va
te

L
ab

N
o
d

e
T

C
P

20
.3

8
|1

3.
56
|0

.4
3

41
.6

6
|1

8.
04
|1

5.
46

34
.6

3
|2

0.
12
|1

3.
11

39
.1

4
|1

8.
18
|8

.5
U

D
P

11
.0
|3

.0
3
|2

.4
3

-
-

9.
19
|1

2.
94
|7

.0
3

L
in

u
x

B
ox

T
C

P
17

.8
5
|1

2.
33
|0

.4
9

33
.9

1
|1

7.
24
|1

3.
9

35
.3

5
|1

8.
06
|7

.3
36

.0
7
|2

0.
9
|9

.2
2

U
D

P
3.

96
|1

.9
7
|0

.4
8

-
-

6.
31
|8

.8
1
|7

.7
9

70 • 9.2 Video Streaming Chapter 9 Analysis of the experiments

PSNR

The most traditional way to objectively evaluate the quality of a streamed video is the calculation
of the Peak Signal-to-Noise Ratio (PSNR) [66] between the original video signal and the received
video signal. PSNR is the ratio between the maximum possible power of a signal and the power
of degradations that affects the fidelity of its representation. For more details, please refer to [1].

To measure the PSNR, we first have to store the streamed video to compare it with the
original one. Then, the two videos have to be synchronized frame-by-frame because the metric
compares the videos frame-by-frame. To compute the PSNR, pnmpsnr [67] is used. This tool
computes the difference between two images. pnmpsnr is part of Netpbm [68]. Netpbm is a toolkit
for manipulation of graphic images, including conversion of images between a variety of different
formats.

The streamed video was recorded with openRTSP. To split up the video into frames,
VirtualDub [69] was used. This tool is a video capture/processing utility. As it can not handle
MPEG-4 video format, videos had to be first encoded into MPEG-1 format. For this processing,
MediaCoder [70] was used. It is a free universal batch media transcoder.

The frames resulting of the split up processing are encoded into BMP format. As pnmpsnr
can not handle this format, images had to be converted into ppm format with bmptoppm [71].

Then, pnmpsnr can be run to analyse videos, frame-by-frame. pnmpsnr prints the separate
PSNRs of the luminance, and chrominance (Cb and Cr) components of the colors. As in the
PhD Thesis, only the PSNR of the luminance is taken.

For the PSNR in lossy image and video compression, typical values are between 30 and
50 dB, whereas a PSNR under 20 dB is considered as unacceptable. Nonetheless, due to the
non-linear behaviour of human visual system, PSNR values are not perfectly correlated with a
perceived visual quality. [1]

In the following tables, the ‘Perfect’ column refer to the percentage of perfect frames. These
frames are exactly identical in both original and received video and played exactly at the
same time. A perfect PSNR is equal to +∞. The ‘Accept.’ column presents the percentage
of acceptable frames in the terms of the PSNR (≥ 20 dB) whereas the ‘Unaccept.’ column
represents the percentage of unacceptable frames (< 20 dB). The ‘Mean’ column shows the
mean PSNR computed on all the frames except the perfect ones.

In some cases, the very last frame of the received video is missing. The precise cause is not
really known. Presumably, it seems to be a post-processing problem rather than a real packet
loss. One of the possible causes would be a default during the recording (writing file) of the
video stream by openRTSP. Another cause would be a default during the split up processing by
VirtualDub. In this last case, repeating the process gives always the same result (i.e. the last
frame was missing).

For the PSNR computation, if the last frame of the received video is missing, the last frame
of the original video is dropped. In other words, the PSNR computation only takes into account
the frames that are available on both videos.

Table 9.5 and Table 9.6 present the obtained results of the PSNR evaluation for, respectively,
videoTest-1.mp4 and videoTest-2.mp4.

Chapter 9 Analysis of the experiments 9.2 Video Streaming • 71

Table 9.5: PSNR evaluation results - videoTest-1.mp4.

PSNR
System Operator Transport Perfect Accept. Unaccept. Mean

[%] [%] [%] [dB]

PrivateLab Node

VPOST
TCP 100 0 0 +∞
UDP - - - -

VPRE
TCP 100 0 0 +∞
UDP - - - -

WIND
TCP 100 0 0 +∞
UDP 100 0 0 +∞

ETH
TCP 100 0 0 +∞
UDP 100 0 0 +∞

Linux Box

VPOST
TCP 100 0 0 +∞
UDP - - - -

VPRE
TCP 100 0 0 +∞
UDP - - - -

WIND
TCP 100 0 0 +∞
UDP 100 0 0 +∞

ETH
TCP 100 0 0 +∞
UDP 100 0 0 +∞

Table 9.6: PSNR evaluation results - videoTest-2.mp4.

PSNR
System Operator Transport Perfect Accept. Unaccept. Mean

[%] [%] [%] [dB]

PrivateLab Node

VPOST
TCP 90.05 9.95 0 55.19
UDP - - - -

VPRE
TCP 89.69 10.31 0 54.96
UDP - - - -

WIND
TCP 89.69 10.31 0 54.96
UDP 89.69 10.31 0 54.96

ETH
TCP 89.69 10.31 0 54.96
UDP 89.69 10.31 0 54.96

Linux Box

VPOST
TCP 89.64 10.36 0 54.96
UDP - - - -

VPRE
TCP 89.64 10.36 0 54.96
UDP - - - -

WIND
TCP 89.58 10.42 0 54.96
UDP 89.69 10.31 0 54.96

ETH
TCP 89.64 10.36 0 54.96
UDP 89.64 10.36 0 54.96

72 • 9.2 Video Streaming Chapter 9 Analysis of the experiments

It is important to keep in mind that the received video is never shown on screen, contrary
to the experiments performed on the NT. The stream is immediately recorded by openRTSP
without display. Therefore, the received video is never distorted by the decoding process before
the PSNR evaluation process. However as previously described, the video format is changed
(from MPEG-4 to MPEG-1) before the PSNR evaluation process. Watching the received videos
for a user subjective evaluation is still possible since the video stream is recorded into a video
file.

For videoTest-1.mp4 (Table 9.5), all frames are perfect. It fits with packet loss results
returned by openRTSP (i.e. 0%). videoTest-2.mp4 should have the same results, but it is not
the case as shown in Table 9.6. The weird results for videoTest-2.mp4 are not due to any
traffic issue. It seems rather to be a matter of video coding, or post-processing, since the not
perfect frames are the same and have the same PSNR values for all tests (even ETH).

9.2.2 Synthetic Traffic

Table 9.7, Table 9.8 and Table 9.9 contain results of the experiment on synthetic video
streaming. As described in Section 8.2.1, the experiment groups two scenarios: low and medium
quality videos. The difference between both was fixed by the PhD Thesis. In order to identify
the difference, the average rate is detailed in Table 9.8.

To understand how the network manages this kind of traffic, the packet loss is shown in
Table 9.7. This table indicates that the low quality scenario has no problem while the medium
quality has few minor difficulties.

Table 9.7: Synthetic Video Streaming traffic - Packet loss.

Packet loss [%]
System Transport ETH VPOST VPRE WIND

LQ MQ LQ MQ LQ MQ LQ MQ
PrivateLab Node UDP 0.0 0.0 0.0 0.18 0.0 0.0 0.0 0.12

Linux Box UDP 0.0 0.0 0.0 0.23 0.0 0.26 0.0 0.0

Table 9.8: Synthetic Video Streaming traffic - Average rate.

Average rate [Mbps]
System Transport ETH VPOST VPRE WIND

LQ MQ LQ MQ LQ MQ LQ MQ
PrivateLab Node UDP 0.145 0.247 0.150 0.25 0.162 0.363 0.150 0.26

Linux Box UDP 0.163 0.365 0.150 0.23 0.150 0.26 0.164 0.366

Table 9.9: Synthetic Video Streaming traffic - Average jitter.

Average Jitter [ms]
System Transport ETH VPOST VPRE WIND

LQ MQ LQ MQ LQ MQ LQ MQ
PrivateLab Node UDP 0.734 0.954 9.907 9.304 9.752 11.841 6.902 5.417

Linux Box UDP 0.813 0.902 9.856 9.404 9.357 10.152 11.232 7.513

Chapter 9 Analysis of the experiments 9.2 Video Streaming • 73

ETH VPOST VPRE WIND

Provider

0

2

4

6

8

10

12

A
v
e
ra

g
e
 J
it

te
r

[m
s]

PrivateLab
Linux Box

Figure 9.4: Average jitter for the synthetic video streaming experiments (Medium Quality).

Fig. 9.4 illustrates Table 9.9 for the medium quality. We can only note that the different
UMTS providers are quite similar. This is also illustrated by Fig 9.5.

0 10 20 30 40 50 60

Jitter - [ms]

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

C
D

F

ETH
WIND
VPOST
VPRE

Figure 9.5: Cumulative Distribution Function of the jitter for the synthetic video streaming
experiments (Medium Quality).

74 • 9.3 VoIP Chapter 9 Analysis of the experiments

9.3 VoIP

9.3.1 Real Traffic

Table 9.10 gives the packet loss results returned by Wireshark (on the client side) for the UDP
stream in downlink, following this pattern : Wireshark.

Table 9.10: Real VoIP traffic - Packet loss.
Packet Loss [%]

System Transport ETH VPOST VPRE WIND
PrivateLab Node UDP 0.0 0.0 0.1 0.0

Linux Box UDP 0.0 0.0 0.0 0.0

Similar to video streaming experiments, packet loss percentage for VoIP experiments is 0%
except for one test (0.1%).

Table 9.11 gives the average jitter results returned by Wireshark (on the client side) and our
own script for the UDP stream in downlink, following this pattern : Wireshark | our own script.

Table 9.11: Real VoIP traffic - Average jitter.

Average Jitter [ms]
System Transport ETH VPOST VPRE WIND

PrivateLab Node UDP 4.6 | 0.61 7.11 | 5.59 6.49 | 4.82 8.06 | 6.53
Linux Box UDP 4.6 | 0.54 8.12 | 6.63 6.23 | 4.61 5.94 | 4.38

The difference between the Ethernet connection (ETH) and UMTS operators (VPOST,
VPRE and WIND) in terms of average jitter is clearer with results returned by our own script
than those returned by Wireshark. It is important to remind that Wireshark computes the
interarrival jitter while our own script computes the jitter (see Section 9.1). Therefore, results
show that the packets are regularly sent but it is the delay which is longer in case of UMTS
connection.

Fig. 9.6 illustrates the average jitter computed by our own script and Fig. 9.7 shows the
Cumulative Distribution Function of the jitter for the real VoIP experiments.

Similar to the PSNR calculation for streamed video, objective quality assessment also exist
for audio [1]. Two of them are Perceptual Evaluation of Speech Quality (PESQ) [72] and
Perceptual Evaluation of Audio Quality (PEAQ) [73]. The first one is an enhanced perceptual
quality measurement for voice quality in telecommunications. The other one is specifically
developed to apply to E2E voice quality testing under real network conditions like in VoIP.
These objective audio quality assessment are not handled in this dissertation.

Chapter 9 Analysis of the experiments 9.3 VoIP • 75

ETH VPOST VPRE WIND

Provider

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 J
it

te
r

[m
s]

PrivateLab
Linux Box

Figure 9.6: Average jitter for the real VoIP experiments.

0 10 20 30 40 50

Jitter - [ms]

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

C
D

F

ETH
WIND
VPOST
VPRE

Figure 9.7: Cumulative Distribution Function of the jitter for the real VoIP experiments.

76 • 9.3 VoIP Chapter 9 Analysis of the experiments

9.3.2 Synthetic Traffic

Table 9.12 and Table 9.13 give the characteristics of this experiment. Following all the results
for the packet loss, we can consider that the VPRE and WIND loss appear due to a fortuitous
event.

Table 9.12: Synthetic VoIP traffic - Packet loss.

Packet loss [%]
System Transport ETH VPOST VPRE WIND

1 2 1 2 1 2 1 2
PrivateLab Node UDP 0.0 0.0 0.0 0.0 2.643 0.0 0.0 0.0

Linux Box UDP 0.0 0.0 0.0 0.0 0.0 0.0 5.163 1.599

Table 9.13: Synthetic VoIP traffic - Average rate.

Average Rate [%]
System Transport ETH VPOST VPRE WIND

1 2 1 2 1 2 1 2
PrivateLab Node UDP 0.009 0.011 0.009 0.011 0.009 0.011 0.009 0.011

Linux Box UDP 0.009 0.011 0.009 0.011 0.009 0.011 0.009 0.011

In general no difficulty has been identified as the average rate can confirm it.

Table 9.14: Synthetic VoIP traffic - Average jitter.

Average Jitter [ms]
System Transport ETH VPOST VPRE WIND

1 2 1 2 1 2 1 2
PrivateLab Node UDP 0.303 0.376 2.257 4.211 7.087 3.016 5.950 4.506

Linux Box UDP 0.285 0.252 2.087 3.592 9.504 2.888 13.161 6.150

ETH VPOST VPRE WIND

Provider

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 J
it

te
r

[m
s]

PrivateLab
Linux Box

Figure 9.8: Average jitter for the second synthetic VoIP experiments.

Chapter 9 Analysis of the experiments 9.4 Global analysis • 77

One more time, Fig. 9.8 and Fig. 9.9 indicates that providers and systems are similar.

0 10 20 30 40

Jitter - [ms]

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000
C

D
F

ETH
WIND
VPOST
VPRE

Figure 9.9: Cumulative Distribution Function of the jitter for the second synthetic VoIP
experiments.

9.4 Global analysis

When analysing the experimental results, the difference between Linux Box and PrivateLab
Node is not as clear as for the environment tests (as explained in Section 7.5.3). Actually,
experiments do not push the UMTS connection to the limit. Video streaming and VoIP do not
use large bandwidth. Therefore, even if PrivateLab Node is in a worse location than Linux Box,
the results are very close.

Moreover, experiments which were first designed for a UMTS Release 99 connection have
good results in our case since we use a UMTS Release 5 connection (i.e. HSDPA). These results
show that HSDPA gives good results for (light) multimedia applications, at least from a static
perspective. The experimental results do not really show a clear difference between operators.

Finally, it is important to remind that all experiments were run only once, as explained
in Section 7.3. Therefore, results can not be interpreted as statistically significant and final
conclusions can not be drawn. Moreover, as explained in Section 9.1, despite our attempt
(i.e. modification of the source code), the results for the average interarrival jitter returned by
openRTSP and modified Wireshark are too scattered. Nothing allows us to choose which one of
the two should be used as reference. In order to compare results from synthetic traffic to those
from real traffic, we have written our own script for jitter computation. It serves as reference in
this dissertation.

Chapter 10
Conclusion

The 3rd Generation of mobile phones is now widespread and the user number is increasingly
growing. To test their new algorithms and configurations, operators and infrastructure
manufacturers can perform tests in a real environment or perform them in a testbed. The
second solution is easier and cheaper than the first one.

Hugues Van Peteghem, as a part of his PhD Thesis at the University of Namur, has
designed and implemented an emulating UMTS testbed (the NT). The main objective of this
Master Thesis was to validate it by reproducing experiments into a real environment in order
to compare results.

As explained, because of discrepancies in the intended real environment, we had to perform
tests and experiments in a uncontrolled environment wherein some parameters remained
unknown. Moreover, the real environment was a UMTS Release 5 one, whereas the NT complies
with UMTS Release 99.

Therefore, we had to perform tests and experiments from a basic end user perspective.
After giving the theoretical basis about studied aspects, the experimental methodology in a
such environment was described through this dissertation.

The CINI laboratory, where our traineeship and the experiments were carried out, being
responsible of the deployment and the integration of the UMTS connection on a PlanetLab
Node, tests and experiments were both performed from a PlanetLab environment (using a
PlanetLab Node) and from a classical environment (using a common Linux-based laptop), in
order to compare results between the two environments. The results show that there is no
noteworthy difference between them.

This Master Thesis points out that it is not easy to discover cellular network parameters
from a basic end user perspective (i.e. with classical hardware). As explained, TEMS can help
in this approach, but were not available at the time of our experiments executions.

Also, experimental results were quite good mainly thanks to the UMTS Release 5 conditions
with better performance than the UMTS Release 99. Results show that users have the
opportunity to enjoy (light) multimedia applications without being annoyed as long as they
stay into a Rel’5 environment.

80 • Chapter 10 Conclusion

The presented results in this document are so not directly comparable with those from the
Namur Testbed. However, as the NT is bound to evolve to UMTS Release 5, this dissertation
can be easily used to reproduce experiments into the future NT. Furthermore, this document is
presenting an approach for performing tests and experiments in a real environment from a basic
end user perspective and can so be easily used for future work.

Future work

In addition to reproduce experiments into the future NT, it would be interesting to reproduce
them in mobile conditions in a real environment. Indeed, this dissertation is only presenting
experiments and their results from a static perspective. Perform them in mobile conditions
would allow to observe the handover behaviour and compare it with the NT one. Also, tests
would be performed at constant as well as varying speeds.

Bibliography

[1] Hugues Van Peteghem. Building a Testbed Emulating Cellular Networks; Design,
Implementation, Cross-Validation and Exploitation of a Real-Time Framework to Evaluate
QoS and QoE in the UTRAN. PhD thesis, Namur University, February 2008. http:
//www.info.fundp.ac.be/~hvp/rech/doc/index_en.html.

[2] Benjamin Evrard and Gille Gomand. Stage Naples 2008 - Rapport d’activités, 2009.
FUNDP - Faculté d’Informatique.

[3] Harri Holma and Antti Toskala. WCDMA for UMTS - HSPA evolution and LTE. Wiley
inter-science, 4th edition, 2007.

[4] UMTS World. http://www.umtsworld.com, last visited: August 18, 2009.

[5] Jaana Laiho, Achim Wacker, and Tomas Novosad. Radio Network Planning and
Optimisation for UMTS. Wiley inter-science, second edition, 2006.

[6] Technical Specification Group Radio Access Network. Multiple Input Multiple Output in
UTRA. Technical Report TR 25.876 V7.0.0, 3rd Generation Partnership Project (3GPP),
March 2007.

[7] Technical Specification Group Radio Access Network. Feasibility study for Orthogonal
Frequency Division Multiplexing (OFDM) for UTRAN enhancement. Technical Report
TR 25.892 V6.0.0, 3rd Generation Partnership Project (3GPP), June 2004.

[8] Technical Specification Group Radio Access Network. Delay Budget within the Access
Stratum (Release 4). Technical Report TR 25.853 V4.0.0, 3rd Generation Partnership
Project (3GPP), 2001.

[9] Harri Holma and Antti Toskala. WCDMA for UMTS. Wiley inter-science, 3rd edition,
October 2004.

[10] Paul McKenney, Dan Lee, and Barbara Denny. Traffic Generator Software Release
Notes. Technical report, SRI International and USC/ISI Postel Center for Experimental
Networking, January 2002. http://www.postel.org/tg/tg.htm, last visited: August 18,
2009.

[11] Technical Specification Group Radio Access Network. Multiple Input Multiple Output in
UTRA. Technical Report TR 25.876 V7.0.0, 3rd Generation Partnership Project (3GPP),
March 2007.

81

http://www.info.fundp.ac.be/~hvp/rech/doc/index_en.html
http://www.info.fundp.ac.be/~hvp/rech/doc/index_en.html
http://www.umtsworld.com
http://www.postel.org/tg/tg.htm

82 Bibliography

[12] Alexandrosz Burulitisz, Sándor Imre, and Sándor Szabó. On the Accuracy of Mobility
Modelling in Wireless Networks. In Proceedings of the 39st International Conference on
Communications (ICC), Paris (France), June 2004.

[13] Ben Liang and Zygmunt Haas. Predictive Distance-Based Mobility Management for PCS
Networks. In Proceedings of the 18th Annual Joint Conference of the IEEE Computer and
Communications Societies (Infocom), pages 1377–1384, New York (NY - USA), March 1999.

[14] Femtocell. http://www.thinkfemtocell.com/, last visited: August 18, 2009.

[15] CellTrack. http://www.afischer-online.de/sos/celltrack/#newos, last visited:
August 18, 2009.

[16] W. Karner and M. Rupp. Measurement based Analysis and Modelling of UMTS DCH
Error Characteristics for Static Scenarios. In Proc. of 8th International Symposium
on DSP and Communication Systems (DSPCS’2005) & 4th Workshop on the Internet,
Telecommunications and Signal Processing (WITSP’2005), 2005.

[17] W. Karner and O. Nemethova and M. Rupp. A Measurement Based Model for UMTS DL
DCH Dynamic Bearer Type Switching. In International Symposium on Wireless Pervasive
Computing 2006, 2006.

[18] Marilena P. Kallenou Charalampos N. Pitas, Eleni D. Avgeri and Philip Constantinou.
Measurements and QoS Analysis of Live-World Mobile Telecommunication Networks. 2008.

[19] Manuel Alvarez-Campana, Enrique Vázquez, Joan Vinyes, and Vı́ctor A. Villagrá.
Measuring quality of experience of internet access over hsdpa. 2008.

[20] A. Barbuzzi, F. Ricciato, and G. Boggia. Discovering Parameter Setting in 3G Networks
via Active Measurements. Communications Letters, IEEE, 2008.

[21] PlanetLab Central. http://www.planet-lab.org, last visited: August 18, 2009.

[22] Roberto Canonico. From PlanetLab to PlanetLab Europe. Technical report, University of
Napoli Federico II, Laboratorio ITeM-CINI, July 2008.

[23] PlanetLab Europe. http://www.planet-lab.eu, last visited: August 18, 2009.

[24] Giovanni Di Stasi Antonio Pescape Giorgio Ventre Alessio Botta, Roberto Canonico.
Providing UMTS connectivity to PlanetLab nodes. Technical report, University of Napoli
Federico II, Laboratorio ITeM-CINI, December 2008.

[25] Alessio Botta. Planetlab Tutorial. Technical report, University of Napoli Federico II,
Laboratorio ITeM-CINI, July 2008.

[26] Orbit. http://www.orbit-lab.org, last visited: August 18, 2009.

[27] Emulab. http://www.emulab.net, last visited: August 18, 2009.

[28] Vini. http://www.vini-veritas.net, last visited: August 18, 2009.

[29] Roberto Canonico. PlanetLab Europe Access Policies. Technical report, University of
Napoli Federico II, Laboratorio ITeM-CINI, July 2008.

[30] Serge Fdida. An Open Federated Laboratory to evaluate the possible futures of the Internet.
Technical report, Université Pierre et Marie Curie de Paris, Laboratoire LIP6, May 2008.

http://www.thinkfemtocell.com/
http://www.afischer-online.de/sos/celltrack/#newos
http://www.planet-lab.org
http://www.planet-lab.eu
http://www.orbit-lab.org
http://www.emulab.net
http://www.vini-veritas.net

Bibliography 83

[31] Susanna Avéssta. OneLab - Future Internet Testbeds. Technical report, FIREworks,
December 2008.

[32] OneLab. http://www.onelab.eu, last visited: August 18, 2009.

[33] Serge Fdida. Report on Onelab/2 Activities. Technical report, Université Pierre et Marie
Curie de Paris, Laboratoire LIP6, April 2008.

[34] Roberto Canonico, Alessio Botta, Giovanni Di Stasi, Alessandro Amirante, Lorenzo
Miniero, Salvatore D’Antonio, Simon Pietro Romano, Antonio Cimmino, Bruno Giulio
Misculin, and Matteo Dell’Orto. UMTS Gateway. Technical report, Cini Item Laboratory,
2008.

[35] Roberto Canonico, Alessio Botta, Maria Barone, and Salvatore D’Antonio. UMTS Node.
Technical report, Cini Item Laboratory, 2007.

[36] Nozomi driver. http://www.pharscape.org, last visited: October 27, 2008.

[37] Technical Specification Group Core Network and Terminals. AT command set for User
Equipment (UE) (Release 8). 3rd Generation Partnership Project, 2008.

[38] Wvdial Configuration. http://linux.die.net/man/5/wvdial.conf, last visited: August
18, 2009.

[39] AT commands of an Option card. http://support.option.com/support/faq.php?do=
article&articleid=67, last visited: October 27, 2008.

[40] GNU Wget. http://www.gnu.org/software/wget/, last visited: August 18, 2009.

[41] Craig Leres Van Jacobson and University of California Berkeley CA Steven McCanne, all
of the Lawrence Berkeley National Laboratory. Tcpdump - dump traffic on a network.
Technical report, October 2008. http://www.tcpdump.org, last visited: August 18, 2009.

[42] Gerald Combs. Wireshark - network protocol analyzer. http://www.wireshark.org, last
visited: August 18, 2009.

[43] UMTSmon. http://umtsmon.sourceforge.net, last visited: August 18, 2009.

[44] KmlCellID.kml. http://cellid.telin.nl:8080/wasp/jsp/CellStats.jsp, last visited:
August 18, 2009.

[45] Google Earth. http://earth.google.com/intl/fr/index.html, last visited: August 18,
2009.

[46] TEst Mobile System. http://www.ascom.com/en/index/products-solutions/
technology-platforms/platform/tems/solutionloader.htm, last visited: August
18, 2009.

[47] Giovanni Di Stasi. Wireless extensions to the PlanetLab infrastructure. Technical report,
University of Napoli Federico II, Laboratorio ITeM-CINI, July 2008.

[48] Entête STUN. http://www.architoip.com/entete-stun/, last visited: August 18, 2009.

[49] A. Medeisis and A. Kajackas. On the use of the universal Okumura-Hata propagation
predictionmodel in rural areas, 2000.

http://www.onelab.eu
http://www.pharscape.org
http://linux.die.net/man/5/wvdial.conf
http://support.option.com/support/faq.php?do=article&articleid=67
http://support.option.com/support/faq.php?do=article&articleid=67
http://www.gnu.org/software/wget/
http://www.tcpdump.org
http://www.wireshark.org
http://umtsmon.sourceforge.net
http://cellid.telin.nl:8080/wasp/jsp/CellStats.jsp
http://earth.google.com/intl/fr/index.html
http://www.ascom.com/en/index/products-solutions/technology-platforms/platform/tems/solutionloader.htm
http://www.ascom.com/en/index/products-solutions/technology-platforms/platform/tems/solutionloader.htm
http://www.architoip.com/entete-stun/

84 Bibliography

[50] John S Seybold. Introduction to RF propagation. John Wiley and Sons, 2005.

[51] Michael Frey and Son Nguyen-Quang. A Gamma-Based Framework for Modeling Variable-
Rate MPEG Video Sources: the GOP GBAR Model. Technical report, IEEE/ACM
Transactions on Networking, December 2000.

[52] E. Regan. Helix Server Unlimited, March 2007. http://www.realnetworks.com/
products/media_delivery.html, last visited: August 18, 2009.

[53] Ross Finlayson. OpenRTSP. http://www.live555.com/openRTSP/, last visited: August
18, 2009.

[54] Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, and H. Kimata. RTP Payload Format
for MPEG-4 Audio/Visual Streams. RFC 3016 (Proposed Standard), November 2000.
http://www.ietf.org/rfc/rfc3016.txt, last visited: August 18, 2009.

[55] J. van der Meer, D. Mackie, V. Swaminathan, D. Singer, and P. Gentric. RTP Payload
Format for Transport of MPEG-4 Elementary Streams. RFC 3640 (Proposed Standard),
November 2003. http://www.ietf.org/rfc/rfc3640.txt, last visited: August 18, 2009.

[56] Technical Specification Group Radio Access Network. Feasibility Study for Enhanced
Uplink for UTRA FDD (Release 6). Technical Report TR 25.896 V6.0.0, 3rd Generation
Partnership Project (3GPP), April 2004.

[57] Technical Specification Group Radio Access Network. Ip transport in utran (release 5).
Technical Report TR 25.933 V5.4.0, 3rd Generation Partnership Project (3GPP), January
2004.

[58] John Huang. User Manual, BudgeTone-100 Series IP Phone. Technical Report 1.0.8.32,
Grandstream Networks, September 2006. http://www.grandstream.com/bt101.html, last
visited: October 9, 2008.

[59] Richard Gayraud, Olivier Jacques, and Charles P. Wright. SIPp. http://sipp.
sourceforge.net, last visited: August 18, 2009.

[60] Mark Spencer. Asterisk. http://www.asterisk.org, last visited: August 18, 2009.

[61] Ekiga. http://ekiga.org, last visited: August 18, 2009.

[62] Digital cellular telecommunications system (Phase 2+) (GSM); Full rate speech;
Transcoding (GSM 06.10 version 5.2.1 Release 1996) . Technical Report ETS 300 961,
European Telecommunications Standards Institute (ETSI), January 2001. http://www.
etsi.com, last visited: August 18, 2009.

[63] H. Schulzrinne and S. Casner. RTP Profile for Audio and Video Conferences with Minimal
Control. RFC 3551 (Standard), July 2003. http://www.ietf.org/rfc/rfc3551.txt, last
visited: August 18, 2009.

[64] C. Demichelis and P. Chimento. IP Packet Delay Variation Metric for IP Performance
Metrics (IPPM). RFC 3393 (Proposed Standard), November 2002. http://www.ietf.
org/rfc/rfc3393.txt, last visited: August 18, 2009.

[65] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. RFC 3550 (Standard), July 2003. Updated by RFC 5506.
http://www.ietf.org/rfc/rfc3550.txt, last visited: August 18, 2009.

http://www.realnetworks.com/products/media_delivery.html
http://www.realnetworks.com/products/media_delivery.html
http://www.live555.com/openRTSP/
http://www.ietf.org/rfc/rfc3016.txt
http://www.ietf.org/rfc/rfc3640.txt
http://www.grandstream.com/bt101.html
http://sipp.sourceforge.net
http://sipp.sourceforge.net
http://www.asterisk.org
http://ekiga.org
http://www.etsi.com
http://www.etsi.com
http://www.ietf.org/rfc/rfc3551.txt
http://www.ietf.org/rfc/rfc3393.txt
http://www.ietf.org/rfc/rfc3393.txt
http://www.ietf.org/rfc/rfc3550.txt

Bibliography 85

[66] Wang, Zhou and Sheikh, Hamid R. and Bovik, Alan C. Handbook of Video Databases:
Design and Applications, chapter 41 - Objective Video Quality Assessment, pages 1041–
1078. CRC Press, September 2003.

[67] Bryan Henderson. pnmpsnr. http://netpbm.sourceforge.net/doc/pnmpsnr.html, last
visited: August 18, 2009.

[68] Bryan Henderson. Netpbm. http://netpbm.sourceforge.net, last visited: August 18,
2009.

[69] VirtualDub. http://www.virtualdub.org, last visited: August 18, 2009.

[70] MediaCoder. http://mediacoder.sourceforge.net, last visited: August 18, 2009.

[71] Bryan Henderson. bmptoppm. http://netpbm.sourceforge.net/doc/bmptoppm.html,
last visited: August 18, 2009.

[72] ITU-T Recommendation. Perceptual Evaluation of Speech Quality (PESQ): An Objective
Method for End-to-End Speech Quality Assessment of Narrow-band Telephone Networks
and Speech Codecs. Technical Report P.862, International Telecommunication Union, 2001.

[73] Opticom. PEAQ — Perceptual Evaluation of Audio Quality. Technical report, Opticom,
1999.

[74] UMTS streaming experience - validation. http://www.umtsstreamingexperience.be/
validation/, last visited: August 18, 2009.

http://netpbm.sourceforge.net/doc/pnmpsnr.html
http://netpbm.sourceforge.net
http://www.virtualdub.org
http://mediacoder.sourceforge.net
http://netpbm.sourceforge.net/doc/bmptoppm.html
http://www.umtsstreamingexperience.be/validation/
http://www.umtsstreamingexperience.be/validation/

Appendix A
UMTS connection

A.1 Script to initiate the connection on a Linux box

This script can be found at [74].�
1 #!/ bin / bash
2 #umtsIn i t . sh
3 echo ”##### umtsIn it #####”
4 echo ” load ing module”
5 insmod / l i b /modules /2 .6 .18 −1 .2798 . f c 6 / ke rne l / d r i v e r s / pc i / hotplug /nozomi . ko
6

7 echo ” i n i t i a l i s i n g umts card − 3G mode”
8 gcom −d /dev/noz0 3G
9 wait

10

11 echo ” r e g i s t r a t i o n . . . ”
12 gcom −d /dev/noz0
13 wait
� �

A.2 Script to realize the connection UMTS

This script can be found at [74].�
1 #!/ bin / bash
2 #umtsStart . sh
3 # input 1 = prov ide r
4 # input 2 = d i r e c t o r y
5

6 echo ”##### va r i a b l e s c on f i gu r a t i on #####”
7 PROVIDER=$1
8 DIRECTORY=$2
9

10 echo ”##### umtsStart #####”
11 i f [”$DIRECTORY” = ” root ”] ;
12 then
13 # we use the Linux Box
14 sh /$DIRECTORY/fundp/ umtsIn i t . sh
15 echo ”Try to connect on UMTS”
16 wvdial pcmcia $PROVIDER &
17 else
18 # we use the pr i va teLab node and i t s own s c r i p t s . . .

88 • A.3 Connection established Appendix A UMTS connection

19 su −c ”umts s t a r t ”
20 f i
21

22 echo ”Wait few seconds f o r the connect ion . . . ”
23 s l e e p 30
24

25 STR=‘ i f c o n f i g ppp0 ‘
26 STR2=”ppp0”
27 i f [${STR: 0 : 4 } = $STR2] ;
28 then
29 IPUMTS=‘ i f c o n f i g ppp0 | sed −n ’ s / .∗ i n e t adr : \ ([ˆ .] ∗ . [ˆ .] ∗ . [ˆ .] ∗ . [ˆ]∗\) .∗

$/\1/p ’ ‘
30 echo ”##### Connected − $IPUMTS #####”
31 else
32 echo ”##### ppp0 doesn ’ t e x i s t #####”
33 f i
34

35 echo ”##### add the IP o f the PlanetLab node (i n r i a) on ppp0 #####”
36 i f [”$DIRECTORY” = ” root ”] ;
37 then
38 # we use the Linux box
39 su −c ” route add 138 . 96 . 250 . 149 ppp0”
40 else
41 # we use the pr i va teLab node and i t s own s c r i p t s . . .
42 su −c ”umts add 138 . 96 . 250 . 149 ”
43 f i
� �

A.3 Connection established

umtsStart

umtsInit

loading module

initialising umts card - 3G mode

Set 3G only mode

registration...

SIM ready

Waiting for Registration..(120 sec max)

Registered on Home network: "vodafone IT",2

Signal Quality: 22,99

Try to connect on UMTS

Wait few seconds for the connection...

--> WvDial: Internet dialer version 1.54.0

--> Cannot get information for serial port.

--> Initializing modem.

--> Sending: ATZ

ATZ

OK

--> Sending: ATZ

ATZ

OK

--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0

ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0

OK

--> Sending: AT+CGDCONT=1,"IP","web.omnitel.it"

AT+CGDCONT=1,"IP","web.omnitel.it"

OK

--> Modem initialized.

--> Sending: ATD*99***1#

Appendix A UMTS connection A.3 Connection established • 89

--> Waiting for carrier.

ATD*99***1#

CONNECT 1800000

--> Carrier detected. Starting PPP immediately.

--> Starting pppd at Thu Dec 11 16:59:48 2008

--> pid of pppd: 2830

--> Using interface ppp0

--> pppd: Modem

--> pppd: Modem

--> pppd: Modem

--> pppd: Modem

--> pppd: Modem

--> pppd: Modem

--> local IP address 83.225.136.40

--> pppd: Modem

--> remote IP address 10.64.64.64

--> pppd: Modem

--> primary DNS address 83.224.65.134

--> pppd: Modem

--> secondary DNS address 83.224.66.134

--> pppd: Modem

Connected -

add the IP of the PlanetLab node (inria) on ppp0

Appendix B
AT-commands scripts

The following scripts are called in a main script (see E.2) and can be found at [74].

B.1 HSDPA

This command can be used to see whether a HSDPA call is in progress. Status will be set to
1 only when a HSDPA transaction is in progress (i.e., when a HS-DSCH transport channel is
active), not when merely the cell supports HSDPA.�

1 opengt
2 set com 115200n81
3 set senddelay 0 .05
4 wai tqu i e t 2 0 .5
5 l e t c=0
6 : hsdpa
7 wai tqu i e t 1 0 .1
8 send ”AT OHCIP?ˆm”
9 get 2 ”ˆm” $s

10 get 2 ”ˆm” $s
11 l e t a=len ($s)
12 l e t a=a−8
13 l e t $s=$r i gh t ($s , a)
14 i f $s <> ” 0 ,0 ” goto hsdpacont
15 i f c > 3 goto hsdpaex i t
16 l e t c=c+1
17 pause 1
18 goto hsdpa
19 : hsdpaex i t
20 print ”Error f o r hsdpa ! ”
21 exit 1
22 : hsdpacont
23 print ”HSDPA c a l l in p rog r e s s ? : ” , $s , ”\n”
24 wai tqu i e t 1 0 .1
25 exit 0
� �

92 • B.2 Signal quality Appendix B AT-commands scripts

B.2 Signal quality

B.2.1 +CSQ

This command returns the Received Signal Strength Indication (RSSI):

�
1 : s i g n a l \ n \
2 wai tqu i e t 1 0 .1\ n \
3 send \ ”AT+CSQ\ˆm\ ” \ n \
� �

B.2.2 RSSI - dBm

The following table has been provided by Option manufacturer [39] for the “GlobeTrotter
HSDPA ’7.2 Ready’ E” Option card.

RSSI dBm RSSI dBm RSSI dBm
0 <-113 11 -91 22 -69
1 -111 12 -89 23 -67
2 -109 13 -87 24 -65
3 -107 14 -85 25 -63
4 -105 15 -83 26 -61
5 -103 16 -81 27 -59
6 -101 17 -79 28 -57
7 -99 18 -77 29 -55
8 -97 19 -75 30 -53
9 -95 20 -73 31 >-51
10 -93 21 -71 99 unknown

B.3 Cell ID

B.3.1 +CREG

This command returns the status of result code presentation. It shows whether the network
has currently indicated the registration of the MT and gives two location information elements:
local area code and cell id<lac>.�

1 opengt
2 set com 115200n81
3 set senddelay 0 .05
4 wai tqu i e t 2 0 .5
5 l e t c=0
6 : c e l l i dG
7 wai tqu i e t 1 0 .1
8 send ”AT+CREG=2ˆm”
9 wai tqu i e t 1 0 .1

10 send ”AT+CREG?ˆm”
11 get 2 ”ˆm” $s
12 get 2 ”ˆm” $s
13 l e t a=len ($s)
14 l e t a=a−6
15 l e t $s=$r i gh t ($s , a)

Appendix B AT-commands scripts B.4 Type of the user • 93

16 i f $s <> ” 0 ,0 ” goto c e l l i dGcont
17 i f c > 3 goto c e l l i dG ex i t
18 l e t c=c+1
19 pause 1
20 goto c e l l i dG
21 : c e l l i dG ex i t
22 print ”Error f o r the c e l l i dG ! ”
23 exit 1
24 : c e l l i dGcont
25 print ” Ce l l I d and the area : ” , $s , ”\n”
26 wai tqu i e t 1 0 .1
27 exit 0
� �

B.3.2 +CGREG

This command is similar to the first one but for a GPRS context.�
1 opengt
2 set com 115200n81
3 set senddelay 0 .05
4 wai tqu i e t 2 0 .5
5 l e t c=0
6 : c e l l i dU
7 wai tqu i e t 1 0 .1
8 send ”AT+CGREG=2ˆm”
9 wai tqu i e t 1 0 .1

10 send ”AT+CGREG?ˆm”
11 get 2 ”ˆm” $s
12 get 2 ”ˆm” $s
13 l e t a=len ($s)
14 l e t a=a−8
15 l e t $s=$r i gh t ($s , a)
16 i f $s <> ” 0 ,0 ” goto c e l l i dUcon t
17 i f c > 3 goto c e l l i dU e x i t
18 l e t c=c+1
19 pause 1
20 goto c e l l i dU
21 : c e l l i dU e x i t
22 print ”Error f o r the c e l l i dU ! ”
23 exit 1
24 : c e l l i dUcon t
25 print ” Ce l l I d UMTS and the area : ” , $s , ”\n”
26 wai tqu i e t 1 0 .1
27 exit 0
� �

B.4 Type of the user

B.4.1 +CAEMLPP

The execute command is used to change the default priority level of the user in the network.
If the user does not have subscription for the requested priority level an ERROR result code is
returned.�

1 opengt
2 set com 115200n81
3 set senddelay 0 .05
4 wai tqu i e t 2 0 .5

94 • B.4 Type of the user Appendix B AT-commands scripts

5 l e t c=0
6 : caemlpp
7 wai tqu i e t 1 0 .1
8 send ”AT+CAEMLPP?ˆm”
9 get 2 ”ˆm” $s

10 get 2 ”ˆm” $s
11 l e t a=len ($s)
12 #l e t a=a−6
13 l e t $s=$r i gh t ($s , a)
14 i f $s <> ” 0 ,0 ” goto caemlppcont
15 i f c > 3 goto caemlppexit
16 l e t c=c+1
17 pause 1
18 goto caemlpp
19 : caemlppexit
20 print ”Error f o r caemlpp ! ”
21 exit 1
22 : caemlppcont
23 print ”CAEMLPP? : ” , $s , ”\n”
24 wai tqu i e t 1 0 .1
25 exit 0
� �

B.4.2 +CPPS

This command returns a priority subscription of the user stored on the SIM card. If no explicit
priority level subscription is stored on the SIM card, the result code OK is returned.�

1 opengt
2 set com 115200n81
3 set senddelay 0 .05
4 wai tqu i e t 2 0 .5
5 l e t c=0
6 : cpps
7 wai tqu i e t 1 0 .1
8 send ”AT+CPPS?ˆm”
9 get 2 ”ˆm” $s

10 get 2 ”ˆm” $s
11 l e t a=len ($s)
12 #l e t a=a−6
13 l e t $s=$r i gh t ($s , a)
14 i f $s <> ” 0 ,0 ” goto cppscont
15 i f c > 3 goto cppsex i t
16 l e t c=c+1
17 pause 1
18 goto cpps
19 : cpp sex i t
20 print ”Error f o r cpps ! ”
21 exit 1
22 : cppscont
23 print ”CPPS? : ” , $s , ”\n”
24 wai tqu i e t 1 0 .1
25 exit 0
� �

B.4.3 +CFCS

The set command is used to edit the status of the priority level for fast call set-up stored on
the SIM card. If the user has no subscription to the priority level status he wants to edit, an

Appendix B AT-commands scripts B.4 Type of the user • 95

ERROR result code is returned.�
1 opengt
2 set com 115200n81
3 set senddelay 0 .05
4 wai tqu i e t 2 0 .5
5 l e t c=0
6 : c f c s
7 wai tqu i e t 1 0 .1
8 send ”AT+CFCS?ˆm”
9 get 2 ”ˆm” $s

10 get 2 ”ˆm” $s
11 l e t a=len ($s)
12 #l e t a=a−6
13 l e t $s=$r i gh t ($s , a)
14 i f $s <> ” 0 ,0 ” goto c f c s c on t
15 i f c > 3 goto c f c s e x i t
16 l e t c=c+1
17 pause 1
18 goto c f c s
19 : c f c s e x i t
20 print ”Error f o r c f c s ! ”
21 exit 1
22 : c f c s c on t
23 print ”CFCS? : ” , $s , ”\n”
24 wai tqu i e t 1 0 .1
25 exit 0
� �

Appendix C
Programs modifications

The programs modifications can be found at [74].

C.1 TG

C.1.1 force the source port in prot udp.c�
156 /∗ Allow to reuse the por t b e f o r e the RTT de lay ∗/
157 optva l = 1 ;
158 i f (s e t sockopt (s fd ,SOL SOCKET,SO REUSEADDR,&optval , s izeof (optva l))== −1){
159 per ro r (”ReUse the socket ”) ;
160 e x i t (er rno) ;
161 }
� �

C.1.2 re-use the socket in prot udp.c�
162 /∗ Try to f o r c e the source por t ∗/
163 s i n . s i n f am i l y = AF INET ;
164 s i n . s i n p o r t = htons (57001) ;
165 s i n . s i n addr . s addr = INADDR ANY;
166 i f (bind (sfd , (struct sockaddr ∗)&sin , s izeof (s i n))== −1){
167 per ro r (”bind () ”) ;
168 e x i t (er rno) ;
169 }
� �

C.2 openRTSP

C.2.1 modifications in RTPSource.cpp�
24 // add i t i on f o r J i t t e r c a l c u l a t i o n
25 #include <iostream>
26 //end o f add i t i on
� ��

212 // add i t i on f o r J i t t e r c a l c u l a t i o n
213 packet num = 0 ;
214 l a s t d = 0 ;
215 //end o f add i t i on
� �

98 • C.2 openRTSP Appendix C Programs modifications

�
314 // add i t i on f o r J i t t e r c a l c u l a t i o n
315 int j i t = d − l a s t d ;
316 i f (j i t < 0) j i t = − j i t ;
317 l a s t d = d ;
318 std : : c e r r << ”Packet Number : ” << packet num << ”\n” ;
319 std : : c e r r << ” j i t (in timestamp un i t s) : ” << j i t << ”\n” ;
320 std : : c e r r << ” j i t (in time un i t s) : ” << j i t /(double) timestampFrequency << ”\n” ;
321 std : : c e r r << ” timestampFrequency : ” << timestampFrequency << ”\n” ;
322 std : : c e r r << ” f J i t t e r f l o a t : ” << f J i t t e r << ”\n” ;
323 std : : c e r r << ” f J i t t e r f l o a t / timestampFrequency : ” << f J i t t e r / timestampFrequency

<< ”\n” ;
324 std : : c e r r << ” f J i t t e r i n t e g e r : ” << (unsigned) f J i t t e r << ”\n” ;
325 std : : c e r r << ” f J i t t e r i n t e g e r / timestampFrequency : ” << (unsigned) f J i t t e r /(

double) timestampFrequency << ”\n\n” ;
326 packet num += 1 ;
327 //end o f add i t i on
� ��
405 // add i t i on f o r J i t t e r c a l c u l a t i o n
406 double RTPReceptionStats : : j i t t e r f l o a t () const {
407 return f J i t t e r ;
408 }
409 //end o f add i t i on
� �

C.2.2 modifications in RTPSource.hh�
191 // add i t i on f o r J i t t e r c a l c u l a t i o n
192 double j i t t e r f l o a t () const ;
193 //end o f add i t i on
� ��
242 // add i t i on f o r J i t t e r c a l c u l a t i o n
243 int packet num ;
244 int l a s t d ;
245 //end o f addi ton
� �

C.2.3 modifications in playCommon.cpp�
1157 // add i t i on f o r J i t t e r c a l c u l a t i o n
1158 ∗env << ” j i t t e r (in seconds) f o r RDT stream\ t ” << rdt−> j i t t e r () / rdt−>

timestampFrequency << ”\n” ;
1159 //end o f add i t i on
� ��
1175 // add i t i on f o r J i t t e r c a l c u l a t i o n
1176 double f r e q = (double) (src−>timestampFrequency ()) ;
1177 ∗env << ” J i t t e r f l o a t (in timestamp un i t s) :\ t ” << s ta t s−> j i t t e r f l o a t () << ”\n”

;
1178 ∗env << ” J i t t e r i n t e g e r (in timestamp un i t s) :\ t ” << s ta t s−> j i t t e r () << ”\n” ;
1179 ∗env << ”Timestamp Frequency :\ t ” << src−>timestampFrequency () << ”\n” ;
1180 ∗env << ” J i t t e r based on i n t e g e r (in seconds) \ t ” << s ta t s−> j i t t e r () / f r e q << ”\n”

;
1181 ∗env << ” J i t t e r based on f l o a t (in seconds) \ t ” << s ta t s−> j i t t e r f l o a t () / f r e q <<

”\n” ;
1182 //end o f add i t i on
� �

Appendix C Programs modifications C.3 Wireshark • 99

C.3 Wireshark

C.3.1 modifications in tap-rtp-common.c for videoTest-1.mp4�
448 // mod i f i ca t i on f o r J i t t e r c a l c u l a t i o n
449 // c l o c k r a t e = g e t c l o c k r a t e (s t a t i n f o−>pt) ;
450 c l o c k r a t e = 90000 ;
451 } else { /∗ dynamic PT ∗/
452 i f (r tp in f o−>i n f o p ay l o ad t yp e s t r != NULL)
453 // c l o c k r a t e = g e t d y n p t c l o c k r a t e (r t p in f o−>

i n f o p a y l o a d t y p e s t r) ;
454 c l o c k r a t e = 90000 ;
455 else
456 // c l o c k r a t e = 1;
457 c l o c k r a t e = 90000 ;
458 //end o f mod i f i c a t i on
� �

C.3.2 modifications in tap-rtp-common.c for videoTest-2.mp4�
448 // mod i f i ca t i on f o r J i t t e r c a l c u l a t i o n
449 // c l o c k r a t e = g e t c l o c k r a t e (s t a t i n f o−>pt) ;
450 c l o c k r a t e = 5544 ;
451 } else { /∗ dynamic PT ∗/
452 i f (r tp in f o−>i n f o p ay l o ad t yp e s t r != NULL)
453 // c l o c k r a t e = g e t d y n p t c l o c k r a t e (r t p in f o−>

i n f o p a y l o a d t y p e s t r) ;
454 c l o c k r a t e = 5544 ;
455 else
456 // c l o c k r a t e = 1;
457 c l o c k r a t e = 5544 ;
458 //end o f mod i f i c a t i on
� �

Appendix D
TG configuration files

D.1 Simple example

#UDP CLIENT #UDP SERVER

on 0:20 udp 192.168.0.239.4322 on 0:15 udp 192.168.1.64.4322 server

at 5 setup at 1.1 wait 30

at 6 arrival constant 0.01 length constant 450

time 15

In this case, the server starts, listens and finishes after 30 seconds. The client starts after 20
seconds and sends packet of 450 bytes every ms; it stops after 15 seconds.

D.2 Synthetic video streaming

This script can be found at [74].�
1 //
2 // //
3 // streaming . c //
4 // //
5 // Implementation o f a genera to r o f tg input f i l e f o r the video //
6 // streaming s imu la t i on . //
7 // //
8 //

//
9 // //

10 //
11

12 #inc l ude <s t d i o . h>
13 #inc l ude < s t d l i b . h>
14 #inc l ude <math . h>
15 #inc l ude <t ime . h>
16 #inc l ude < l i m i t s . h>
17 #inc l ude ”mcsim/sim/random . h”
18

19 /∗ streaming ∗/
20 /∗ f unc t i on which de f ined packets c on f i gu r a t i on f o r TG ∗/
21 i n t streaming (i n t t imeTra f f i c , double ui , double s i , double up , double sp , double ub ,

double sb) {
22 double s c a l e ;
23 double shape ;
24

25 double randNumber ;

102 • D.2 Synthetic video streaming Appendix D TG configuration files

26 i n t i ;
27 i n t nbpackets ;
28 f o r (i = 0 ; i<t imeTra f f i c ; i++){
29 // Parameters to obta in the frame s i z e o f B−frame
30 shape = (ub ∗ ub) /(sb∗ sb) ;
31 printf (” shape : %d\n” , (i n t) shape) ;
32 s c a l e = (sb∗ sb) /ub ;
33 randNumber=GGammaRandom(shape , s c a l e) ;
34 printf (”B%d−frame s i z e :%d\n” , i , (i n t) randNumber) ;
35 // Parameters to obta in the frame s i z e o f P−frame
36 shape = ((up−ub) ∗(up−ub)) / ((sp∗ sp)−(sb∗ sb)) ;
37 printf (” shape : %d\n” , (i n t) shape) ;
38 s c a l e = ((sp∗ sp)−(sb∗ sb)) /(up−ub) ;
39 randNumber=randNumber+GGammaRandom(shape , s c a l e) ;
40 printf (”P%d−frame s i z e :%d\n” , i , (i n t) randNumber) ;
41 // Parameters to obta in the frame s i z e o f I−frame
42 shape = ((ui−up) ∗(ui−up)) / ((s i ∗ s i)−(sp∗ sp)) ;
43 printf (” shape : %d\n” , (i n t) shape) ;
44 s c a l e = (s i ∗ s i)−(sp∗ sp) /(ui−up) ;
45 randNumber=randNumber+GGammaRandom(shape , s c a l e) ;
46 printf (”P%d−frame s i z e :%d\n” , i , (i n t) randNumber) ;
47 nbpackets=f l o o r (randNumber) ;
48 printf (” a r r i v a l 0 .040 l ength %d\n” , nbpackets) ;
49 }
50 re turn (0) ;
51 }
52

53 /∗ Main ∗/
54 /∗ c r e a t i on o f the tg input f i l e . ∗/
55 /∗ input 1 : IP ∗/
56 /∗ input 2 : port ∗/
57 /∗ input 3 : TimeTraf f ic ∗/
58 /∗ input 4 : u i ∗/
59 /∗ input 5 : s i ∗/
60 /∗ input 6 : up ∗/
61 /∗ input 7 : sp ∗/
62 /∗ input 8 : ub ∗/
63 /∗ input 9 : sb ∗/
64

65 i n t main (i n t argc , char ∗argv []) {
66 /∗ Var iab l e s c on f i gu r a t i on ∗/
67 char ∗ ip=argv [1] ;
68 char ∗ port=argv [2] ;
69 i n t t imeTra f f i c= a t o i (argv [3]) ;
70

71 /∗ Creat ion o f ba s i c l i n e s ∗/
72 printf (”# Conf igurat ion s c r i p t s f o r a VideoStreaming s e s s i o n \n”) ;
73 printf (”on 0 :03 udp %s .%s tos 39 \n” , ip , port) ;
74 printf (” setup \n”) ;
75

76 /∗ Creat ion o f streaming l i n e s ∗/
77 streaming (t imeTra f f i c , s t r t od (argv [4] ,NULL) , s t r t od (argv [5] ,NULL) , s t r t od (argv [6] ,

NULL) , s t r t od (argv [7] ,NULL) , s t r t od (argv [8] ,NULL) , s t r t od (argv [9] ,NULL)) ;
78 re turn (0) ;
79 }
� �

Appendix D TG configuration files D.3 Synthetic VoIP • 103

D.3 Synthetic VoIP

This script can be found at [74].�
1 #!/ bin / bash
2 # createFi lesVOIP . sh
3 # input 1 = d i r e c t o r y
4 # input 2 = IPUMTS
5

6 DIRECTORY=$1
7 IPUMTS=$2
8

9 echo ”
10 # Conf igurat ion s c r i p t s f o r a VoIP s e s s i o n
11 # ##
12 on 0 :01 udp $IPUMTS.57001 tos 39
13 setup
14 a r r i v a l 0 .020000 l ength 32
15 packet 42
16 at 2 .440000 a r r i v a l 0 .020000 l ength 32
17 packet 8
18 at 3 .280000 a r r i v a l 0 .020000 l ength 32
19 packet 55
20 at 4 .900000 a r r i v a l 0 .020000 l ength 32
21 packet 15
22 at 5 .740000 a r r i v a l 0 .020000 l ength 32
23 packet 4
24 at 6 .180000 a r r i v a l 0 .020000 l ength 32
25 packet 36
26 at 7 .680000 a r r i v a l 0 .020000 l ength 32
27 packet 73
28 at 10.540000 a r r i v a l 0 .020000 l ength 32
29 packet 41
30 at 13.040000 a r r i v a l 0 .020000 l ength 32
31 packet 33
32 at 16.240000 a r r i v a l 0 .020000 l ength 32
33 packet 84
34 at 19.980000 a r r i v a l 0 .020000 l ength 32
35 packet 75
36 at 21.600000 a r r i v a l 0 .020000 l ength 32
37 packet 18
38 at 25.280000 a r r i v a l 0 .020000 l ength 32
39 packet 32
40 at 31.240000 a r r i v a l 0 .020000 l ength 32
41 packet 45
42 at 39.080000 a r r i v a l 0 .020000 l ength 32
43 packet 65
44 at 42.700000 a r r i v a l 0 .020000 l ength 32
45 packet 70
46 at 48.060000 a r r i v a l 0 .020000 l ength 32
47 packet 32
48 at 50.120000 a r r i v a l 0 .020000 l ength 32
49 packet 114
50 at 57.960000 a r r i v a l 0 .020000 l ength 32
51 packet 5
52 at 59.700000 a r r i v a l 0 .020000 l ength 32
53 packet 16
54 at 62.340000 a r r i v a l 0 .020000 l ength 32
55 packet 8
56 at 64.440000 a r r i v a l 0 .020000 l ength 32

104 • D.3 Synthetic VoIP Appendix D TG configuration files

57 packet 78” > /$DIRECTORY/fundp/voip / syn the t i c / vo ipCl i en t1 . tg
58

59 echo ”
60 # Conf igurat ion s c r i p t s f o r a VoIP s e s s i o n
61 # ##
62 on 0 :01 udp $IPUMTS.57001 tos 39
63 setup
64 at 0 .920000 a r r i v a l 0 .020000 l ength 32
65 packet 249
66 at 8 .380000 a r r i v a l 0 .020000 l ength 32
67 packet 25
68 at 12.900000 a r r i v a l 0 .020000 l ength 32
69 packet 28
70 at 13.519999 a r r i v a l 0 .020000 l ength 32
71 packet 35
72 at 15.019999 a r r i v a l 0 .020000 l ength 32
73 packet 5
74 at 16.339999 a r r i v a l 0 .020000 l ength 32
75 packet 155
76 at 24.300002 a r r i v a l 0 .020000 l ength 32
77 packet 25
78 at 25.580000 a r r i v a l 0 .020000 l ength 32
79 packet 21
80 at 26.999998 a r r i v a l 0 .020000 l ength 32
81 packet 42
82 at 33.400000 a r r i v a l 0 .020000 l ength 32
83 packet 30
84 at 37.120001 a r r i v a l 0 .020000 l ength 32
85 packet 2
86 at 39.139998 a r r i v a l 0 .020000 l ength 32
87 packet 1
88 at 40.200003 a r r i v a l 0 .020000 l ength 32
89 packet 32
90 at 41.419997 a r r i v a l 0 .020000 l ength 32
91 packet 158
92 at 47.539999 a r r i v a l 0 .020000 l ength 32
93 packet 28
94 at 48.179999 a r r i v a l 0 .020000 l ength 32
95 packet 33
96 at 51.400000 a r r i v a l 0 .020000 l ength 32
97 packet 26
98 at 53.419997 a r r i v a l 0 .020000 l ength 32
99 packet 88

100 at 56.380003 a r r i v a l 0 .020000 l ength 32
101 packet 22
102 at 57.020003 a r r i v a l 0 .020000 l ength 32
103 packet 37
104 at 58.700003 a r r i v a l 0 .020000 l ength 32
105 packet 127
106 at 64.160002 a r r i v a l 0 .020000 l ength 32
107 packet 24
108 at 64.679999 a r r i v a l 0 .020000 l ength 32
109 packet 6
110 at 65.599997 a r r i v a l 0 .020000 l ength 32
111 packet 15
112 at 67.080000 a r r i v a l 0 .020000 l ength 32
113 packet 42
114 at 69.020003 a r r i v a l 0 .020000 l ength 32
115 packet 58
116 at 71.800002 a r r i v a l 0 .020000 l ength 32

Appendix D TG configuration files D.3 Synthetic VoIP • 105

117 packet 2
118 at 73.440001 a r r i v a l 0 .020000 l ength 32
119 packet 26
120 at 74.099997 a r r i v a l 0 .020000 l ength 32
121 packet 16
122 at 75.400000 a r r i v a l 0 .020000 l ength 32
123 packet 7
124 at 77.220000 a r r i v a l 0 .020000 l ength 32
125 packet 59
126 at 80.239996 a r r i v a l 0 .020000 l ength 32
127 packet 40
128 at 83.000006 a r r i v a l 0 .020000 l ength 32
129 packet 2
130 at 83.799994 a r r i v a l 0 .020000 l ength 32
131 packet 17
132 at 84.539999 a r r i v a l 0 .020000 l ength 32
133 packet 13
134 at 86.799994 a r r i v a l 0 .020000 l ength 32
135 packet 5” > /$DIRECTORY/fundp/ voip / syn the t i c / vo ipCl i en t2 . tg
� �

Appendix E
Scripts for the tests and experiments

E.1 Main script

For each test, this script is modified, the parameters are adapted to the provider, the system,
etc.�

1 #!/ bin / bash
2 # t e s t . sh
3

4 echo ”##### Var iab l e s c on f i gu r a t i on #####”
5 DIRECTORY=”home/unina umts”
6 INTERFACE=”eth0 ”
7 PROVIDER=”ETH”
8 HOUR=”18”
9 DATE=”23−01”

10 NODEPL=”onelab09 . i n r i a . f r ”
11 IPDISPLAY=127 .0 .0 .1
12

13 echo ”##### t e s t s . sh $HOUR − $DATE − $PROVIDER − $INTERFACE #####”
14

15 i f [”$INTERFACE” = ”ppp0”] ; then
16 sh /$DIRECTORY/fundp/umtsStart . sh $PROVIDER $DIRECTORY
17 wait
18 else
19 echo ” eth0 i s used . . . ”
20 f i
21

22 echo ”##### a f f i c h e heure #####”
23 date
24

25 echo ”##### Star t atCommands #####”
26 sh /$DIRECTORY/fundp/environnement/atCommands/atCommands . sh $HOUR $DATE $DIRECTORY

$PROVIDER $INTERFACE
27

28 echo ”##### s t a r t s i g n a l #####”
29 xterm −d i sp l ay $IPDISPLAY:0 −e ssh −t − i ˜/ . ssh / r oo t s sh k ey . r sa root@onelab03 . d i s

. unina . i t ” sh / root / fundp/ s i g n a l . sh” &
30 PIDSIG=$!
31 s l e e p 4
32

33 echo ”##### a f f i c h e heure #####”
34 date
35

108 • E.1 Main script Appendix E Scripts for the tests and experiments

36 echo ”##### Star t Wget #####”
37 sh /$DIRECTORY/fundp/environnement/maxDownlink/wget/maxDownWget . sh $HOUR $DATE

$INTERFACE $DIRECTORY $PROVIDER $NODEPL
38

39 echo ”##### a f f i c h e heure #####”
40 date
41

42 #echo ”##### Sta r t TG 384 − 1450 #####”
43 #sh /$DIRECTORY/ fundp/environnement/maxDownlink/ t g /maxDownTG. sh $HOUR $DATE udp

$INTERFACE $DIRECTORY $NODEPL $PROVIDER 1450 0.030 384 $IPDISPLAY
44

45 echo ”##### a f f i c h e heure #####”
46 date
47

48 #echo ”##### Sta r t TG 384 − 48 #####”
49 #sh /$DIRECTORY/ fundp/environnement/maxDownlink/ t g /maxDownTG. sh $HOUR $DATE udp

$INTERFACE $DIRECTORY $NODEPL $PROVIDER 48 0.001 384 $IPDISPLAY
50

51 echo ”##### a f f i c h e heure #####”
52 date
53

54 echo ”##### Star t TG 2000 − 1450 #####”
55 sh /$DIRECTORY/fundp/environnement/maxDownlink/ tg /maxDownTG. sh $HOUR $DATE udp

$INTERFACE $DIRECTORY $NODEPL $PROVIDER 1450 0 .0058 2000 $IPDISPLAY
56

57 echo ”##### a f f i c h e heure #####”
58 date
59

60 echo ”##### Star t TG 2000 − 250 #####”
61 sh /$DIRECTORY/fundp/environnement/maxDownlink/ tg /maxDownTG. sh $HOUR $DATE udp

$INTERFACE $DIRECTORY $NODEPL $PROVIDER 250 0 .001 2000 $IPDISPLAY
62

63 echo ”##### a f f i c h e heure #####”
64 date
65

66 # => only f o r the WIND network : t g on TCP
67

68 echo ”##### Star t TG 384 − 1450 #####”
69 sh /$DIRECTORY/fundp/environnement/maxDownlink/ tg /maxDownTG. sh $HOUR $DATE tcp

$INTERFACE $DIRECTORY $NODEPL $PROVIDER 1450 0 .030 384 $IPDISPLAY
70

71 echo ”##### a f f i c h e heure #####”
72 date
73

74 echo ”##### Star t TG 384 − 48 #####”
75 sh /$DIRECTORY/fundp/environnement/maxDownlink/ tg /maxDownTG. sh $HOUR $DATE tcp

$INTERFACE $DIRECTORY $NODEPL $PROVIDER 48 0.001 384 $IPDISPLAY
76

77 echo ”##### a f f i c h e heure #####”
78 date
79

80 #echo ”##### Sta r t TG 2000 − 1450 #####”
81 #sh /$DIRECTORY/ fundp/environnement/maxDownlink/ t g /maxDownTG. sh $HOUR $DATE tcp

$INTERFACE $DIRECTORY $NODEPL $PROVIDER 1450 0.0058 2000 $IPDISPLAY
82

83 echo ”##### a f f i c h e heure #####”
84 date
85

86 #echo ”##### Sta r t TG 2000 − 250 #####”
87 #sh /$DIRECTORY/ fundp/environnement/maxDownlink/ t g /maxDownTG. sh $HOUR $DATE tcp

Appendix E Scripts for the tests and experiments E.1 Main script • 109

$INTERFACE $DIRECTORY $NODEPL $PROVIDER 250 0.001 2000 $IPDISPLAY
88

89 echo ”##### a f f i c h e heure #####”
90 date
91

92 echo ”##### Star t t racepath #####”
93 sh /$DIRECTORY/fundp/environnement/ tracepath / tracepath . sh $HOUR $DATE $DIRECTORY

$PROVIDER $NODEPL $INTERFACE
94

95 echo ”##### a f f i c h e heure #####”
96 date
97

98 echo ”##### Star t Video Streaming − s yn th e t i c MQ #####”
99 sh /$DIRECTORY/fundp/ videoStreaming / syn th e t i c /videoStreamTG . sh $HOUR $DATE

$INTERFACE $DIRECTORY $NODEPL $PROVIDER MQ 3 1 ,5 15 ,5 2 ,5 4 ,5 1 $IPDISPLAY
100

101 echo ”##### a f f i c h e heure #####”
102 date
103

104 echo ”##### Star t Video Streaming − s yn th e t i c LQ #####”
105 sh /$DIRECTORY/fundp/ videoStreaming / syn th e t i c /videoStreamTG . sh $HOUR $DATE

$INTERFACE $DIRECTORY $NODEPL $PROVIDER LQ 2 ,75 1 16 ,25 1 ,5 3 ,5 0 ,5 $IPDISPLAY
106

107 echo ”##### a f f i c h e heure #####”
108 date
109

110 echo ”##### Star t Video Streaming − r e a l TCP videoTest−1 #####”
111 sh /$DIRECTORY/fundp/ videoStreaming / r e a l /videoStreamingREAL . sh $HOUR $DATE

$INTERFACE $DIRECTORY $NODEPL $PROVIDER $IPDISPLAY TCP 1
112

113 echo ”##### a f f i c h e heure #####”
114 date
115

116 echo ”##### Star t Video Streaming − r e a l TCP videoTest−2 #####”
117 sh /$DIRECTORY/fundp/ videoStreaming / r e a l /videoStreamingREAL . sh $HOUR $DATE

$INTERFACE $DIRECTORY $NODEPL $PROVIDER $IPDISPLAY TCP 2
118

119 echo ”##### a f f i c h e heure #####”
120 date
121

122 echo ”##### Star t Video Streaming − r e a l UDP videoTest−1 #####”
123 sh /$DIRECTORY/fundp/ videoStreaming / r e a l /videoStreamingREAL . sh $HOUR $DATE

$INTERFACE $DIRECTORY $NODEPL $PROVIDER $IPDISPLAY UDP 1
124

125 echo ”##### a f f i c h e heure #####”
126 date
127

128 echo ”##### Star t Video Streaming − r e a l UDP videoTest−2 #####”
129 sh /$DIRECTORY/fundp/ videoStreaming / r e a l /videoStreamingREAL . sh $HOUR $DATE

$INTERFACE $DIRECTORY $NODEPL $PROVIDER $IPDISPLAY UDP 2
130

131 echo ”##### a f f i c h e heure #####”
132 date
133

134 echo ”##### Star t VOIP − f i l e 1 #####”
135 sh /$DIRECTORY/fundp/voip / syn the t i c /voipTG . sh $HOUR $DATE $INTERFACE $DIRECTORY

$NODEPL $PROVIDER 1 $IPDISPLAY
136

137 echo ”##### a f f i c h e heure #####”
138 date

110 • E.2 AT-commands Appendix E Scripts for the tests and experiments

139

140 echo ”##### Star t VOIP − f i l e 2 #####”
141 sh /$DIRECTORY/fundp/voip / syn the t i c /voipTG . sh $HOUR $DATE $INTERFACE $DIRECTORY

$NODEPL $PROVIDER 2 $IPDISPLAY
142

143 echo ”##### a f f i c h e heure #####”
144 date
145

146 echo ”##### Star t VOIP REAL #####”
147 sh /$DIRECTORY/fundp/voip / r e a l /voipREAL . sh $HOUR $DATE $INTERFACE $DIRECTORY

$NODEPL $PROVIDER $IPDISPLAY
148

149 echo ”##### a f f i c h e heure #####”
150 date
151

152 echo ”##### stop s i g n a l #####”
153 k i l l −9 $PIDSIG
154 ssh − i ˜/ . ssh / r oo t s sh k ey . r sa −t root@onelab03 . d i s . unina . i t ” k i l l a l l sh”
155

156 i f [”$INTERFACE” = ”ppp0”] ; then
157 i f [”$DIRECTORY” = ” root ”] ; then
158 echo ”Shutdown the UMTS connexion ”
159 k i l l a l l wvdial
160 echo ”Shutdown the PCMCIA card ”
161 pcca rdc t l e j e c t
162 echo ”UMTS c l o s ed => end o f t e s t s ! ”
163 else
164 su −c ”umts stop ”
165 f i
166 else
167 echo ”end o f t e s t s ! ”
168 f i
� �

E.2 AT-commands�
1 #!/ bin / bash
2 # atCommandsVPOST4 . sh
3 # input 1 = HOUR of the exper i ence
4 # input 2 = DATE
5 # input 3 = d i r e c t o r y used
6 # input 4 = PROVIDER
7 # input 5 = INTERFACE
8

9 echo ”##### Var iab l e s c on f i gu r a t i on #####”
10 HOUR=$1
11 DATE=$2
12 DIRECTORY=$3
13 PROVIDER=$4
14 INTERFACE=$5
15

16 i f [”$DIRECTORY” = ” root ”] ;
17 then
18 i f [”$INTERFACE” = ”ppp0”] ;
19 then
20 su −c ” route add 138 . 48 . 32 . 100 ppp0”
21 f i
22

23 COUNT=1

Appendix E Scripts for the tests and experiments E.3 Traceroute • 111

24 while (($COUNT <= 1))
25 do
26 echo ”##### AT commands − t e s t $COUNT #####”
27 sh /$DIRECTORY/fundp/environnement/atCommands/commands . sh gcom > /

$DIRECTORY/fundp/environnement/atCommands/$PROVIDER/$HOUR/
atCommandsLB$DATE−$HOUR−$COUNT. txt

28 wait
29 l e t COUNT=COUNT+1
30 done
31 else
32 i f [”$INTERFACE” = ”ppp0”] ;
33 then
34 su −c ”umts add 138 . 48 . 32 . 100 ”
35 f i
36

37 COUNT=1
38 while (($COUNT <= 1))
39 do
40 echo ”##### AT commands − e s s a i $COUNT #####”
41 ssh − i ˜/ . ssh / r oo t s sh k ey . r sa root@onelab03 . d i s . unina . i t ” sh ˜/

fundp/environnement/atCommands/commands . sh comgt > ˜/ fundp/
environnement/atCommands/$PROVIDER/$HOUR/atCommandsPR$DATE−
$HOUR−$COUNT. txt ”

42 wait
43 l e t COUNT=COUNT+1
44 done
45 f i
� �

E.3 Traceroute�
1 #!/ bin / bash
2 #tracepathWIND4 . sh
3 # input 1 = Hour
4 # input 2 = Date
5 # input 3 = Direc tory
6 # input 4 = Provider
7 # input 5 = Node to reach
8 # input 6 = In t e r f a c e
9

10 echo ”##### Var iab l e s c on f i gu r a t i on #####”
11 HOUR=$1
12 DATE=$2
13 DIRECTORY=$3
14 PROVIDER=$4
15 NODETR=$5
16 INTERFACE=$6
17

18 i f [”$DIRECTORY” = ” root ”] ;
19 then
20 PC=$LB
21 else
22 PC=$PR
23 f i
24

25 COUNT=1
26 while (($COUNT <= 1))
27 do
28 echo ”##### tracepath − t e s t $COUNT #####”

112 • E.4 Maximal downlink traffic Appendix E Scripts for the tests and experiments

29 STR=‘ tracepath $NODETR‘
30 echo $STR > /$DIRECTORY/fundp/environnement/ tracepath /$PROVIDER/$HOUR/

tracepathPCDATE−$HOUR−$COUNT. txt
31 wait
32 echo ”Take the f i r s t IP address ”
33 STR=”${STR:3} ”
34 # go to the l i n e o f the f i r s t IP address
35 while [[”${STR: 0 : 1 } ” != ” : ”]] ;
36 do
37 STR=”${STR:1} ”
38 done
39

40 # go to the beg inn ing o f the IP address
41 while [[”${STR: 0 : 1 } ” != ” (”]] ;
42 do
43 STR=”${STR:1} ”
44 done
45

46 # put the IP address in IP v a r i a b l e
47 STR=”${STR:1} ”
48 IP=””
49 while [[”${STR: 0 : 1 } ” != ”) ”]] ;
50 do
51 IP=”IP{STR: 0 : 1 } ”
52 STR=”${STR:1} ”
53 done
54

55 echo ”Ping t h i s IP address ”
56 ping −I $INTERFACE $IP > /$DIRECTORY/fundp/environnement/ tracepath /

$PROVIDER/$HOUR/pingPCDATE−$HOUR−$COUNT. txt &
57 s l e e p 10
58 k i l l a l l ping
59 l e t COUNT=COUNT+1
60 done
� �

E.4 Maximal downlink traffic

E.4.1 Script for tg�
1 #!/ bin / bash
2 # maxDownTG. sh
3 # input 1 = HOUR of the exper i ence
4 # input 2 = DATE
5 # input 3 = PROTOCOL used
6 # input 4 = network INTERFACE
7 # input 5 = d i r e c t o r y used
8 # input 6 = PlanetLab node
9 # input 7 = PROVIDER

10 # input 8 = s i z e o f the packe t
11 # input 9 = FREQUENCE of packe t s
12 # input 10 = SPEED
13 # input 11 = Parameter to xterm : d i s p l a y to another hos t ?
14

15 echo ”##### Var iab l e s c on f i gu r a t i on #####”
16 HOUR=$1
17 DATE=$2
18 PROTOCOL=$3
19 INTERFACE=$4

Appendix E Scripts for the tests and experiments E.4 Maximal downlink traffic • 113

20 DIRECTORY=$5
21 NODEPL=$6
22 PROVIDER=$7
23 PSIZE=$8
24 FREQUENCE=$9
25 SPEED=${10}
26 IPDISPLAY=${11}
27 IPUMTS=‘ i f c o n f i g $INTERFACE | sed −n ’ s / .∗ i n e t addr : \ ([ˆ .] ∗ . [ˆ .] ∗ . [ˆ .] ∗ . [ˆ]∗\) .∗ $

/\1/p ’ ‘
28

29 i f [”$DIRECTORY” = ” root ”] ; then
30 PC=”LB”
31 else
32 PC=”PR”
33 f i
34

35 i f [”$DIRECTORY” = ” root ”] ; then
36 PARAMXTERM=””
37 else
38 PARAMXTERM=”−d i sp l ay $IPDISPLAY:0 ”
39 f i
40

41 echo ”##### con f i gu r a t i on o f TG f i l e s #####”
42

43 echo ”Creat ion o f MaxDownLinkServer . tg with the IPUMTS: $IPUMTS”
44 echo ”# max Downlink s e r v e r
45 on 0 :03 $PROTOCOL $IPUMTS.57001 s e r v e r
46 at 1 .1 wait 75” > /$DIRECTORY/fundp/environnement/maxDownlink/ tg /maxDownlinkServer

. tg
47

48 echo ”Creat ion o f MaxDownLinkClient$SPEED−$PSIZE . tg with the IPUMTS: $IPUMTS”
49 echo ”# max Downlink c l i e n t
50 on 0 :03 $PROTOCOL $IPUMTS.57001
51 at 1 setup
52 at 2 a r r i v a l constant $FREQUENCE length constant $PSIZE
53 time 60” > /$DIRECTORY/fundp/environnement/maxDownlink/ tg /maxDownlinkClient$SPEED−

$PSIZE . tg
54

55 echo ”Copy o f f i l e s on the p lane t l ab node . . . ”
56 scp /$DIRECTORY/fundp/environnement/maxDownlink/ tg /maxDownlinkClient∗

uninaonelab umts@$NODEPL :˜/ fundp/environnement/maxDownlink/ tg /
57

58 COUNT=1
59 while (($COUNT <= 1))
60 do
61 echo ”##### maxDownTG − t e s t $COUNT #####”
62

63 echo ”run tcpdump . . . ”
64 su −c ”tcpdump − i $INTERFACE −s 0 −w /$DIRECTORY/fundp/environnement/

maxDownlink/ tg /$PROVIDER/$HOUR/mdtg$PC−$SPEED−$PSIZE−$DATE−$HOUR−
$COUNT$PROTOCOL.dump &”

65 s l e e p 2
66

67 echo ”run tcpdump on $NODEPL . . . ”
68 xterm $PARAMXTERM −e ssh −t uninaonelab umts@$NODEPL ”su −c ’ tcpdump − i

eth0 −s 0 −w /home/uninaonelab umts / fundp/environnement/maxDownlink/ tg
/$PROVIDER/$HOUR/mdtg$PC−PL$SPEED−$PSIZE−$DATE−$HOUR−$COUNT$PROTOCOL.
dump’ ” &

69 s l e e p 4
70

114 • E.4 Maximal downlink traffic Appendix E Scripts for the tests and experiments

71 i f [”$PROVIDER” != ”WIND”] ; then
72 echo ” ! ! ! open the port on the f i r e w a l l o f the PROVIDER ! ! ! ”
73 ssh uninaonelab umts@$NODEPL ” tg − i ˜/ fundp/openFirewallS$PROTOCOL

. tg ”&
74 PIDFS=$!
75 s l e e p 3
76

77 echo ” ! ! ! c l i e n t to open the f i r e w a l l ! ! ! ”
78 t g s r c57001 r eu s e − i /$DIRECTORY/fundp/openFirewallC$PROTOCOL . tg &
79 PIDFC=$!
80 wait $PIDFC
81 echo ””
82 echo ” . . . the c l i e n t has f i n i s h e d h i s job . . . ”
83 else
84 echo ”Do not ”open” the f i r e w a l l => WIND”
85 f i
86

87 echo ”run tg MaxDownlinkServer . . . ”
88 t g r eu s e − i /$DIRECTORY/fundp/environnement/maxDownlink/ tg /

maxDownlinkServer . tg −o /$DIRECTORY/fundp/environnement/maxDownlink/ tg
/$PROVIDER/$HOUR/mdServer$PC−$SPEED−$PSIZE−$DATE−$HOUR−$COUNT$PROTOCOL
. log &

89 PIDS=$!
90 echo ”PID o f the s e r v e r : ” $PIDS
91 echo ””
92 s l e e p 2
93

94 i f [”$PROVIDER” != ”WIND”] ; then
95 echo ”wait the end o f the openFi rewa l l s e r v e r . . . ”
96 wait $PIDFS
97 f i
98

99 echo ”run the tg MaxDownlinkClient >>> GO”
100 ssh uninaonelab umts@$NODEPL ” tgs rc57002 − i ˜/ fundp/environnement/

maxDownlink/ tg /maxDownlinkClient$SPEED−$PSIZE . tg −o ˜/ fundp/
environnement/maxDownlink/ tg /$PROVIDER/$HOUR/mdClient$PC−$SPEED−$PSIZE
−$DATE−$HOUR−$COUNT$PROTOCOL. log ”

101

102 echo ”wait the end o f the s e r v e r PID : ” $PIDS
103 wait $PIDS
104 echo ” k i l l each tcpdump . . . ”
105 su −c ” k i l l a l l tcpdump”
106 ssh −t uninaonelab umts@$NODEPL ”su −c ’ k i l l a l l tcpdump ’ ”
107 r e s e t
108 s l e e p 4
109 l e t COUNT=COUNT+1
110 done
� �

For 2,000 kb/s the packet size is 1,450 and the frequence is 0.0058 (we also use other figures in
order to see if there is a difference: 250 for the size and 0.001 for the frequency). As previously
explained, the protocol for this test is UDP.

E.4.2 Script for wget�
1 #!/ bin / bash
2 # maxDownWgetVPOST4. sh
3 # input 1 = HOUR of the exper i ence
4 # input 2 = DATE

Appendix E Scripts for the tests and experiments E.5 Synthetic Video Streaming • 115

5 # input 3 = network INTERFACE
6 # input 4 = d i r e c t o r y used
7 # input 5 = PROVIDER
8 # input 6 = PlanetLab node
9

10 echo ”##### Var iab l e s c on f i gu r a t i on #####”
11 HOUR=$1
12 DATE=$2
13 INTERFACE=$3
14 DIRECTORY=$4
15 PROVIDER=$5
16 NODEPL=$6
17

18 i f [”$DIRECTORY” = ” root ”] ;
19 then
20 PC=$LB
21 else
22 PC=$PR
23 f i
24

25

26 i f [”$INTERFACE” = ”ppp0”] ;
27 then
28 echo ”add route on ppp0”
29 i f [”$DIRECTORY” = ” root ”] ;
30 then
31 su −c ” route add 138 . 48 . 32 . 100 ppp0”
32 else
33 su −c ”umts add 138 . 48 . 32 . 100 ”
34 f i
35 else
36 echo ”no route add => we are on eth0 ”
37 f i
38

39 COUNT=1
40 while (($COUNT <= 1))
41 do
42 echo ”##### maxDownWget − t e s t $COUNT #####”
43 su −c ”tcpdump − i $INTERFACE −s 0 −w /$DIRECTORY/fundp/environnement/

maxDownlink/wget/$PROVIDER/$HOUR/mdwgetPCDATE−$HOUR−$COUNT.dump &”
44 s l e e p 2
45 wget www. i n f o . fundp . ac . be/˜ bevrard / l i v r eRe f e r e n c e . pdf −o /$DIRECTORY/fundp

/environnement/maxDownlink/wget/$PROVIDER/$HOUR/mdwgetPCDATE−$HOUR−
$COUNT. txt

46 echo ”PID o f wget : ” $PIDS
47 wait $PIDS
48 su −c ” k i l l a l l tcpdump”
49 s l e e p 15
50 l e t COUNT=COUNT+1
51 done
52

53 echo ”##### clean the r epo s i t o r y #####”
54 rm −f /$DIRECTORY/fundp/ l i v r e ∗
� �

E.5 Synthetic Video Streaming�
1 #!/ bin / bash
2 # maxDownTG. sh

116 • E.5 Synthetic Video Streaming Appendix E Scripts for the tests and experiments

3 # input 1 = HOUR of the exper i ence
4 # input 2 = DATE
5 # input 3 = network INTERFACE
6 # input 4 = d i r e c t o r y used
7 # input 5 = PlanetLab node
8 # input 6 = PROVIDER
9 # input 7 = q u a l i t y

10 # input 8 ,9 ,10 ,11 ,12 ,13 = parameters f o r the gamma d i s t r i b u t i o n
11 # input 14 = Parameter to xterm : d i s p l a y to another hos t ?
12

13

14 echo ”##### Var iab l e s c on f i gu r a t i on #####”
15 HOUR=$1
16 DATE=$2
17 INTERFACE=$3
18 DIRECTORY=$4
19 NODEPL=$5
20 PROVIDER=$6
21 QUALITY=$7
22 ALPHA1=$8
23 ALPHA2=${9}
24 ALPHA3=${10}
25 LAMB1=${11}
26 LAMB2=${12}
27 LAMB3=${13}
28 IPDISPLAY=${14}
29 IPUMTS=‘ i f c o n f i g $INTERFACE | sed −n ’ s / .∗ i n e t addr : \ ([ˆ .] ∗ . [ˆ .] ∗ . [ˆ .] ∗ . [ˆ]∗\) .∗ $

/\1/p ’ ‘
30

31 i f [”$DIRECTORY” = ” root ”] ; then
32 PC=”LB”
33 else
34 PC=”PR”
35 f i
36

37 i f [”$DIRECTORY” = ” root ”] ; then
38 PARAMXTERM=””
39 else
40 PARAMXTERM=”−d i sp l ay $IPDISPLAY:0 ”
41 f i
42

43 echo ”##### con f i gu r a t i on o f TG f i l e s #####”
44

45 echo ”Creat ion o f v ideoStreamServer . tg with the IPUMTS: $IPUMTS”
46 echo ”# max Downlink s e r v e r
47 on 0 :03 udp $IPUMTS.57001 s e r v e r
48 at 1 .1 wait 130” > /$DIRECTORY/fundp/ videoStreaming / syn the t i c / videoStreamServer . tg
49

50 echo ”Creat ion o f videStreamClient$QUALITY . tg with the IPUMTS: $IPUMTS”
51 /$DIRECTORY/fundp/ videoStreaming / syn the t i c / streamReal $IPUMTS 57001 3000 $ALPHA1

$ALPHA2 $ALPHA3 $LAMB1 $LAMB2 $LAMB3 > /$DIRECTORY/fundp/ videoStreaming /
syn the t i c /videoStreamClient$QUALITY . tg

52

53 echo ”Copy o f f i l e s on the p lane t l ab node . . . ”
54 scp /$DIRECTORY/fundp/ videoStreaming / syn the t i c / v ideoStreamCl ient ∗

uninaonelab umts@$NODEPL :˜/ fundp/ videoStreaming / syn the t i c /
55

56 COUNT=1
57 while (($COUNT <= 1))
58 do

Appendix E Scripts for the tests and experiments E.5 Synthetic Video Streaming • 117

59 echo ”##### videoStream − t e s t $COUNT #####”
60

61 echo ”run tcpdump . . . ”
62 su −c ”tcpdump − i $INTERFACE −s 0 −w /$DIRECTORY/fundp/ videoStreaming /

syn the t i c /$PROVIDER/$HOUR/videoStream$PC−$QUALITY−$DATE−$HOUR−$COUNT.
dump &”

63 s l e e p 2
64

65 echo ”run tcpdump on $NODEPL . . . ”
66 xterm $PARAMXTERM −e ssh −t uninaonelab umts@$NODEPL ”su −c ’ tcpdump − i

eth0 −s 0 −w /home/uninaonelab umts / fundp/ videoStreaming / syn the t i c /
$PROVIDER/$HOUR/videoStream$PC−PL$QUALITY−$DATE−$HOUR−$COUNT.dump’ ” &

67 s l e e p 2
68

69 i f [”$PROVIDER” != ”WIND”] ; then
70 echo ” ! ! ! open the port on the f i r e w a l l o f the PROVIDER ! ! ! ”
71 ssh uninaonelab umts@$NODEPL ” tg − i ˜/ fundp/ openFirewal lSudp . tg ”&
72 PIDFS=$!
73 s l e e p 1
74

75 echo ” ! ! ! c l i e n t to open the f i r e w a l l ! ! ! ”
76 t g s r c57001 r eu s e − i /$DIRECTORY/fundp/openFirewallCudp . tg &
77 PIDFC=$!
78 wait $PIDFC
79 echo ””
80 echo ” . . . the c l i e n t has f i n i s h e d h i s job . . . ”
81 else
82 echo ”Do not ”open” the f i r e w a l l => WIND”
83 f i
84

85 echo ”run tg videoStreamServer . . . ”
86 t g r eu s e − i /$DIRECTORY/fundp/ videoStreaming / syn the t i c / videoStreamServer . tg

−o /$DIRECTORY/fundp/ videoStreaming / syn the t i c /$PROVIDER/$HOUR/
videoStreamServer$PC−$QUALITY−$DATE−$HOUR−$COUNT. log &

87 PIDS=$!
88 echo ”PID o f the s e r v e r : ” $PIDS
89 echo ””
90

91 i f [”$PROVIDER” != ”WIND”] ; then
92 echo ”wait the end o f the openFi rewa l l s e r v e r . . . ”
93 wait $PIDFS
94 f i
95

96 echo ”run the tg videoStreamClient$QUALITY >>> GO”
97 ssh uninaonelab umts@$NODEPL ” tgs rc57002 − i ˜/ fundp/ videoStreaming /

syn the t i c /videoStreamClient$QUALITY . tg −o ˜/ fundp/ videoStreaming /
syn the t i c /$PROVIDER/$HOUR/videoStreamClient$PC−$QUALITY−$DATE−$HOUR−
$COUNT. log ”

98 echo ”wait the end o f the s e r v e r PID : ” $PIDS
99 wait $PIDS

100 echo ” k i l l each tcpdump . . . ”
101 su −c ” k i l l a l l tcpdump”
102 ssh −t uninaonelab umts@$NODEPL ”su −c ’ k i l l a l l tcpdump ’ ”
103 r e s e t
104 s l e e p 4
105 l e t COUNT=COUNT+1
106 done
� �

118 • E.6 Synthetic VoIP Appendix E Scripts for the tests and experiments

E.6 Synthetic VoIP

�
1 #!/ bin / bash
2 # maxDownTG. sh
3 # input 1 = HOUR of the exper i ence
4 # input 2 = DATE
5 # input 3 = network INTERFACE
6 # input 4 = d i r e c t o r y used
7 # input 5 = PlanetLab node
8 # input 6 = PROVIDER
9 # input 7 = f i l e to s imu la t e vo ip

10 # input 8 = Parameter to xterm : d i s p l a y to another hos t ?
11

12 echo ”##### Var iab l e s c on f i gu r a t i on #####”
13 HOUR=$1
14 DATE=$2
15 INTERFACE=$3
16 DIRECTORY=$4
17 NODEPL=$5
18 PROVIDER=$6
19 FILE=$7
20 IPDISPLAY=$8
21 IPUMTS=‘ i f c o n f i g $INTERFACE | sed −n ’ s / .∗ i n e t addr : \ ([ˆ .] ∗ . [ˆ .] ∗ . [ˆ .] ∗ . [ˆ]∗\) .∗ $

/\1/p ’ ‘
22

23 i f [”$DIRECTORY” = ” root ”] ;
24 then
25 PC=”LB”
26 else
27 PC=”PR”
28 f i
29

30 i f [”$DIRECTORY” = ” root ”] ; then
31 PARAMXTERM=””
32 else
33 PARAMXTERM=”−d i sp l ay $IPDISPLAY:0 ”
34 f i
35

36 echo ”##### con f i gu r a t i on o f TG f i l e s #####”
37

38 echo ”Creat ion o f vo ipServer . tg with the IPUMTS: $IPUMTS”
39 echo ”# max Downlink s e r v e r
40 on 0 :03 udp $IPUMTS.57001 s e r v e r
41 at 1 .1 wait 100” > /$DIRECTORY/fundp/voip / syn the t i c / vo ipServer . tg
42

43 echo ”Creat ion o f vo ipC l i en t with the IPUMTS: $IPUMTS”
44 sh /$DIRECTORY/fundp/voip / syn the t i c / createFi lesVOIP $DIRECTORY $IPUMTS
45

46 echo ”Copy o f f i l e s on the p lane t l ab node . . . ”
47 scp /$DIRECTORY/fundp/voip / syn the t i c / vo ipC l i en t ∗ uninaonelab umts@$NODEPL :˜/ fundp/

voip / syn the t i c /
48

49 COUNT=1
50 while (($COUNT <= 1))
51 do
52 echo ”##### voipTG − t e s t $COUNT #####”
53

54 echo ”run tcpdump . . . ”

Appendix E Scripts for the tests and experiments E.7 Video Streaming Real • 119

55 su −c ”tcpdump − i $INTERFACE −s 0 −w /$DIRECTORY/fundp/voip / syn the t i c /
$PROVIDER/$HOUR/voipTG$PC−$FILE−$DATE−$HOUR−$COUNT.dump &”

56 s l e e p 2
57

58 echo ”run tcpdump on $NODEPL . . . ”
59 xterm $PARAMXTERM −e ssh −t uninaonelab umts@$NODEPL ”su −c ’ tcpdump − i

eth0 −s 0 −w /home/uninaonelab umts / fundp/ voip / syn the t i c /$PROVIDER/
$HOUR/voipTG$PC−PL$FILE−$DATE−$HOUR−$COUNT.dump’ ”&

60 s l e e p 2
61

62 i f [”$PROVIDER” != ”WIND”] ; then
63 echo ” ! ! ! open the port on the f i r e w a l l o f the PROVIDER ! ! ! ”
64 ssh uninaonelab umts@$NODEPL ” tg − i ˜/ fundp/ openFirewal lSudp . tg ”&
65 PIDFS=$!
66 s l e e p 1
67

68 echo ” ! ! ! c l i e n t to open the f i r e w a l l ! ! ! ”
69 t g s r c57001 r eu s e − i /$DIRECTORY/fundp/openFirewallCudp . tg &
70 PIDFC=$!
71 wait $PIDFC
72 echo ””
73 echo ” . . . the c l i e n t has f i n i s h e d h i s job . . . ”
74 else
75 echo ”Do not ”open” the f i r e w a l l => WIND”
76 f i
77

78 echo ”run tg vo ipServer . . . ”
79 t g r eu s e − i /$DIRECTORY/fundp/voip / syn the t i c / vo ipServer . tg −o /$DIRECTORY/

fundp/voip / syn the t i c /$PROVIDER/$HOUR/voipServer$PC−$FILE−$DATE−$HOUR−
$COUNT. log &

80 PIDS=$!
81 echo ”PID o f the s e r v e r : ” $PIDS
82 echo ””
83

84 i f [”$PROVIDER” != ”WIND”] ; then
85 echo ”wait the end o f the openFi rewa l l s e r v e r . . . ”
86 wait $PIDFS
87 f i
88

89 echo ”run the tg voipClient$FILE >>> GO”
90 ssh uninaonelab umts@$NODEPL ” tgs rc57002 − i ˜/ fundp/ voip / syn th e t i c /

voipClient$FILE . tg −o ˜/ fundp/ voip / syn th e t i c /$PROVIDER/$HOUR/
voipClient$PC−$FILE−$DATE−$HOUR−$COUNT. log ”

91 echo ”wait the end o f the s e r v e r PID : ” $PIDS
92 wait $PIDS
93 echo ” k i l l each tcpdump . . . ”
94 su −c ” k i l l a l l tcpdump”
95 ssh −t uninaonelab umts@$NODEPL ”su −c ’ k i l l a l l tcpdump ’ ”
96 r e s e t
97 s l e e p 4
98 l e t COUNT=COUNT+1
99 done
� �

E.7 Video Streaming Real�
1 #!/ bin / bash
2 # videoStreamingREAL . sh
3 #

120 • E.7 Video Streaming Real Appendix E Scripts for the tests and experiments

4 # input 1 = HOUR of the exper i ence
5 # input 2 = DATE
6 # input 3 = network INTERFACE
7 # input 4 = d i r e c t o r y used
8 # input 5 = PlanetLab node
9 # input 6 = PROVIDER

10 # input 7 = Parameter to xterm : d i s p l a y to another hos t ?
11 # input 8 = PROTOCOL
12 # input 9 = VIDEO id
13

14 echo ”##### Var iab l e s c on f i gu r a t i on #####”
15 HOUR=$1
16 DATE=$2
17 INTERFACE=$3
18 DIRECTORY=$4
19 NODEPL=$5
20 PROVIDER=$6
21 IPDISPLAY=$7
22 PROTOCOL=$8
23 VIDEO=$9
24

25 IPUMTS=‘ i f c o n f i g $INTERFACE | sed −n ’ s / .∗ i n e t addr : \ ([ˆ .] ∗ . [ˆ .] ∗ . [ˆ .] ∗ . [ˆ]∗\) .∗ $
/\1/p ’ ‘

26

27 i f [”$DIRECTORY” = ” root ”] ;
28 then
29 PC=”LB”
30 else
31 PC=”PR”
32 f i
33

34 i f [”$DIRECTORY” = ” root ”] ; then
35 PARAMXTERM=””
36 else
37 PARAMXTERM=”−d i sp l ay $IPDISPLAY:0 ”
38 f i
39

40 i f [”$PROTOCOL” = ”TCP”] ;
41 then
42 PROTPARAM=”−t ”
43 else
44 PROTPARAM=”−v”
45 f i
46

47 i f [”$VIDEO” = ”1”] ;
48 then
49 FRAME=”25”
50 else
51 FRAME=”30”
52 f i
53

54 COUNT=1
55 while (($COUNT <= 1))
56 do
57 echo ”##### videoStreamingREAL − t e s t $COUNT #####”
58

59 echo ”run tcpdump . . . ”
60 su −c ”tcpdump − i $INTERFACE −s 0 −w /$DIRECTORY/fundp/ videoStreaming / r e a l

/$PROVIDER/$HOUR/videoStreamingREAL$PC−$VIDEO$PROTOCOL−$DATE−$HOUR−
$COUNT.dump &”

Appendix E Scripts for the tests and experiments E.8 VoIP Real • 121

61 s l e e p 4
62

63 echo ”run tcpdump on $NODEPL . . . ”
64 xterm $PARAMXTERM −e ssh −t uninaonelab umts@$NODEPL ”su −c ’ tcpdump − i

eth0 −s 0 −w /home/uninaonelab umts / fundp/ videoStreaming / r e a l /
$PROVIDER/$HOUR/videoStreamingREAL$PC−PL−$VIDEO$PROTOCOL−$DATE−$HOUR−
$COUNT.dump’ ”&

65 s l e e p 4
66

67 echo ”##### Run openRTSP (on $PC) − Down on $PROTOCOL − videoTest−$VIDEO.
mp4 #####”

68 openRTSP −f $FRAME −w 320 −h 240 −4 −n −Q $PROTPARAM −v r t sp :// onelab09 .
i n r i a . f r :8554/ videoTest−$VIDEO.mp4 > /$DIRECTORY/fundp/ videoStreaming /
r e a l /$PROVIDER/$HOUR/videoStreamingREAL$PC−$VIDEO$PROTOCOL−$DATE−$HOUR
−$COUNT.mp4 2> /$DIRECTORY/fundp/ videoStreaming / r e a l /$PROVIDER/$HOUR/
videoStreamingREAL$PC−$VIDEO$PROTOCOL−$DATE−$HOUR−$COUNT. txt

69 l e t COUNT=COUNT+1
70

71 echo ” k i l l each tcpdump . . . ”
72 su −c ” k i l l a l l tcpdump”
73 ssh −t uninaonelab umts@$NODEPL ”su −c ’ k i l l a l l tcpdump ’ ”
74 r e s e t
75 s l e e p 4
76 done
� �

E.8 VoIP Real�
1 #!/ bin / bash
2 # voipREAL . sh
3 #
4 # input 1 = HOUR of the exper i ence
5 # input 2 = DATE
6 # input 3 = network INTERFACE
7 # input 4 = d i r e c t o r y used
8 # input 5 = PlanetLab node
9 # input 6 = PROVIDER

10 # input 7 = Parameter to xterm : d i s p l a y to another hos t ?
11

12 echo ”##### Var iab l e s c on f i gu r a t i on #####”
13 HOUR=$1
14 DATE=$2
15 INTERFACE=$3
16 DIRECTORY=$4
17 NODEPL=$5
18 PROVIDER=$6
19 IPDISPLAY=$7
20

21 IPUMTS=‘ i f c o n f i g $INTERFACE | sed −n ’ s / .∗ i n e t addr : \ ([ˆ .] ∗ . [ˆ .] ∗ . [ˆ .] ∗ . [ˆ]∗\) .∗ $
/\1/p ’ ‘

22

23 i f [”$DIRECTORY” = ” root ”] ;
24 then
25 PC=”LB”
26 else
27 PC=”PR”
28 f i
29

30 i f [”$DIRECTORY” = ” root ”] ; then

122 • E.8 VoIP Real Appendix E Scripts for the tests and experiments

31 PARAMXTERM=””
32 else
33 PARAMXTERM=”−d i sp l ay $IPDISPLAY:0 ”
34 f i
35

36 COUNT=1
37 while (($COUNT <= 1))
38 do
39 echo ”##### voipREAL − t e s t $COUNT #####”
40

41 echo ”run tcpdump . . . ”
42 su −c ”tcpdump − i $INTERFACE −s 0 −w /$DIRECTORY/fundp/voip / r e a l /$PROVIDER

/$HOUR/voipREAL$PC−$DATE−$HOUR−$COUNT.dump &”
43 s l e e p 4
44

45 echo ”run tcpdump on $NODEPL . . . ”
46 xterm $PARAMXTERM −e ssh −t uninaonelab umts@$NODEPL ”su −c ’ tcpdump − i

eth0 −s 0 −w /home/uninaonelab umts / fundp/ voip / r e a l /$PROVIDER/$HOUR/
voipREAL$PC−PL−$DATE−$HOUR−$COUNT.dump’ ”&

47 s l e e p 4
48

49 echo ”##### Run SIPp s e r v e r (on $NODEPL) #####”
50 xterm $PARAMXTERM −e ssh −t uninaonelab umts@$NODEPL ”su −c ’ s ipp −s f /

home/uninaonelab umts / fundp/ voip / r e a l / u a s f o r r e a l v o i p t e s t −2minutes .
xml − i 1 38 . 96 . 250 . 149 −p 9002 −mi 138 . 96 . 250 . 149 −mp 9902 −m 1 −
trace msg −t race shor tmsg −t r a c e s c r e e n −t r a c e e r r −t r a c e s t a t −
t r a c e coun t s −t r a c e r t t −t r a c e l o g s ’ ”&

51 PIDSIPS=$!
52

53 # wait to be sure t ha t the s e r v e r i s running . . .
54 s l e e p 3
55

56 echo ”##### Run SIPp c l i e n t (on $PC) #####”
57 su −c ” s ipp 138 . 96 . 250 . 149 : 9002 − i $IPUMTS −p 9001 −mi $IPUMTS −mp 9901 −

s f /$DIRECTORY/fundp/voip / r e a l / u a c f o r r e a l v o i p t e s t −2minutes−$PC. xml
− l 1 −r 1 −m 1 −trace msg −t r a c e s c r e e n −t r a c e e r r −t r a c e s t a t −
t r a c e r t t −t r a c e l o g s ”

58 PIDSIPC=$!
59

60 echo ””
61 echo ”wait the end o f the c l i e n t . . . ”
62 wait $PIDSIPC
63

64 echo ”wait the end o f the s e r v e r . . . ”
65 wait $PIDSIPS
66

67 echo ”##### Move log f i l e s on $PC #####”
68 mv /$DIRECTORY/fundp/voip / r e a l /∗ . csv /$DIRECTORY/fundp/voip / r e a l /

$PROVIDER/$HOUR/voipREALClient$PC−$DATE−$HOUR−$COUNT−s t a t s . csv
69 mv /$DIRECTORY/fundp/voip / r e a l /∗ l o g s . l og /$DIRECTORY/fundp/voip / r e a l /

$PROVIDER/$HOUR/voipREALClient$PC−$DATE−$HOUR−$COUNT−l o g s . l og
70 mv /$DIRECTORY/fundp/voip / r e a l /∗ messages . l og /$DIRECTORY/fundp/voip / r e a l /

$PROVIDER/$HOUR/voipREALClient$PC−$DATE−$HOUR−$COUNT−messages . l og
71 mv /$DIRECTORY/fundp/voip / r e a l /∗ r t t . csv /$DIRECTORY/fundp/voip / r e a l /

$PROVIDER/$HOUR/voipREALClient$PC−$DATE−$HOUR−$COUNT−r t t . csv
72 mv /$DIRECTORY/fundp/voip / r e a l /∗ s c r e en . l og /$DIRECTORY/fundp/voip / r e a l /

$PROVIDER/$HOUR/voipREALClient$PC−$DATE−$HOUR−$COUNT−s c r e en . l og
73 mv /$DIRECTORY/fundp/voip / r e a l /∗ e r r o r s . l og /$DIRECTORY/fundp/voip / r e a l /

$PROVIDER/$HOUR/voipREALClient$PC−$DATE−$HOUR−$COUNT−e r r o r s . l og
74

Appendix E Scripts for the tests and experiments E.9 SIPp XML Scenarios • 123

75 echo ”##### Move log f i l e s on $NODEPL #####”
76 ssh −t uninaonelab umts@$NODEPL ”su −c ’mv /home/uninaonelab umts / fundp/

voip / r e a l /∗ counts . csv /home/uninaonelab umts / fundp/ voip / r e a l /$PROVIDER
/$HOUR/voipREALServer$PC−PL−$DATE−$HOUR−$COUNT−counts . csv ’ ”

77 ssh −t uninaonelab umts@$NODEPL ”su −c ’mv /home/uninaonelab umts / fundp/
voip / r e a l /∗ . csv /home/uninaonelab umts / fundp/ voip / r e a l /$PROVIDER/
$HOUR/voipREALServer$PC−PL−$DATE−$HOUR−$COUNT−s t a t s . csv ’ ”

78 ssh −t uninaonelab umts@$NODEPL ”su −c ’mv /home/uninaonelab umts / fundp/
voip / r e a l /∗ l o g s . l og /home/uninaonelab umts / fundp/ voip / r e a l /$PROVIDER/
$HOUR/voipREALServer$PC−PL−$DATE−$HOUR−$COUNT−l o g s . log ’ ”

79 ssh −t uninaonelab umts@$NODEPL ”su −c ’mv /home/uninaonelab umts / fundp/
voip / r e a l /∗ messages . l og /home/uninaonelab umts / fundp/ voip / r e a l /
$PROVIDER/$HOUR/voipREALServer$PC−PL−$DATE−$HOUR−$COUNT−messages . log ’ ”

80 ssh −t uninaonelab umts@$NODEPL ”su −c ’mv /home/uninaonelab umts / fundp/
voip / r e a l /∗ r t t . csv /home/uninaonelab umts / fundp/ voip / r e a l /$PROVIDER/
$HOUR/voipREALServer$PC−PL−$DATE−$HOUR−$COUNT−r t t . csv ’ ”

81 ssh −t uninaonelab umts@$NODEPL ”su −c ’mv /home/uninaonelab umts / fundp/
voip / r e a l /∗ s c r e en . l og /home/uninaonelab umts / fundp/ voip / r e a l /$PROVIDER
/$HOUR/voipREALServer$PC−PL−$DATE−$HOUR−$COUNT−s c r e en . log ’ ”

82 ssh −t uninaonelab umts@$NODEPL ”su −c ’mv /home/uninaonelab umts / fundp/
voip / r e a l /∗ shortmessages . l og /home/uninaonelab umts / fundp/ voip / r e a l /
$PROVIDER/$HOUR/voipREALServer$PC−PL−$DATE−$HOUR−$COUNT−shortmessages .
log ’ ”

83 ssh −t uninaonelab umts@$NODEPL ”su −c ’mv /home/uninaonelab umts / fundp/
voip / r e a l /∗ e r r o r s . l og /home/uninaonelab umts / fundp/ voip / r e a l /$PROVIDER
/$HOUR/voipREALServer$PC−PL−$DATE−$HOUR−$COUNT−e r r o r s . log ’ ”

84

85 echo ” k i l l each tcpdump . . . ”
86 su −c ” k i l l a l l tcpdump”
87 ssh −t uninaonelab umts@$NODEPL ”su −c ’ k i l l a l l tcpdump ’ ”
88 r e s e t
89 s l e e p 4
90 l e t COUNT=COUNT+1
91 done
� �

E.9 SIPp XML Scenarios

The three following SIPp XML scenarios files can be found at [74].

SIPp XML scenario file on the client side (Linux Box)�
1 <?xml ve r s i on=” 1 .0 ” encoding=”ISO−8859−1” ?>
2 <!DOCTYPE sc ena r i o SYSTEM ” s ipp . dtd”>
3

4 <!−− −−>
5 <!−− Sipp ’ uac ’ s c ena r i o with pcap (rtp) play −−>
6 <!−− −−>
7

8 <s c ena r i o name=”UAC with media”>
9 <send r e t r an s=”500”>

10 < ! [CDATA[
11

12 INVITE s ip : [s e r v i c e]@[r emote ip] : [remote port] SIP /2 .0
13 Via : SIP /2 . 0 / [t r anspor t] [l o c a l i p] : [l o c a l p o r t] ; branch=[branch]
14 From : s ipp <s i p : sipp@ [l o c a l i p] : [l o c a l p o r t] > ; tag=[ca l l number]
15 To : sut <s i p : [s e r v i c e]@[r emote ip] : [remote port]>
16 Call−ID : [c a l l i d]
17 CSeq : 1 INVITE

124 • E.9 SIPp XML Scenarios Appendix E Scripts for the tests and experiments

18 Contact : s i p : sipp@ [l o c a l i p] : [l o c a l p o r t]
19 Max−Forwards : 70
20 Subject : Performance Test
21 Content−Type : app l i c a t i o n /sdp
22 Content−Length : [l en]
23

24 v=0
25 o=user1 53655765 2353687637 IN IP [l o c a l i p t y p e] [l o c a l i p]
26 s=−
27 c=IN IP [l o c a l i p t y p e] [l o c a l i p]
28 t=0 0
29 m=audio [auto media port] RTP/AVP 3 101
30 a=rtpmap : 3 gsm/8000/1
31 a=rtpmap :101 te lephone−event /8000
32 a=fmtp :101 0−15,32−49
33

34]] >
35 </send>
36

37 <recv response=”100” op t i ona l=” true ”>
38 </recv>
39

40 <recv response=”180” op t i ona l=” true ”>
41 </recv>
42

43 <recv response=”200” rtd=” true ” c r l f=” true ”>
44 </recv>
45

46 <send>
47 < ! [CDATA[
48

49 ACK s ip : [s e r v i c e]@[r emote ip] : [remote port] SIP /2 .0
50 Via : SIP /2 . 0 / [t r anspor t] [l o c a l i p] : [l o c a l p o r t] ; branch=[branch]
51 From : s ipp <s i p : sipp@ [l o c a l i p] : [l o c a l p o r t] > ; tag=[ca l l number]
52 To : sut <s i p : [s e r v i c e]@[r emote ip] : [remote port] > [peer tag param]
53 Call−ID : [c a l l i d]
54 CSeq : 1 ACK
55 Contact : s i p : sipp@ [l o c a l i p] : [l o c a l p o r t]
56 Max−Forwards : 70
57 Subject : Performance Test
58 Content−Length : 0
59

60]] >
61 </send>
62

63 <!−− Play a pre−recorded PCAP f i l e (RTP stream) −−>
64 <nop>
65 <act ion>
66 <exec play pcap audio=”/ root / fundp/ voip / r e a l / pcap GSM for rea l vo ipte s t−

open ingFirewal l −10 sec . pcap”/>
67 </act ion>
68 </nop>
69

70 <!−− Pause 11 seconds , which i s approximately the durat ion o f the PCAP f i l e
−−>

71 <pause m i l l i s e c ond s=”11000”/>
72

73 <!−− Pause 130 seconds , which i s approximately the durat ion o f the PCAP f i l e
−−>

74 <pause m i l l i s e c ond s=”130000”/>

Appendix E Scripts for the tests and experiments E.9 SIPp XML Scenarios • 125

75

76 <send r e t r an s=”500”>
77 < ! [CDATA[
78

79 BYE s ip : [s e r v i c e]@[r emote ip] : [remote port] SIP /2 .0
80 Via : SIP /2 . 0 / [t r anspor t] [l o c a l i p] : [l o c a l p o r t] ; branch=[branch]
81 From : s ipp <s i p : sipp@ [l o c a l i p] : [l o c a l p o r t] > ; tag=[ca l l number]
82 To : sut <s i p : [s e r v i c e]@[r emote ip] : [remote port] > [peer tag param]
83 Call−ID : [c a l l i d]
84 CSeq : 2 BYE
85 Contact : s i p : sipp@ [l o c a l i p] : [l o c a l p o r t]
86 Max−Forwards : 70
87 Subject : Performance Test
88 Content−Length : 0
89

90]] >
91 </send>
92

93 <recv response=”200” c r l f=” true ”>
94 </recv>
95

96 <!−− d e f i n i t i o n o f the re sponse time r e p a r t i t i o n tab l e (un i t i s ms) −−>
97 <ResponseTimeRepartit ion value=”10 , 20 , 30 , 40 , 50 , 100 , 150 , 200 , 250 , 300 ,

350 , 400 , 450 , 500 , 550 , 600 , 650 , 700 , 750 , 800 , 850 , 900 , 950 , 1000”/>
98

99 <!−− d e f i n i t i o n o f the c a l l l ength r e p a r t i t i o n tab l e (un i t i s ms) −−>
100 <Cal lLengthRepart i t i on value=”10 , 50 , 100 , 500 , 1000 , 5000 , 10000 , 60000 ,

100000 , 120000”/>
101

102 </scenar i o >
� �
SIPp XML scenario file on the client side (PrivateLab Node)�

1 <?xml ve r s i on=” 1 .0 ” encoding=”ISO−8859−1” ?>
2 <!DOCTYPE sc ena r i o SYSTEM ” s ipp . dtd”>
3

4 <!−− −−>
5 <!−− Sipp ’ uac ’ s c ena r i o with pcap (rtp) play −−>
6 <!−− −−>
7

8 <s c ena r i o name=”UAC with media”>
9 <send r e t r an s=”500”>

10 < ! [CDATA[
11

12 INVITE s ip : [s e r v i c e]@[r emote ip] : [remote port] SIP /2 .0
13 Via : SIP /2 . 0 / [t r anspor t] [l o c a l i p] : [l o c a l p o r t] ; branch=[branch]
14 From : s ipp <s i p : sipp@ [l o c a l i p] : [l o c a l p o r t] > ; tag=[ca l l number]
15 To : sut <s i p : [s e r v i c e]@[r emote ip] : [remote port]>
16 Call−ID : [c a l l i d]
17 CSeq : 1 INVITE
18 Contact : s i p : sipp@ [l o c a l i p] : [l o c a l p o r t]
19 Max−Forwards : 70
20 Subject : Performance Test
21 Content−Type : app l i c a t i o n /sdp
22 Content−Length : [l en]
23

24 v=0
25 o=user1 53655765 2353687637 IN IP [l o c a l i p t y p e] [l o c a l i p]
26 s=−
27 c=IN IP [l o c a l i p t y p e] [l o c a l i p]

126 • E.9 SIPp XML Scenarios Appendix E Scripts for the tests and experiments

28 t=0 0
29 m=audio [auto media port] RTP/AVP 3 101
30 a=rtpmap : 3 gsm/8000/1
31 a=rtpmap :101 te lephone−event /8000
32 a=fmtp :101 0−15,32−49
33

34]] >
35 </send>
36

37 <recv response=”100” op t i ona l=” true ”>
38 </recv>
39

40 <recv response=”180” op t i ona l=” true ”>
41 </recv>
42

43 <recv response=”200” rtd=” true ” c r l f=” true ”>
44 </recv>
45

46 <send>
47 < ! [CDATA[
48

49 ACK s ip : [s e r v i c e]@[r emote ip] : [remote port] SIP /2 .0
50 Via : SIP /2 . 0 / [t r anspor t] [l o c a l i p] : [l o c a l p o r t] ; branch=[branch]
51 From : s ipp <s i p : sipp@ [l o c a l i p] : [l o c a l p o r t] > ; tag=[ca l l number]
52 To : sut <s i p : [s e r v i c e]@[r emote ip] : [remote port] > [peer tag param]
53 Call−ID : [c a l l i d]
54 CSeq : 1 ACK
55 Contact : s i p : sipp@ [l o c a l i p] : [l o c a l p o r t]
56 Max−Forwards : 70
57 Subject : Performance Test
58 Content−Length : 0
59

60]] >
61 </send>
62

63 <!−− Play a pre−recorded PCAP f i l e (RTP stream) −−>
64 <nop>
65 <act ion>
66 <exec play pcap audio=”/home/unina umts/ fundp/ voip / r e a l /

pcap GSM for rea l vo ipte s t−open ingFirewal l −10 sec . pcap”/>
67 </act ion>
68 </nop>
69

70 <!−− Pause 11 seconds , which i s approximately the durat ion o f the PCAP f i l e
−−>

71 <pause m i l l i s e c ond s=”11000”/>
72

73 <!−− Pause 130 seconds , which i s approximately the durat ion o f the PCAP f i l e
−−>

74 <pause m i l l i s e c ond s=”130000”/>
75

76 <send r e t r an s=”500”>
77 < ! [CDATA[
78

79 BYE s ip : [s e r v i c e]@[r emote ip] : [remote port] SIP /2 .0
80 Via : SIP /2 . 0 / [t r anspor t] [l o c a l i p] : [l o c a l p o r t] ; branch=[branch]
81 From : s ipp <s i p : sipp@ [l o c a l i p] : [l o c a l p o r t] > ; tag=[ca l l number]
82 To : sut <s i p : [s e r v i c e]@[r emote ip] : [remote port] > [peer tag param]
83 Call−ID : [c a l l i d]
84 CSeq : 2 BYE

Appendix E Scripts for the tests and experiments E.9 SIPp XML Scenarios • 127

85 Contact : s i p : sipp@ [l o c a l i p] : [l o c a l p o r t]
86 Max−Forwards : 70
87 Subject : Performance Test
88 Content−Length : 0
89

90]] >
91 </send>
92

93 <recv response=”200” c r l f=” true ”>
94 </recv>
95

96 <!−− d e f i n i t i o n o f the re sponse time r e p a r t i t i o n tab l e (un i t i s ms) −−>
97 <ResponseTimeRepartit ion value=”10 , 20 , 30 , 40 , 50 , 100 , 150 , 200 , 250 , 300 ,

350 , 400 , 450 , 500 , 550 , 600 , 650 , 700 , 750 , 800 , 850 , 900 , 950 , 1000”/>
98

99 <!−− d e f i n i t i o n o f the c a l l l ength r e p a r t i t i o n tab l e (un i t i s ms) −−>
100 <Cal lLengthRepart i t i on value=”10 , 50 , 100 , 500 , 1000 , 5000 , 10000 , 60000 ,

100000 , 120000”/>
101

102 </scenar i o >
� �
SIPp XML scenario file on the server side (PlanetLab Node)�

1 <?xml ve r s i on=” 1 .0 ” encoding=”ISO−8859−1” ?>
2 <!DOCTYPE sc ena r i o SYSTEM ” s ipp . dtd”>
3

4 <!−− −−>
5 <!−− Sipp ’ uas ’ s c ena r i o with pcap (rtp) play −−>
6 <!−− −−>
7

8 <s c ena r i o name=”Basic UAS responder ”>
9 <recv reque s t=”INVITE” c r l f=” true ”>

10 </recv>
11

12 <send>
13 < ! [CDATA[
14

15 SIP /2 .0 180 Ringing
16 [l a s t V i a :]
17 [last From :]
18 [l a s t To :] ; tag=[ca l l number]
19 [l a s t Ca l l−ID :]
20 [l a s t CSeq :]
21 Contact : <s i p : [l o c a l i p] : [l o c a l p o r t] ; t r anspor t =[t ranspo r t]>
22 Content−Length : 0
23

24]] >
25 </send>
26

27 <send r e t r an s=”500”>
28 < ! [CDATA[
29

30 SIP /2 .0 200 OK
31 [l a s t V i a :]
32 [last From :]
33 [l a s t To :] ; tag=[ca l l number]
34 [l a s t Ca l l−ID :]
35 [l a s t CSeq :]
36 Contact : <s i p : [l o c a l i p] : [l o c a l p o r t] ; t r anspor t =[t ranspo r t]>
37 Content−Type : app l i c a t i o n /sdp

128 • E.9 SIPp XML Scenarios Appendix E Scripts for the tests and experiments

38 Content−Length : [l en]
39

40 v=0
41 o=user1 53655765 2353687637 IN IP [l o c a l i p t y p e] [l o c a l i p]
42 s=−
43 c=IN IP [media ip type] [media ip]
44 t=0 0
45 m=audio [auto media port] RTP/AVP 3 101
46 a=rtpmap : 3 gsm/8000/1
47 a=rtpmap :101 te lephone−event /8000
48 a=fmtp :101 0−15,32−49
49

50]] >
51 </send>
52

53 <!−− op t i ona l=” true ” −−>
54 <recv r eque s t=”ACK”
55 rtd=” true ”
56 c r l f=” true ”>
57 </recv>
58

59 <!−− Pause 11 seconds during r e c e i v i n g the opening f i r e w a l l stream
−−>

60 <pause m i l l i s e c ond s=”11000”/>
61

62 <!−− Play a pre−recorded PCAP f i l e (RTP stream) −−>
63 <nop>
64 <act ion>
65 <exec play pcap audio=”/home/uninaonelab umts / fundp/ voip / r e a l /

pcap GSM for rea l vo ipte s t−2minutes . pcap”/>
66 </act ion>
67 </nop>
68

69 <!−− Pause 128 seconds , which i s approximately the durat ion o f the PCAP f i l e
−−>

70 <pause m i l l i s e c ond s=”128000”/>
71

72 <recv r eque s t=”BYE”>
73 </recv>
74

75 <send>
76 < ! [CDATA[
77

78 SIP /2 .0 200 OK
79 [l a s t V i a :]
80 [last From :]
81 [l a s t To :]
82 [l a s t Ca l l−ID :]
83 [l a s t CSeq :]
84 Contact : <s i p : [l o c a l i p] : [l o c a l p o r t] ; t r anspor t =[t ranspor t]>
85 Content−Length : 0
86

87]] >
88 </send>
89

90 <!−− Keep the c a l l open f o r a while in case the 200 i s l o s t to be −−>
91 <!−− ab le to r e t ransmi t i t i f we r e c e i v e the BYE again . −−>
92 <pause m i l l i s e c ond s=”4000”/>
93

94 <!−− d e f i n i t i o n o f the response time r e p a r t i t i o n tab l e (un i t i s ms) −−>

Appendix E Scripts for the tests and experiments E.9 SIPp XML Scenarios • 129

95 <ResponseTimeRepartit ion value=”10 , 20 , 30 , 40 , 50 , 100 , 150 , 200 , 250 , 300 ,
350 , 400 , 450 , 500 , 550 , 600 , 650 , 700 , 750 , 800 , 850 , 900 , 950 , 1000”/>

96

97 <!−− d e f i n i t i o n o f the c a l l l ength r e p a r t i t i o n tab l e (un i t i s ms) −−>
98 <Cal lLengthRepart i t i on value=”10 , 50 , 100 , 500 , 1000 , 5000 , 10000 , 60000 ,

100000 , 120000”/>
99

100 </scenar i o >
� �

Appendix F
Scripts used to compute the results

F.1 Jitter

The following scripts can be found at [74].

F.1.1 Main scripts

Script to compute the jitter for synthetic traffic (using F.1.2).�
1 #!/ bin / bash
2 # t e s t . sh
3

4 # input 1 = TG ser v e r f i l e
5 # input 2 = TG c l i e n t f i l e
6 # input 3 = output f i l e name
7

8 echo ”##### Var iab l e s c on f i gu r a t i on #####”
9 RECEIVE=$1

10 SEND=$2
11 OUTPUT=$3
12

13 echo ”##### dcat #####”
14 # take a b inary and re turn a t e x t f i l e .
15 TEMP=${RECEIVE/ . l og }
16 dcat $RECEIVE > $TEMP” . txt ”
17 RECEIVE=$TEMP” . txt ”
18 TEMP=${SEND/ . l og }
19 dcat $SEND > $TEMP” . txt ”
20 SEND=$TEMP” . txt ”
21

22 echo ”##### se rv e r f i l e #####”
23 # take the f i l e o f the TG ser v e r and re turn only va l u e s o f t imes and ID
24 # ordered on the ID .
25 # the l a s t l i n e i s removed because i t doen ’ t r e f e r a packe t .
26 awk ’NR == 17 , NR == EOF {print $4 ” ” $1 } ’ $RECEIVE > r e c e i v e . txt
27 head −n −1 r e c e i v e . txt > s o r t . txt
28 s o r t −n +0 −1 s o r t . txt > s e r v e r . txt
29

30

31 echo ”##### c l i e n t f i l e #####”
32 # See se r v e r f i l e .
33 awk ’NR == 17 , NR == EOF {print $4 ” ” $1 } ’ $SEND > send . txt

132 • F.1 Jitter Appendix F Scripts used to compute the results

34 head −n −1 send . txt > c l i e n t . txt
35

36 echo ”##### compute j i t t e r #####”
37 computeJ i t terGenera l s e r v e r . txt c l i e n t . txt $OUTPUT
38

39

40 #echo ”##### clean #####”
41 rm $RECEIVE
42 rm $SEND
43 rm r e c e i v e . txt
44 rm send . txt
45 rm so r t . txt
46 rm s e rv e r . txt
47 rm c l i e n t . txt
� �

Script to compute the jitter for real traffic (using F.1.2).�
1 #!/ bin / bash
2 # t e s t . sh
3

4 # input 1 = reco i f i l e
5 # input 2 = envoi f i l e
6 # input 3 = output f i l e name
7

8 echo ”##### so r t input f i l e s #####”
9 s o r t −n +0 −1 $1 > $1 . s o r t

10 s o r t −n +0 −1 $2 > $2 . s o r t
11

12 echo ”##### compute j i t t e r #####”
13 computeJ i t terGenera l $1 . s o r t $2 . s o r t $3
14

15 rm $1 . s o r t
16 rm $2 . s o r t
� �

F.1.2 computeJitterGeneral.c

This program written in the C language computes the jitter as defined in Section 9.1.�
1 /∗ ###
2 ComputeJitter . c
3 ##∗/
4 #inc l ude ” s t d i o . h”
5 #inc l ude ”math . h”
6

7 #de f i n e nbMaxPackets 15000
8

9 i n t main (i n t argc , char ∗argv []) {
10 FILE ∗ f i l eEnv o i ;
11 FILE ∗ f i l e R e c o i ;
12 FILE ∗ j i t t e r ;
13 f l o a t envoi [2] [nbMaxPackets] ;
14 f l o a t r e c o i [2] [nbMaxPackets] ;
15 i n t packetsReco i =0;
16 i n t packetsEnvoi =0;
17 char ∗output ;
18

19 // Output f i l e
20 output=argv [3] ;
21

Appendix F Scripts used to compute the results F.1 Jitter • 133

22 // Loading o f f i l e s
23 f l o a t id =0;
24 f l o a t time=0;
25

26 i f ((f i l e R e c o i = fopen (argv [1] , ” r ”)) == NULL)
27 printf (” Imposs ib l e to open the f i l e \n”) ;
28 else {
29 while (f s c a n f (f i l eR e c o i , ”%f %f ” ,&id ,&time) != EOF) {
30 r e c o i [0] [packetsReco i]= id ;
31 r e c o i [1] [packetsReco i]=time ;
32 packetsReco i++;
33 }
34 }
35 f c l o s e (f i l e R e c o i) ;
36

37 i f ((f i l eEnv o i = fopen (argv [2] , ” r ”)) == NULL)
38 printf (” Imposs ib l e to open the f i l e \n”) ;
39 else {
40 while (f s c a n f (f i l eEnvo i , ”%f %f ” ,&id ,&time) != EOF) {
41 envoi [0] [packetsEnvoi]= id ;
42 envoi [1] [packetsEnvoi]=time ;
43 packetsEnvoi++;
44 }
45 }
46 f c l o s e (f i l eEnv o i) ;
47

48 // Check packets l o s t
49 f l o a t packetsR=packetsReco i ;
50 f l o a t packetsE=packetsEnvoi ;
51 f l o a t l o s t = (packetsR ∗100) /packetsE ;
52 printf (”Pourcentage o f packets l o s t :% f \n” ,(100− l o s t)) ;
53 printf (”Packets s t a r t ed : %d − Packets a r r i v ed : %d\n” , packetsEnvoi , packetsReco i) ;
54

55

56 // e lagage des tableaux
57 f l o a t OKenvoi [2] [nbMaxPackets] ;
58 f l o a t OKrecoi [2] [nbMaxPackets] ;
59

60 i n t t =0;
61 i n t i =0;
62 while (i <=(packetsEnvoi −1)) {
63 i n t boolean =0;
64 i n t j =0;
65 while ((boolean==0) && (j<=(packetsRecoi −1))) {
66 i f (envoi [0] [i]==r e c o i [0] [j])
67 {boolean =1;}
68 j++;
69 }
70

71 i f (boolean==1){
72 OKenvoi [0] [t]= envoi [0] [i] ;
73 OKenvoi [1] [t]= envoi [1] [i] ;
74 OKrecoi [0] [t]= r e c o i [0] [j −1] ;
75 OKrecoi [1] [t]= r e c o i [1] [j −1] ;
76 t++;}
77 i++;
78 }
79

80 // Compute J i t t e r
81 i f ((j i t t e r = fopen (output , ”w”)) == NULL)

134 • F.1 Jitter Appendix F Scripts used to compute the results

82 printf (” Imposs ib l e to open the f i l e \n”) ;
83 else {
84 f l o a t de lay n ;
85 f l o a t de l ay n 1 ;
86 f l o a t j i t =0;
87 i n t u=1;
88 while (u<=(t−1)) {
89 de lay n=OKrecoi [1] [u]−OKenvoi [1] [u] ;
90 de lay n 1=OKrecoi [1] [u−1]−OKenvoi [1] [u−1] ;
91 f p r i n t f (j i t t e r , ”%d %f \n” ,u , f abs (delay n−de lay n 1)) ;
92 j i t=j i t+fabs (delay n−de lay n 1) ;
93 u++;
94 }
95 printf (”Average J i t t e r (in seconds) :% f \n” , (j i t /u)) ;
96 f c l o s e (j i t t e r) ;
97 }
98 }
� �

Appendix G
Part of results of tests and experiments

G.1 Static Approach - Tests

G.1.1 Test 3 - Cell id

Cell id - [hexadecimal form]
System VPOST VPRE WIND
PrivateLab Node 026F 026F 0CB8
Linux Box 026F 026F 0CB8

G.1.2 Test 7 - Maximal downlink traffic

wget

wget - [Mbps]
System ETH VPOST VPRE WIND
PrivateLab Node 10.45 1.371 1.254 1.412
Linux Box 58.391 1.447 1.371 1.573

tg

tg (2 Mbps - packet size : 1,450 Bytes) - [Mbps]
System ETH VPOST VPRE WIND
PrivateLab Node 2.065 1.390 1.403 1.598
Linux Box 2.064 1.460 1.443 1.614

136 • G.1 Static Approach - Tests Appendix G Part of results of tests and experiments

tg (2 Mbps - packet size : 250 Bytes) - [Mbps]
System ETH VPOST VPRE WIND
PrivateLab Node 2.354 1.353 1.455 1.572
Linux Box 2.359 1.539 1.506 1.684

tg Packets lost (2 Mbits/s - packet size : 1,450 Bytes) - [%]
System ETH VPOST VPRE WIND
PrivateLab Node 0 31.374 30.785 23.237
Linux Box 0 27.936 28.736 19.698

tg Packets lost (2 Mbits/s, packet size : 250 Bytes) - [%]
System ETH VPOST VPRE WIND
PrivateLab Node 0.625 42.937 38.614 34.545
Linux Box 0.403 35.049 36.492 31.599

tg Average Jitter (2 Mbits/s - packet size : 1,450 Bytes) - [ms]
System ETH VPOST VPRE WIND
PrivateLab Node 0.720 3.746 3.709 2.967
Linux Box 0.335 3.631 3.699 2.586

tg Average Jitter (2 Mbits/s - packet size : 250 Bytes) - [ms]
System ETH VPOST VPRE WIND
PrivateLab Node 0.535 1.078 0.994 0.702
Linux Box 0.242 0.905 0.963 0.696

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	UMTS
	UMTS architecture overview
	Multiple access methods
	WCDMA
	Transport Channels
	RLC modes
	QoS traffic classes
	HSDPA
	Evolution

	The Emulating UTRAN Testbed
	Testbed goals
	Testbed architecture
	Testbed characteristics
	RAN & Air Interface
	Downlink-Oriented
	Traffic Generation
	Mobility Management

	State of the Art
	PlanetLab
	Introduction
	PlanetLab presentation
	Features of this testbed
	PlanetLab and OneLab
	Private OneLab and PlanetLab
	Why integrate PlanetLab into our experiments?
	Summary of the projects and acronyms

	Description & Initialization
	Global architecture
	Hardware
	PCMCIA card
	SIM cards

	Setup of a UMTS connection
	Nozomi Driver
	The PPP protocol
	wvdial
	gcom and minicom
	UMTS connection
	Issues

	Environment - Tests
	Properties of the network
	Tools
	Traffic Generator and Wget
	Tcpdump and Wireshark
	Scripts to establish the connection and gcom
	UMTSmon
	Google Earth network link and Vodafone database

	Tests
	Test 1 - HSDPA
	Test 2 - Strength of the signal
	Test 3 - Cell id
	Test 4 - Traceroute
	Test 5 - RLC Mode
	Test 6 - Type of the user
	Test 7 - Maximal downlink traffic
	Test 8 - Loss of ACKs

	Issue: the firewall problem
	Position of the problem
	How can we bypass the problem?
	Details of the solution for TG
	Limits
	Alternative: STUN

	Results Analysis
	Assumptions and consequences
	Physical environment
	PRN and LB through three providers
	Real environment and NT

	Experiments
	Experiments overview
	Video Streaming
	Synthetic Traffic
	Real Traffic

	VoIP
	Synthetic Traffic
	Real Traffic

	Analysis of the experiments
	Jitter measurement
	Video Streaming
	Real Traffic
	Synthetic Traffic

	VoIP
	Real Traffic
	Synthetic Traffic

	Global analysis

	Conclusion
	Bibliography
	UMTS connection
	Script to initiate the connection on a Linux box
	Script to realize the connection UMTS
	Connection established

	AT-commands scripts
	HSDPA
	Signal quality
	+CSQ
	RSSI - dBm

	Cell ID
	+CREG
	+CGREG

	Type of the user
	+CAEMLPP
	+CPPS
	+CFCS

	Programs modifications
	TG
	force the source port in prot_udp.c
	re-use the socket in prot_udp.c

	openRTSP
	modifications in RTPSource.cpp
	modifications in RTPSource.hh
	modifications in playCommon.cpp

	Wireshark
	modifications in tap-rtp-common.c for videoTest-1.mp4
	modifications in tap-rtp-common.c for videoTest-2.mp4

	TG configuration files
	Simple example
	Synthetic video streaming
	Synthetic VoIP

	Scripts for the tests and experiments
	Main script
	AT-commands
	Traceroute
	Maximal downlink traffic
	Script for tg
	Script for wget

	Synthetic Video Streaming
	Synthetic VoIP
	Video Streaming Real
	VoIP Real
	SIPp XML Scenarios

	Scripts used to compute the results
	Jitter
	Main scripts
	computeJitterGeneral.c

	Part of results of tests and experiments
	Static Approach - Tests
	Test 3 - Cell id
	Test 7 - Maximal downlink traffic

